
www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1/
Blind folio: i

®

Oracle Database 12c
DBA Handbook

00-FM.indd 1 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 /
Blind folio: ii

About the Author
Bob Bryla is an Oracle 9i, 10g, 11g, and 12c Certified Professional with more than
20 years of experience in database design, database application development,
training, and Oracle database administration. He is the primary Oracle DBA and
database systems engineer at Epic in Verona, Wisconsin. He is a technical editor
for a number of Oracle Press books, including several certification study guides for
Oracle Database 10g, 11g, and 12c. He has also been known to watch science
fiction movies and tinker with Android devices in his spare time.

About the Technical Editor
Scott Gossett is a technical director in the Oracle Advanced Technologies Solutions
organization with more than 23 years of experience specializing in Oracle RAC,
performance tuning, and high-availability databases. Prior to becoming a technical
director, Scott was a senior principal instructor for Oracle Education for over 12 years,
primarily teaching Oracle internals, performance tuning, RAC, and database
administration. In addition, Scott is one of the architects and primary authors of
the Oracle Certified Master exam. Scott has been a technical editor for twelve
Oracle Press books.

00-FM.indd 2 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1/
Blind folio: iii

®

Oracle Database 12c
DBA Handbook

Bob Bryla

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

00-FM.indd 3 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by McGraw-Hill Education (Publisher). All rights reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they
may not be reproduced for publication.

ISBN: 978-0-07-179879-2

MHID: 0-07-179879-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-179878-5,
MHID: 0-07-179878-1.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their respective owners, and
McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this work
and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in this
Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms.
Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND
EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee
that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill
Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under
no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation
of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.mhprofessional.com
http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 /
Blind folio: v

To the gang at home: I couldn’t have done it
without you! And the pizzas. And the

heavy metal. And several shows on the BBC.

—BB

00-FM.indd 5 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents at a Glance

PART I
Database Architecture

 1 Getting Started with the Oracle Architecture . 3

 2 Upgrading to Oracle Database 12c . 51

 3 Planning and Managing Tablespaces . 61

 4 Physical Database Layouts and Storage Management . 77

PART II
Database Management

 5 Developing and Implementing Applications . 117

 6 Monitoring Space Usage . 157

 7 Managing Transactions with Undo Tablespaces . 209

 8 Database Tuning . 245

 9 In-Memory Option . 293

 10 Database Security and Auditing . 303

 11 Multitenant Database Architecture . 371

PART III
High Availability

 12 Real Application Clusters . 441

 13 Backup and Recovery Options . 453

 14 Using Recovery Manager (RMAN) . 481

vii

00-FM.indd 7 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

viii Oracle Database 12c DBA Handbook

 15 Oracle Data Guard . 537

 16 Miscellaneous High Availability Features . 559

PART IV
Networked Oracle

 17 Oracle Net . 577

 18 Managing Large Databases . 611

 19 Managing Distributed Databases . 657

 Index . 697

00-FM.indd 8 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents

Acknowledgments . xxi
Introduction . xxiii

PART I
Database Architecture

 1 Getting Started with the Oracle Architecture . 3
An Overview of Databases and Instances . 4

Databases . 5
Instances . 5

Oracle Logical Storage Structures . 6
Tablespaces . 6
Blocks . 7
Extents . 7
Segments . 7

Oracle Logical Database Structures . 8
Tables . 9
Constraints . 16
Indexes . 18
Views . 20
Users and Schemas . 22
Profiles . 22
Sequences . 23
Synonyms . 23
PL/SQL . 23
External File Access . 24
Database Links and Remote Databases . 25

Oracle Physical Storage Structures . 26
Datafiles . 27
Redo Log Files . 27

ix

00-FM.indd 9 27/04/15 11:13 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

x Oracle Database 12c DBA Handbook

Control Files . 28
Archived Log Files . 28
Initialization Parameter Files . 28
Alert and Trace Log Files . 29
Backup Files . 30
Oracle Managed Files . 30
Password Files . 30

Multiplexing Database Files . 31
Automatic Storage Management . 31
Manual Multiplexing . 31

Oracle Memory Structures . 33
System Global Area . 33
Program Global Area . 36
Software Code Area . 36
Background Processes . 37

Backup/Recovery Overview . 39
Export/Import . 39
Offline Backups . 40
Online Backups . 40
RMAN . 40

Security Capabilities . 41
Privileges and Roles . 41
Auditing . 41
Fine-Grained Auditing . 42
Virtual Private Database . 42
Label Security . 42

Real Application Clusters . 42
Oracle Streams . 43
Oracle Enterprise Manager . 43
Oracle Initialization Parameters . 44

Basic Initialization Parameters . 44
Advanced Initialization Parameters . 49

Summary . 49

 2 Upgrading to Oracle Database 12c . 51
Choosing an Upgrade Method . 53
Before Upgrading . 54
Using the Database Upgrade Assistant . 55
Performing a Manual Direct Upgrade . 56
Using Data Pump Export and Import . 58

Export and Import Versions to Use . 58
Performing the Upgrade . 58

Using the Data-Copying Method . 59
After Upgrading . 60
Summary . 60

00-FM.indd 10 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents xix Oracle Database 12c DBA Handbook

 3 Planning and Managing Tablespaces . 61
Tablespace Architecture . 62

Tablespace Types . 62
Optimal Flexible Architecture . 68

Oracle Installation Tablespaces . 73
SYSTEM . 74
SYSAUX . 74
TEMP . 74
UNDOTBS1 . 74
USERS . 75
EXAMPLE . 75

Segment Segregation . 75
Summary . 76

 4 Physical Database Layouts and Storage Management 77
Traditional Disk Space Storage . 78

Resizing Tablespaces and Datafiles . 78
Moving Datafiles . 86
Moving Online Redo Log Files . 90
Moving Control Files . 91

Automatic Storage Management . 93
ASM Architecture . 94
Creating an ASM Instance . 94
ASM Instance Components . 97
ASM Dynamic Performance Views . 99
ASM Filename Formats . 99
ASM File Types and Templates . 102
Administering ASM Disk Groups . 102

Summary . 114

PART II
Database Management

 5 Developing and Implementing Applications . 117
Tuning by Design: Best Practices . 118

Do As Little As Possible . 119
Do It As Simply As Possible . 121
Tell the Database What It Needs to Know . 123
Maximize the Throughput in the Environment . 124
Divide and Conquer Your Data . 124
Test Correctly . 125
Standard Deliverables . 127

Resource Management . 130
Implementing the Database Resource Manager . 130
Sizing Database Objects . 135
Using Global Temporary Tables . 142

00-FM.indd 11 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xii Oracle Database 12c DBA Handbook

Supporting Tables Based on Abstract Datatypes . 142
Using Object Views . 143
Security for Abstract Datatypes . 146
Indexing Abstract Datatype Attributes . 148

Quiescing and Suspending the Database . 149
Supporting Iterative Development . 151

Iterative Column Definitions . 151
Forcing Cursor Sharing . 152

Managing Package Development . 153
Generating Diagrams . 153
Space Requirements . 153
Tuning Goals . 153
Security Requirements . 153
Data Requirements . 154
Version Requirements . 154
Execution Plans . 154
Acceptance Test Procedures . 154
The Testing Environment . 155

Summary . 155

 6 Monitoring Space Usage . 157
Common Space Management Problems . 158

Running Out of Free Space in a Tablespace . 159
Insufficient Space for Temporary Segments . 159
Too Much or Too Little Undo Space Allocated . 159
Fragmented Tablespaces and Segments . 160

Oracle Segments, Extents, and Blocks . 161
Data Blocks . 161
Extents . 163
Segments . 164

Data Dictionary Views and Dynamic Performance Views . 165
DBA_TABLESPACES . 165
DBA_SEGMENTS . 166
DBA_EXTENTS . 166
DBA_FREE_SPACE . 167
DBA_LMT_FREE_SPACE . 167
DBA_THRESHOLDS . 167
DBA_OUTSTANDING_ALERTS . 168
DBA_OBJECT_USAGE . 168
DBA_ALERT_HISTORY . 168
V$ALERT_TYPES . 169
V$UNDOSTAT . 169
V$SORT_SEGMENT . 169
V$TEMPSEG_USAGE . 170

00-FM.indd 12 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents xiiixii Oracle Database 12c DBA Handbook

Space Management Methodologies . 170
Locally Managed Tablespaces . 170
Using OMF to Manage Space . 172
Bigfile Tablespaces . 173
Automatic Storage Management . 174
Undo Management Considerations . 176

SYSAUX Monitoring and Usage . 177
Archived Redo Log File Management . 179
Built-in Space Management Tools . 179

Segment Advisor . 179
Undo Advisor and the Automatic Workload Repository 182
Index Usage . 184
Space Usage Warning Levels . 185
Resumable Space Allocation . 187
Managing Alert and Trace Files with ADR . 190
OS Space Management . 193

Space Management Scripts . 193
Segments That Cannot Allocate Additional Extents . 193
Used and Free Space by Tablespace and Datafile . 194

Automating and Streamlining the Notification Process . 195
Using DBMS_SCHEDULER . 195
Cloud Control and Monitoring . 196

Summary . 207

 7 Managing Transactions with Undo Tablespaces . 209
Transaction Basics . 210
Undo Basics . 211

Rollback . 211
Read Consistency . 211
Database Recovery . 212
Flashback Operations . 212

Managing Undo Tablespaces . 212
Creating Undo Tablespaces . 212
Undo Tablespace Dynamic Performance Views . 219
Undo Tablespace Initialization Parameters . 219
Multiple Undo Tablespaces . 221
Sizing and Monitoring the Undo Tablespace . 223
Read Consistency vs. Successful DML . 227

Flashback Features . 227
Flashback Query . 228
DBMS_FLASHBACK . 230
Flashback Transaction Backout . 232
Flashback Table . 232
Flashback Version Query . 234
Flashback Transaction Query . 237

00-FM.indd 13 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xiv Oracle Database 12c DBA Handbook

Flashback Data Archive . 238
Flashback and LOBs . 242

Migrating to Automatic Undo Management . 242
Summary . 243

 8 Database Tuning . 245
Tuning Application Design . 247

Effective Table Design . 247
Distribution of CPU Requirements . 248
Effective Application Design . 249

Tuning SQL . 251
Impact of Order on Load Rates . 252
Additional Indexing Options . 253
Generating Explain Plans . 254

Tuning Memory Usage . 257
Managing SGA Pools . 257
Specifying the Size of the SGA . 260
Using the Cost-Based Optimizer . 261

Tuning Data Access . 262
Identifying Chained Rows . 262
Using Index-Organized Tables . 263
Tuning Issues for Index-Organized Tables . 264

Tuning Data Manipulation . 265
Bulk Inserts: Using the SQL*Loader Direct Path Option 265
Bulk Data Moves: Using External Tables . 267
Bulk Inserts: Common Traps and Successful Tricks . 267
Bulk Deletes: The TRUNCATE Command . 268
Using Partitions . 269

Reducing Network Traffic . 270
Replication of Data Using Materialized Views . 270
Using Remote Procedure Calls . 272

Using the Automatic Workload Repository . 273
Managing Snapshots . 274
Managing Baselines . 274
Generating AWR Reports . 274
Running the Automatic Database Diagnostic Monitor Reports 275
Using Automatic SQL Tuning Advisor . 275

Performance Tuning in a Multitenant Environment . 277
Tuning Methodology . 279
Sizing the CDB . 279
Using Memory Advisors . 282
Leveraging AWR Reports . 283
Using the SQL Tuning Advisor . 283

Managing Resource Allocation Within a PDB . 284
Using Shares to Manage Inter-PDB Resources . 284
Creating and Modifying Resource Manager Plans . 284

00-FM.indd 14 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents xvxiv Oracle Database 12c DBA Handbook

Performing Database Replay . 289
Analyze the Source Database Workloads . 289
Capture Source Database Workloads . 290
Process Workloads on Target System . 290
Replay Workloads on Target CDB . 290
Verify Replay Results . 290

Summary . 290

 9 In-Memory Option . 293
Overview of Oracle In-Memory Option . 294

System Requirements and Setup . 294
In-Memory Case Study . 295

Data Dictionary Views . 299
V$IM_SEGMENTS . 299
V$INMEMORY_AREA . 300
V$SGA . 300

Summary . 301

 10 Database Security and Auditing . 303
Non-database Security . 305
Database Authentication Methods . 305

Database Authentication . 306
Database Administrator Authentication . 306
Operating System Authentication . 309
Network Authentication . 310
3-Tier Authentication . 312
Client-Side Authentication . 312
User Accounts . 313

Database Authorization Methods . 318
Profile Management . 319
System Privileges . 326
Object Privileges . 329
Creating, Assigning, and Maintaining Roles . 333
Using a VPD to Implement Application Security Policies 340

Auditing . 358
Auditing Locations . 358
Statement Auditing . 360
Privilege Auditing . 364
Schema Object Auditing . 365
Fine-Grained Auditing . 366
Auditing-Related Data Dictionary Views . 368
Protecting the Audit Trail . 368

Data Encryption Techniques . 369
DBMS_CRYPTO Package . 369
Transparent Data Encryption . 369

Summary . 370

00-FM.indd 15 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xvi Oracle Database 12c DBA Handbook

 11 Multitenant Database Architecture . 371
Understanding the Multitenant Architecture . 373

Leveraging Multitenant Databases . 373
Understanding Multitenant Configurations . 374

Provisioning in a Multitenant Environment . 376
Understanding Pluggable Database Provisioning . 376
Configuring and Creating a CDB . 379
Understanding New Data Dictionary Views: The Sequel 384
Creating PDBs . 387
Unplugging and Dropping a PDB . 392

Managing CDBs and PDBs . 395
Understanding CDB and PDB Service Names . 395
Connecting to a CDB or PDB Using SQL Developer . 396
Creating Services for CDBs or PDBs . 397
Switching Connections Within a CDB . 398
Starting Up and Shutting Down CDBs and PDBs . 399
Changing Parameters in a CDB . 406
Manage Permanent and Temporary Tablespaces in CDB and PDBs 407

Multitenant Security . 410
Managing Common and Local Users . 410
Managing Common and Local Privileges . 412
Managing Common and Local Roles . 413
Enabling Common Users to Access Data in Specific PDBs 414

Backup and Recovery in Multitenant Environments . 416
Performing Backups of a CDB and All PDBs . 416
Backing Up CDBs . 420
Backing Up PDBs . 422
Recovering from PDB Datafile Loss . 424
Using the Data Recovery Advisor . 432
Identifying Block Corruption . 436
Duplicating PDBs Using RMAN . 437

Summary . 438

PART III
High Availability

 12 Real Application Clusters . 441
Overview of Real Application Clusters . 442

Hardware Configuration . 443
Software Configuration . 443
Network Configuration . 443
Disk Storage . 444

RAC Characteristics . 444
Server Parameter File Characteristics . 445
RAC-Related Initialization Parameters . 446
Dynamic Performance Views . 446

00-FM.indd 16 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents xviixvi Oracle Database 12c DBA Handbook

RAC Maintenance . 448
Starting Up a RAC . 448
Redo Logs in a RAC Environment . 448
Undo Tablespaces in a RAC Environment . 449
Failover Scenarios and TAF . 449
Tuning a RAC Node . 451

Summary . 451

 13 Backup and Recovery Options . 453
Backup Capabilities . 454
Logical Backups . 454
Physical Backups . 455

Offline Backups . 455
Online Backups . 456

Using Data Pump Export and Import . 457
Creating a Directory . 457
Data Pump Export Options . 458
Starting a Data Pump Export Job . 462
Data Pump Import Options . 466

Implementing Offline Backups . 474
Implementing Online Backups . 475

Getting Started . 475
Performing Online Database Backups . 477

Integration of Backup Procedures . 478
Integration of Logical and Physical Backups . 478
Integration of Database and Operating System Backups 479

Summary . 480

 14 Using Recovery Manager (RMAN) . 481
RMAN Features and Components . 482

RMAN Components . 483
RMAN vs. Traditional Backup Methods . 484
Backup Types . 486

Overview of RMAN Commands and Options . 487
Running SQL Commands in RMAN . 487
Frequently Used Commands . 488
Setting Up a Repository . 490
Registering a Database . 491
Persisting RMAN Settings . 493
Initialization Parameters . 497
Data Dictionary and Dynamic Performance Views . 498

Backup Operations . 500
Full Database Backups . 500
Tablespace Backups . 503
Datafile Backups . 506
Image Copy Backups . 506

00-FM.indd 17 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xviii Oracle Database 12c DBA Handbook

Control File, SPFILE Backup . 507
Archived Redo Log Backup . 509
Incremental Backups . 509
Incrementally Updated Backups . 511
Incremental Backup Block Change Tracking . 513
Using a Fast Recovery Area . 515
Validating Backups . 516

Recovery Operations . 519
Block Media Recovery . 519
Restoring a Control File . 520
Restoring a Tablespace . 520
Restoring a Table . 522
Restoring a Datafile . 524
Restoring an Entire Database . 524
Validating Restore Operations . 525
Point-in-Time Recovery . 527
Data Recovery Advisor . 527

Miscellaneous Operations . 531
Cataloging Other Backups . 531
Catalog Maintenance . 532
REPORT and LIST . 533

Summary . 534

 15 Oracle Data Guard . 537
Data Guard Architecture . 538

Physical vs. Logical Standby Databases . 539
Data Protection Modes . 539

LOG_ARCHIVE_DEST_n Parameter Attributes . 540
Creating the Standby Database Configuration . 542

Preparing the Primary Database . 543
Creating Logical Standby Databases . 547

Using Real-Time Apply . 549
Managing Gaps in Archive Log Sequences . 550
Managing Roles: Switchovers and Failovers . 550

Switchovers . 550
Failovers . 554

Administering the Databases . 555
Startup and Shutdown of Physical Standby Databases . 555
Opening Physical Standby Databases in Read-Only Mode 556
Managing Datafiles in Data Guard Environments . 556
Performing DDL on a Logical Standby Database . 557

Summary . 557

 16 Miscellaneous High Availability Features . 559
Recovering Dropped Tables Using Flashback Drop . 560
The Flashback Database Command . 562

00-FM.indd 18 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Contents xixxviii Oracle Database 12c DBA Handbook

Using LogMiner . 564
How LogMiner Works . 565
Extracting the Data Dictionary . 565
Analyzing One or More Redo Log Files . 566

Online Object Reorganization . 569
Creating Indexes Online . 570
Rebuilding Indexes Online . 570
Coalescing Indexes Online . 570
Rebuilding Index-Organized Tables Online . 570
Redefining Tables Online . 570
Moving a Datafile Online . 572

Summary . 573

PART IV
Networked Oracle

 17 Oracle Net . 577
Overview of Oracle Net . 578

Connect Descriptors . 581
Net Service Names . 582
Replacing tnsnames.ora with Oracle Internet Directory 583
Listeners . 583

Using the Oracle Net Configuration Assistant . 588
Configuring the Listener . 588
Naming Methods Configuration . 590
Local Net Service Name Configuration . 590
Directory Usage Configuration . 591

Using the Oracle Net Manager . 592
Starting the Listener Server Process . 594
Controlling the Listener Server Process . 596
The Oracle Connection Manager . 598

Using the Oracle Connection Manager . 599
Configuring the Oracle Connection Manager . 600
Using the Connection Manager Control Utility (CMCTL) 601

Directory Naming with Oracle Internet Directory . 603
Oracle Internet Directory Architecture . 603
Setting Up an Oracle Internet Directory . 604

Using Easy Connect Naming . 604
Using Database Links . 605
Tuning Oracle Net . 607

Limiting Resource Usage . 608
Using Compression . 609
Debugging Connection Problems . 609

Summary . 610

00-FM.indd 19 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xx Oracle Database 12c DBA Handbook

 18 Managing Large Databases . 611
Creating Tablespaces in a VLDB Environment . 613

Bigfile Tablespace Basics . 613
Creating and Modifying Bigfile Tablespaces . 614
Bigfile Tablespace ROWID Format . 615
DBMS_ROWID and Bigfile Tablespaces . 616
Using DBVERIFY with Bigfile Tablespaces . 618
Bigfile Tablespace Initialization Parameter Considerations 619
Bigfile Tablespace Data Dictionary Changes . 620

Advanced Oracle Table Types . 620
Index-Organized Tables . 621
Global Temporary Tables . 622
External Tables . 624
Partitioned Tables . 625
Materialized Views . 652

Using Bitmap Indexes . 653
Understanding Bitmap Indexes . 653
Using Bitmap Indexes . 654
Using Bitmap Join Indexes . 654

Summary . 655

 19 Managing Distributed Databases . 657
Remote Queries . 659
Remote Data Manipulation: Two-Phase Commit . 660
Dynamic Data Replication . 661
Managing Distributed Data . 662

The Infrastructure: Enforcing Location Transparency . 663
Managing Database Links . 667
Managing Database Triggers . 669
Managing Materialized Views . 670
Using DBMS_MVIEW and DBMS_ADVISOR . 674
What Kind of Refreshes Can Be Performed? . 685
Using Materialized Views to Alter Query Execution Paths 689

Managing Distributed Transactions . 690
Resolving In-Doubt Transactions . 691
Commit Point Strength . 691

Monitoring Distributed Databases . 692
Tuning Distributed Databases . 693
Summary . 695

 Index . 697

00-FM.indd 20 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Acknowledgments

Many technical books need the expertise of more than one person, and this one is
no exception. The people I collaborated with for this book at Oracle Open World,
Oracle Support, and in the Oracle Partner Network are too numerous to mention

but all played an important role in this book.

Thanks also go out to all the people at McGraw-Hill Education who kept this book
on a reasonable schedule and learned to be even more patient with me than ever before,
including Paul Carlstroem and Amanda Russell. Thanks also to Scott Gossett, who gave me
good advice when the theoretical met the practical.

Many of my professional colleagues at Epic were a source of both inspiration and
guidance: James Slager, Scott Hinman, Joe Obbish, and Lonny Niederstadt. In this case,
the whole is truly greater than the sum of its parts.

If you have any questions or comments about any part of this book, please do not hesitate
to contact me at rjbdba@gmail.com.

—Bob Bryla

xxi

00-FM.indd 21 27/04/15 11:13 AM

This page intentionally left blank

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Introduction

Whether you’re an experienced DBA, a new DBA, or an application developer, you
need to understand how Oracle Database 12c’s features can help you best meet
your customers’ needs. In this book, you will find coverage of the newest

features (including the In-Memory option) as well as ways of merging those features into the
management of an Oracle database. The emphasis throughout is on managing the database’s
capabilities in an effective, efficient manner to deliver a quality product. The end result will
be a database that is dependable, robust, secure, and extensible.

Several components are critical to this goal, and you’ll see all of them covered here in
depth after you are introduced to the Oracle Architecture, Oracle 12c upgrade issues, and
tablespace planning in Part I; a well-designed logical and physical database architecture will
improve performance and ease administration by properly distributing database objects.

You’ll see appropriate monitoring, security, and tuning strategies for standalone and
networked databases in Part II of this book. Backup and recovery strategies are provided to
help ensure the database’s recoverability. Each section focuses on both the features and the
proper planning and management techniques for each area. Scalability and manageability
are undeniably the biggest enhancements in Oracle Database 12c. Using pluggable databases
(also known as multitenant or container databases) utilizes your server resources more
effectively than single-instance pre-Oracle Database 12c databases, which means you can
run many more database instances on a given server with the same performance as if you
were running them on different servers. Because it’s easy and fast to “unplug” a pluggable
database from a container database and plug it back into another container database,
you can migrate one or more pluggable databases to other servers when the need arises.

High availability is covered in all of its flavors in Part III: an introduction to Real Application
Clusters (RAC), an extensive exposition on Recovery Manager (RMAN), and an overview
of how to administer an Oracle Data Guard environment are a few of the topics covered
in Part III.

xxiii

00-FM.indd 23 27/04/15 11:13 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

xxiv Oracle Database 12c DBA Handbook

Networking issues and the management of distributed and client/server databases are thoroughly
covered. Oracle Net, networking configurations, materialized views, location transparency, and
everything else you need to successfully implement a distributed or client/server database are
described in detail in Part IV of this book. You’ll also find real-world examples for every major
configuration.

In addition to the commands needed to perform DBA activities, you will also see the Oracle
Enterprise Manager Cloud Control 12c web pages from which you can perform similar functions.
By following the techniques in this book, your systems can be designed and implemented so well
that tuning efforts will be minimal. Administering the database will become easier as the users get
a better product, while the database works—and works well.

Last but not least, no book with code samples would be complete without providing you the
source code for the examples. Please visit www.OraclePressBooks.com to get the code sample
file 12c DBA Handbook Code Listings .zip .

00-FM.indd 24 27/04/15 11:13 AM

http://www.OraclePressBooks.com

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 /
Blind folio 1

PART
I

Database Architecture

01-ch01.indd 1 13/05/15 9:53 AM

This page intentionally left blank

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 3

CHAPTER
1

Getting Started with the
Oracle Architecture

01-ch01.indd 3 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

4 Oracle Database 12c DBA Handbook

Oracle Database 12c is an evolutionary step from the previous release, Oracle Database 11g,
which, in turn, was a truly revolutionary step from Oracle Database 10g in terms of its
“set it and forget it” features. Oracle 12c continues the tradition of feature enhancement

by making execution plan management more automated, adding new virtualization features, and
significantly improving availability and failover capabilities. Part I of this book covers the basics of
the Oracle architecture and lays the foundation for deploying a successful Oracle infrastructure
by giving practical advice for a new installation or upgrading from a previous release of Oracle.
To provide a good foundation for the Oracle 12c software, I cover server hardware and operating
system configuration issues in the relevant sections.

In Part II of this book, I will cover several areas relevant to the day-to-day maintenance and
operation of an Oracle 12c database. The first chapter in Part II discusses the requirements that a
DBA needs to gather long before you mount the Oracle ISO image on your server. Successive
chapters deal with ways the DBA can manage disk space, CPU usage, and adjust Oracle parameters
to optimize the server’s resources, using a variety of tools at the DBA’s disposal for monitoring
database performance. Query optimization in Oracle 12c is more automated than ever with the
option to change a query plan on the fly if the optimizer sees that its original estimates for cardinality
were off by a significant factor.

Part III of this book focuses on the high-availability aspects of Oracle 12c. This includes using
Oracle’s Recovery Manager (RMAN) to perform and automate database backups and recovery,
along with other features, such as Oracle Data Guard, to provide a reliable and easy way to
recover from a database failure. Features new to Oracle 12c such as container databases
(multitenant databases) with their corresponding pluggable databases extend the concept of
transportable tablespaces to the entire database in addition to more efficiently using the resources
of a server hosting one or more container databases. Last, but certainly not least, we will explore
how Oracle 12c Real Application Clusters (RAC) can at the same time provide extreme scalability
and transparent failover capabilities to a database environment. Even if you don’t use Oracle
12c’s RAC features, the standby features make Oracle 12c almost as available as a clustered
solution; being able to easily switch between standby and primary databases as well as query
a physical standby database provides a robust high-availability solution until you are ready to
implement a RAC database.

In Part IV of this book, we will cover a variety of issues revolving around Networked Oracle.
We cover not only how Oracle Net can be configured in an N-tier environment, but also
how we manage large and distributed databases that may reside in neighboring cities or around
the world.

In this chapter, we cover the basics of Oracle Database 12c, highlighting many of the
features we will cover in the rest of the book as well as the basics of installing Oracle 12c
using Oracle Universal Installer (OUI) and the Database Configuration Assistant (DBCA). We
will take a tour of the elements that compose an instance of Oracle 12c, ranging from memory
structures and disk structures to initialization parameters, tables, indexes, and PL/SQL. Each of
these elements plays a large role in making Oracle 12c a highly scalable, available, and secure
environment.

An Overview of Databases and Instances
Although the terms “database” and “instance” are often used interchangeably, they are quite different.
They are very distinct entities in an Oracle datacenter, as you shall see in the following sections.

01-ch01.indd 4 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 5

Databases
A database is a collection of data on disk in one or more files on a database server that collects
and maintains related information. The database consists of various physical and logical structures,
the table being the most important logical structure in the database. A table consists of rows and
columns containing related data. At a minimum, a database must have at least tables to store
useful information. Figure 1-1 shows a sample table containing four rows and three columns.
The data in each row of the table is related: Each row contains information about a particular
employee in the company.

In addition, a database provides a level of security to prevent unauthorized access to the data.
Oracle Database 12c provides many mechanisms to facilitate the security necessary to keep
confidential data confidential. Oracle Security and access control are covered in more detail in
Chapter 9.

Files composing a database fall into two broad categories: database files and non-database
files. The distinction lies in what kind of data is stored in each. Database files contain data and
metadata; non-database files contain initialization parameters, logging information, and so forth.
Database files are critical to the ongoing operation of the database on a moment-by-moment basis.
Each of these physical storage structures is discussed later, in the section titled “Oracle Physical
Storage Structures.”

Instances
The main components of a typical enterprise server are one or more CPUs (each with multiple
cores), disk space, and memory. Whereas the Oracle database is stored on a server’s disk, an
Oracle instance exists in the server’s memory. An Oracle instance is composed of a large block
of memory allocated in an area called the System Global Area (SGA), along with a number of
background processes that interact between the SGA and the database files on disk.

FIGURE 1-1. Sample database table

01-ch01.indd 5 13/05/15 9:54 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

6 Oracle Database 12c DBA Handbook

In an Oracle RAC, more than one instance will use the same database. Although the instances
that share the database can be on the same server, most likely the instances will be on separate
servers that are connected by a high-speed interconnect and access a database that resides on a
specialized RAID-enabled disk subsystem. An Oracle Exadata database appliance is an example
of database servers, I/O servers, and disk storage combined into one or more cabinets and is
optimized for a RAC environment including dual InfiniBand interfaces to connect all of these
devices at speeds up to 40 Gbps per interface. More details on how a RAC installation is configured
are provided in Chapter 11.

Oracle Logical Storage Structures
The datafiles in an Oracle database are grouped together into one or more tablespaces. Within
each tablespace, the logical database structures, such as tables and indexes, are segments that are
further subdivided into extents and blocks. This logical subdivision of storage allows Oracle to
have more efficient control over disk space usage. Figure 1-2 shows the relationship between the
logical storage structures in a database.

Tablespaces
An Oracle tablespace consists of one or more datafiles; a datafile can be a part of one and only
one tablespace. For an installation of Oracle 12c, a minimum of two tablespaces are created:
the SYSTEM tablespace and the SYSAUX tablespace; a default installation of Oracle 12c creates
six tablespaces.

FIGURE 1-2. Logical storage structures

01-ch01.indd 6 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 7

Oracle Database 10g and later allow you to create a special kind of tablespace called a bigfile
tablespace, which can be as large as 128TB (terabytes). Using bigfiles makes tablespace management
completely transparent to the DBA; in other words, the DBA can manage the tablespace as a unit
without worrying about the size and structure of the underlying datafiles.

Using Oracle Managed Files (OMF) can make tablespace datafile management even easier.
With OMF, the DBA specifies one or more locations in the file system where datafiles, control
files, and redo log files will reside, and Oracle automatically handles the naming and management
of these files. I discuss OMF in more detail in Chapter 4.

If a tablespace is temporary, the tablespace itself is permanent; only the segments saved in
the tablespace are temporary. A temporary tablespace can be used for sorting operations and for
tables that exist only for the duration of the user’s session. Dedicating a tablespace for these kinds
of operations helps to reduce the I/O contention between temporary segments and permanent
segments stored in another tablespace, such as tables.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, extent management is recorded in data dictionary tables. Therefore, even if all
application tables are in the USERS tablespace, the SYSTEM tablespace will still be accessed for
managing Data Manipulation Language (DML) on application tables. Because all users and
applications must use the SYSTEM tablespace for extent management, this creates a potential
bottleneck for write-intensive applications. In a locally managed tablespace, Oracle maintains a
bitmap in each datafile of the tablespace to track space availability. Only quotas are managed in
the data dictionary, dramatically reducing the contention for data dictionary tables. There is really
no good reason for creating dictionary-managed tablespaces. When you install Oracle 12c, the
SYSTEM and SYSAUX tablespaces must be locally managed. For importing transportable tablespaces,
a tablespace can be dictionary managed but it will be read-only.

Blocks
A database block is the smallest unit of storage in the Oracle database. The size of a block is a
specific number of bytes of storage within a given tablespace within the database.

A block is usually a multiple of the operating system block size to facilitate efficient disk I/O.
The default block size is specified by the Oracle initialization parameter DB_BLOCK_SIZE. As many
as four other block sizes may be defined for other tablespaces in the database, although the blocks
in the SYSTEM, SYSAUX, and any temporary tablespaces must be of the size DB_BLOCK_SIZE.

The default block size is 8K and all Oracle testing is performed using 8K blocks. Oracle best
practices suggest using an 8K block size for all tablespaces unless there is a compelling reason to
use a different size. One reason could be that the average row length for a table is 20K. Therefore,
you might choose to use 32K blocks, but you should fully test to see if there is a performance gain.

Extents
The extent is the next level of logical grouping in the database. An extent consists of one or more
database blocks. When you enlarge a database object, the space added to the object is allocated
as an extent.

Segments
The next level of logical grouping in a database is the segment. A segment is a group of extents
that form a database object that Oracle treats as a unit, such as a table or index. As a result, this is
typically the smallest unit of storage that an end user of the database will deal with. Four types of

01-ch01.indd 7 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

8 Oracle Database 12c DBA Handbook

segments are found in an Oracle database: table segments (non-partitioned tables and each
partition of a partitioned table), index segments, temporary segments, and rollback segments.

Data Segment
Every table in the database resides in a single data segment, consisting of one or more extents;
Oracle allocates more than one segment for a table if it is a partitioned table or a clustered table.
Partitioned and clustered tables are discussed later in this chapter. Data segments include LOB
(large object) segments that store LOB data referenced by a LOB locator column in a table segment
(if the LOB is not stored inline in the table).

Index Segment
Each index is stored in its own index segment. As with partitioned tables, each partition of a
partitioned index is stored in its own segment. Included in this category are LOB index segments;
a table’s non-LOB columns, a table’s LOB columns, and the LOBs’ associated indexes can all
reside in their own tablespace to improve performance.

Temporary Segment
When a user’s SQL statement needs disk space to complete an operation, such as a sorting operation
that cannot fit in memory, Oracle allocates a temporary segment. Temporary segments exist only
for the duration of the SQL statement.

Rollback Segment
As of Oracle 10g, legacy rollback segments only exist in the SYSTEM tablespace, and typically
the DBA does not need to maintain the SYSTEM rollback segment. In previous Oracle releases,
a rollback segment was created to save the previous values of a database DML operation in case
the transaction was rolled back, and to maintain the “before” image data to provide read-consistent
views of table data for other users accessing the table. Rollback segments were also used during
database recovery for rolling back uncommitted transactions that were active when the database
instance crashed or terminated unexpectedly.

Automatic Undo Management (AUM) handles the automatic allocation and management of
rollback segments within an undo tablespace. Within an undo tablespace, the undo segments are
structured similarly to rollback segments, except that the details of how these segments are
managed is under control of Oracle, instead of being managed (often inefficiently) by the DBA.
Automatic undo segments were available starting with Oracle9i, but manually managed rollback
segments are still available in Oracle 12c. However, this functionality is deprecated as of Oracle
10g, and will no longer be available in future releases. In Oracle 12c, AUM is enabled by default;
in addition, a PL/SQL procedure is provided to help you size the undo tablespace. Automatic
Undo Management is discussed in detail in Chapter 7.

Oracle Logical Database Structures
In this section, we will cover the highlights of all major logical database structures, starting with
tables and indexes. Next, I discuss the variety of datatypes we can use to define the columns of
a table. When we create a table with columns, we can place restrictions, or constraints, on the
columns of the table.

One of the many reasons we use a relational database management system (RDBMS) to manage
our data is to leverage the security and auditing features of the Oracle database. We will review
the ways we can segregate access to the database by user or by the object being accessed.

01-ch01.indd 8 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 9

We’ll also touch upon many other logical structures that can be defined by either the DBA or
the user, including synonyms, links to external files, and links to other databases.

Tables
A table is the basic unit of storage in an Oracle database. Without any tables, a database has no
value to an enterprise. Regardless of the type of table, data in a table is stored in rows and columns,
similar to how data is stored in a spreadsheet. But that is where the similarity ends. The robustness
of a database table due to the surrounding reliability, integrity, and scalability of the Oracle
database makes a spreadsheet a poor second choice when deciding on a place to store critical
information.

In this section, we will review the many different types of tables in the Oracle database and
how they can satisfy most every data-storage need for an organization. You can find more details
on how to choose between these types of tables for a particular application, and how to manage
them, in Chapter 5 and Chapter 8.

Relational Tables
A relational table is the most common type of table in a database. A relational table is heap-
organized; in other words, the rows in the table are stored in no particular order. In the CREATE
TABLE command, you can specify the clause ORGANIZATION HEAP to define a heap-organized
table, but because this is the default, the clause can be omitted.

Each row of a table contains one or more columns; each column has a datatype and a length.
As of Oracle version 8, a column may also contain a user-defined object type, a nested table, or a
VARRAY. In addition, a table can be defined as an object table. We will review object tables and
objects later in this section.

The built-in Oracle datatypes are presented in Table 1-1. Oracle also supports ANSI-compatible
datatypes; the mapping between the ANSI datatypes and Oracle datatypes is provided in Table 1-2.

Oracle Built-in Datatype Description

VARCHAR2 (size) [BYTE
| CHAR]

A variable-length character string with a maximum length of 32,767
bytes and a minimum length of 1 byte. CHAR indicates that character
semantics are used to size the string; BYTE indicates that byte semantics
are used. You can use 32767 as the maximum length of a VARCHAR2
column in Oracle Database 12c if you set the MAX_STRING_SIZE
initialization parameter to EXTENDED.

NVARCHAR2(size) A variable-length character string with a maximum length of 32,767 bytes.

NUMBER(p,s) A number with a precision (p) and scale (s). The precision ranges from 1
to 38, and the scale can be from –84 to 127. A NUMBER column may
require as little as 1 byte or as many as 22 bytes to store a given value.

LONG A variable-length character data with a length up to 2GB (231 – 1).

DATE Date values from January 1st, 4712 B.C. to December 31st, 9999 A.D.

BINARY_FLOAT A 32-bit floating point number.

TABLE 1-1. Oracle Built-in Datatypes

01-ch01.indd 9 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

10 Oracle Database 12c DBA Handbook

Oracle Built-in Datatype Description

BINARY_DOUBLE A 64-bit floating point number.

TIMESTAMP (fractional_
seconds)

Year, month, day, hour, minute, second, and fractional seconds. Value
of fractional_seconds can range from 0 to 9; in other words, up to one
billionth of a second precision. The default is 6 (one millionth).

TIMESTAMP (fractional_
seconds) WITH TIME
ZONE

Contains a TIMESTAMP value in addition to a time zone displacement
value. Time zone displacement can be an offset from UTC (such as
–06:00) or a region name (e.g., US/Central).

TIMESTAMP (fractional_
seconds) WITH LOCAL
TIME ZONE

Similar to TIMESTAMP WITH TIMEZONE, except that (1) data is
normalized to the database time zone when it is stored and (2) when
retrieving columns with this datatype, the user sees the data in the
session’s time zone.

INTERVAL YEAR (year_
precision) TO MONTH

Stores a time period in years and months. The value of year_precision is
the number of digits in the YEAR field.

INTERVAL DAY (day_
precision) TO SECOND
(fractional_seconds_
precision)

Stores a period of time as days, hours, minutes, seconds, and fractional
seconds. The value for day_precision is from 0 to 9, with a default of 2. The
value of fractional_seconds_precision is similar to the fractional seconds in
a TIMESTAMP value; the range is from 0 to 9, with a default of 6.

RAW(size) Raw binary data, with a maximum size of 2000 bytes.

LONG RAW Raw binary data, variable length, up to 2GB in size.

ROWID A base-64 string representing the unique address of a row in its
corresponding table. This address is unique throughout the database.

UROWID [(size)] A base-64 string representing the logical address of a row in an index-
organized table. The maximum for size is 4000 bytes.

CHAR(size) [BYTE |
CHAR]

A fixed-length character string of length size. The minimum size is 1,
and the maximum is 2000 bytes. The BYTE and CHAR parameters are
BYTE and CHAR semantics, as in VARCHAR2.

NCHAR(size) A fixed-length character string up to 2000 bytes; the maximum size
depends on the national character set definition for the database. The
default size is 1.

CLOB A character large object containing single-byte or multibyte characters;
supports both fixed-width and variable-width character sets. The
maximum size is (4GB – 1) * DB_BLOCK_SIZE.

NCLOB Similar to CLOB, except that Unicode characters are stored from either
fixed-width or variable-width character sets. The maximum size is (4GB
– 1) * DB_BLOCK_SIZE.

BLOB A binary large object; the maximum size is (4GB – 1) * DB_BLOCK_SIZE.

BFILE A pointer to a large binary file stored outside the database. Binary files
must be accessible from the server running the Oracle instance. The
maximum size is 4GB.

TABLE 1-1. Oracle Built-in Datatypes (Continued)

01-ch01.indd 10 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 11

Temporary Tables
Temporary tables have been available since Oracle8i. They are temporary in the sense of the data
that is stored in the table, not in the definition of the table itself. The command CREATE GLOBAL
TEMPORARY TABLE creates a temporary table.

As long as other users have permissions to the table itself, they may perform SELECT
statements or DML commands, such as INSERT, UPDATE, or DELETE, on a temporary table.
However, each user sees their own and only their own data in the table. When a user truncates a
temporary table, only the data that they inserted is removed from the table.

There are two different flavors of temporary data in a temporary table: temporary for the
duration of the transaction, and temporary for the duration of the session. The longevity of the
temporary data is controlled by the ON COMMIT clause; ON COMMIT DELETE ROWS removes
all rows from the temporary table when a COMMIT or ROLLBACK is issued, and ON COMMIT
PRESERVE ROWS keeps the rows in the table beyond the transaction boundary. However, when
the user’s session is terminated, all of the user’s rows in the temporary table are removed.

There are a few other things to keep in mind when using temporary tables. Although you can
create an index on a temporary table, the entries in the index are dropped along with the data
rows, as with a regular table. Also, due to the temporary nature of the data in a temporary table,
no redo information is generated for DML on temporary tables; however, undo information is
created in the undo tablespace.

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)
CHAR(n)

CHAR(n)

CHARACTER VARYING(n)
CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)
NATIONAL CHAR(n)
NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)
DECIMAL(p,s)

NUMBER(p,s)

INTEGER
INT
SMALLINT

NUMBER(38)

FLOAT(b)
DOUBLE PRECISION
REAL

NUMBER

TABLE 1-2. ANSI-Equivalent Oracle Datatypes

01-ch01.indd 11 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

12 Oracle Database 12c DBA Handbook

Index-Organized Tables
As you will find out later in the subsection on indexes, creating an index makes finding a particular
row in a table more efficient. However, this adds a bit of overhead, because the database must
maintain the data rows and the index entries for the table. What if your table does not have many
columns, and access to the table occurs primarily on a single column? In this case, an index-
organized table (IOT) might be the right solution. An IOT stores rows of a table in a B-tree index,
where each node of the B-tree index contains the keyed (indexed) column along with one or
more non-indexed columns.

The most obvious advantage of an IOT is that only one storage structure needs to be maintained
instead of two; similarly, the values for the primary key of the table are stored only once in an
IOT, versus twice in a regular table.

There are, however, a few disadvantages to using an IOT. Some tables, such as tables for
logging events, may not need a primary key, or any keys for that matter; an IOT must have a
primary key. Also, IOTs cannot be a member of a cluster. Finally, an IOT might not be the best
solution for a table if it has a large number of columns and many of the columns are frequently
accessed when table rows are retrieved.

Object Tables
Since Oracle 8, Oracle Database has supported many object-oriented features in the database. User-
defined types, along with any defined methods for these object types, can make an implementation
of an object-oriented (OO) development project in Oracle seamless.

Object tables have rows that are themselves objects, or instantiations of type definitions.
Rows in an object table can be referenced by object ID (OID), in contrast to a primary key in a
relational, or regular, table; however, object tables can still have both primary and unique keys,
just as relational tables do.

Let’s say, for example, that you are creating a Human Resources (HR) system from scratch, so
you have the flexibility to design the database from an entirely OO point of view. The first step is
to define an employee object, or type, by creating the type:

create type PERS_TYP as object
 (Last_Name varchar2(45),
 First_Name varchar2(30),
 Middle_Initial char(1),
 Surname varchar2(10),
 SSN varchar2(15));

In this particular case, you’re not creating any methods with the PERS_TYP object, but by
default Oracle creates a constructor method for the type that has the same name as the type itself
(in this case, PERS_TYP). To create an object table as a collection of PERS_TYP objects, you can
use the familiar CREATE TABLE syntax, as follows:

create table pers of pers_typ;

To add an instance of an object to the object table, you can specify the constructor method in
the INSERT command:

insert into pers
 values(pers_typ('Nickels','Randy','E','Ms.','123-45-6789'));

01-ch01.indd 12 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 13

As of Oracle Database 10g, you do not need the constructor if the table consists of instances
of a single object; here is the simplified syntax:

insert into pers values('Confused','Dazed','E','Ms.','123-45-6789');

References to instances of the PERS_TYP object can be stored in other tables as REF objects,
and you can retrieve data from the PERS table without a direct reference to the PERS table itself.

More examples of how you can use objects to implement an object-oriented design project
can be found in Chapter 5.

External Tables
External tables were introduced in Oracle9i. In a nutshell, external tables allow a user to access a
data source, such as a text file, as if it were a table in the database. The metadata for the table is
stored within the Oracle data dictionary, but the contents of the table are stored externally.

The definition for an external table contains two parts. The first and most familiar part is the
definition of the table from the database user’s point of view. This definition looks like any typical
definition that you’d see in a CREATE TABLE statement.

The second part, however, is what differentiates an external table from a regular table. This is
where the mapping between the database columns and the external data source occurs—what
column(s) the data element starts in, how wide the column is, and whether the format of the
external column is character or binary. The syntax for the default type of external table, ORACLE_
LOADER, is virtually identical to that of a control file in SQL*Loader. This is one of the advantages
of external tables; the user only needs to know how to access a standard database table to get to
the external file.

There are a few drawbacks, however, to using external tables. You cannot create indexes on
an external table, and no inserts, updates, or deletes can be performed on external tables. These
drawbacks are minor when considering the advantages of using external tables for loading native
database tables, for example, in a data warehouse environment.

Clustered Tables
If two or more tables are frequently accessed together (for example, an order table and a line-item
detail table), then creating a clustered table might be a good way to boost the performance of
queries that reference those tables. In the case of an order table with an associated line-item detail
table, the order header information could be stored in the same block as the line-item detail
records, thus reducing the amount of I/O needed to retrieve the order and line-item information.

Clustered tables also reduce the amount of space needed to store the columns the two tables
have in common, also known as a cluster key value. The cluster key value is also stored in a
cluster index. The cluster index operates much like a traditional index in that it will improve
queries against the clustered tables when accessed by the cluster key value. In our example with
orders and line items, the order number is only stored once, instead of repeating for each line-
item detail row.

The advantages to clustering a table are reduced if frequent INSERT, UPDATE, and DELETE
operations occur on the table relative to the number of SELECT statements against the table. In
addition, frequent queries against individual tables in the cluster may also reduce the benefits of
clustering the tables in the first place.

01-ch01.indd 13 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

14 Oracle Database 12c DBA Handbook

Hash Clusters
A special type of clustered table, a hash cluster, operates much like a regular clustered table,
except that instead of using a cluster index, a hash cluster uses a hashing function to store and
retrieve rows in a table. The total estimated amount of space needed for the table is allocated
when the table is created, given the number of hash keys specified during the creation of the
cluster. In our order-entry example, let’s assume that our Oracle database needs to mirror the
legacy data-entry system, which reuses order numbers on a periodic basis. Also, the order number
is always a six-digit number. We might create the cluster for orders as in the following example:

create cluster order_cluster (order_number number(6))
 size 50
 hash is order_number hashkeys 1000000;

create table cust_order (
 order_number number(6) primary key,
 order_date date,
 customer_number number)
cluster order_cluster(order_number);

Hash clusters have performance benefits when you select rows from a table using an equality
comparison, as in this example:

select order_number, order_date from cust_order
 where order_number = 196811;

Typically, this kind of query will retrieve the row with only one I/O if the number of
HASHKEYS is high enough and the HASH IS clause, containing the hashing function, produces
an evenly distributed hash key.

Sorted Hash Clusters
Sorted hash clusters are new as of Oracle 10g. They are similar to regular hash clusters in that a
hashing function is used to locate a row in a table. However, in addition, sorted hash clusters
allow rows in the table to be stored by one or more columns of the table in ascending order. This
allows the data to be processed more quickly for applications that lend themselves to first in, first
out (FIFO) processing.

You create sorted hash clusters by first creating the cluster itself. Then you create the sorted
hash cluster using the same syntax as regular clustered tables, with the addition of the SORT
positional parameter after the column definitions within the cluster. Here is an example of
creating a table in a sorted hash cluster:

create cluster order_detail_cluster (
 order_number number(6), order_timestamp timestamp)
 size 50 hash is order_number hashkeys 100;
create table order_detail (
 order_number number,
 order_timestamp timestamp sort,
 customer_number number)
cluster order_detail_cluster (
 order_number,
 order_timestamp);

01-ch01.indd 14 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 15

Due to the FIFO nature of a sorted hash cluster, when orders are accessed by ORDER_
NUMBER the oldest orders are retrieved first based on the value of ORDER_TIMESTAMP.

Partitioned Tables
Partitioning a table (or index, as you will see in the next section) helps make a large table more
manageable. A table may be partitioned, or even subpartitioned, into smaller pieces. From an
application point of view, partitioning is transparent (that is, no explicit references to a particular
partition are necessary in any end-user SQL). The only effect that a user may notice is that queries
against the partitioned table using criteria in the WHERE clause that matches the partitioning
scheme run a lot faster!

There are many advantages to partitioning from a DBA point of view. If one partition of a table
is on a corrupted disk volume, the other partitions in the table are still available for user queries
while the damaged volume is being repaired. Similarly, backups of partitions can occur over a
period of days, one partition at a time, rather than requiring a single backup of the entire table.

Partitions are generally one of three types: range partitioned, hash partitioned, or list
partitioned; as of Oracle 11g, you can also partition by parent/child relationships, application-
controlled partitioning, and many combinations of basic partition types, including list-hash, list-
list, list-range, and range-range. Each row in a partitioned table can exist in one, and only one,
partition. The partition key directs the row to the proper partition; the partition key can be a
composite key of up to 16 columns in the table. There are a few minor restrictions on the types of
tables that can be partitioned; for example, a table containing a LONG or LONG RAW column
cannot be partitioned. The LONG restriction should rarely be a problem; LOBs (CLOBs and
BLOBs, character large objects and binary large objects) are much more flexible and encompass
all the features of LONG and LONG RAW datatypes.

TIP
Oracle Corporation recommends that any table greater than 2GB in
size be seriously considered for partitioning.

No matter what type of partitioning scheme is in use, each member of a partitioned table
must have the same logical attributes, such as column names, datatypes, constraints, and so forth.
The physical attributes for each partition, however, can be different depending on its size and
location on disk. The key is that the partitioned table must be logically consistent from an
application or user point of view.

Range Partitions A range partition is a partition whose partition key falls within a certain range.
For example, visits to the corporate e-commerce website can be assigned to a partition based on
the date of the visit, with one partition per quarter. A website visit on May 25, 2012, will be
recorded in the partition with the name FY2012Q2, whereas a website visit on December 2,
2012, will be recorded in the partition with the name FY2012Q4.

List Partitions A list partition is a partition whose partition key falls within groups of distinct
values. For example, sales by region of the country may create a partition for NY, CT, MA, and VT,
and another partition for IL, WI, IA, and MN. Any sales from elsewhere in the world may be
assigned to its own partition when the state code is missing.

Hash Partitions A hash partition assigns a row to a partition based on a hashing function,
specifying the column or columns used in the hashing function, but not explicitly assigning the

01-ch01.indd 15 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

16 Oracle Database 12c DBA Handbook

partition, only specifying how many partitions are available. Oracle will assign the row to a
partition and ensure a balanced distribution of rows in each partition.

Hash partitions are useful when there is no clear list- or range-partitioning scheme given the
types of columns in the table, or when the relative sizes of the partitions change frequently,
requiring repeated manual adjustments to the partitioning scheme.

Composite Partitions Even further refinement of the partitioning process is available with
composite partitions. For example, a table may be partitioned by range, and within each range,
subpartitioned by list or by hash. New combinations in Oracle 11g include list-hash, list-list, list-
range, and range-range partitioning.

Partitioned Indexes
You can also partition indexes on a table, either matching the partition scheme of the table being
indexed (local indexes) or partitioned independently from the partition scheme of the table (global
indexes). Local partitioned indexes have the advantage of increased availability of the index when
partition operations occur; for example, archiving and dropping the partition FY2008Q4 and its
local index will not affect index availability for the other partitions in the table.

Constraints
An Oracle constraint is a rule or rules that you can define on one or more columns in a table to
help enforce a business rule. For example, a constraint can enforce the business rule that an
employee’s starting salary must be at least $25,000.00. Another example of a constraint enforcing
a business rule is to require that if a new employee is assigned a department (although they need
not be assigned to a particular department right away), the department number must be valid and
exist in the DEPT table.

Six types of data integrity rules can be applied to table columns: null rule, unique column
values, primary key values, referential integrity values, complex in-line integrity, and trigger-based
integrity. We will touch upon each of these briefly in the following sections.

All the constraints on a table are defined either when the table is created or when the table is
altered at the column level, except for triggers, which are defined according to which DML
operation you are performing on the table. Constraints may be enabled or disabled at creation or
at any point of time in the future; when a constraint is either enabled or disabled (using the
keyword ENABLE or DISABLE), existing data in the table may or may not have to be validated
(using the keyword VALIDATE or NOVALIDATE) against the constraint, depending on the business
rules in effect.

For example, a table in an automaker’s database named CAR_INFO containing new automobile
data needs a new constraint on the AIRBAG_QTY column, where the value of this column must
not be NULL and must have a value that is at least 1 for all new vehicles. However, this table
contains data for model years before air bags were required, and as a result, this column is either
0 or NULL. One solution, in this case, would be to create a constraint on the AIRBAG_QTY table
to enforce the new rule for new rows added to the table, but not to validate the constraint for
existing rows.

Here is a table created with all constraint types. Each type of constraint is reviewed in turn in
the following subsections.

create table cust_order
 (order_number number(6) primary key,
 order_date date not null,

01-ch01.indd 16 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 17

 delivery_date date,
 warehouse_number number default 12,
 customer_number number not null,
 order_line_item_qty number check (order_line_item_qty < 100),
 ups_tracking_number varchar2(50) unique,
 foreign key (customer_number) references customer(customer_number));

NULL Rule
The NOT NULL constraint prevents NULL values from being entered into the ORDER_DATE or
CUSTOMER_NUMBER column. This makes a lot of sense from a business rule point of view:
Every order must have an order date, and an order doesn’t make any sense unless a customer
places it.

Note that a NULL value in a column doesn’t mean that the value is blank or zero; rather, the
value does not exist. A NULL value is not equal to anything, not even another NULL value. This
concept is important when using SQL queries against columns that may have NULL values.

Unique Column Values
The UNIQUE integrity constraint ensures that a column or group of columns (in a composite
constraint) is unique throughout the table. In the preceding example, the UPS_TRACKING_
NUMBER column will not contain duplicate values.

To enforce the constraint, Oracle will create a unique index on the UPS_TRACKING_
NUMBER column. If there is already a valid unique index on the column, Oracle will use that
index to enforce the constraint.

A column with a UNIQUE constraint may also be declared as NOT NULL. If the column is
not declared with the NOT NULL constraint, then any number of rows may contain NULL values,
as long as the remaining rows have unique values in this column.

In a composite unique constraint that allows NULLs in one or more columns, the columns
that are not NULL determine whether the constraint is being satisfied. The NULL column always
satisfies the constraint, because a NULL value is not equal to anything.

Primary Key Values
The PRIMARY KEY integrity constraint is the most common type of constraint found in a database
table. At most, only one primary key constraint can exist on a table. The column or columns that
comprise the primary key cannot have NULL values.

In the preceding example, the ORDER_NUMBER column is the primary key. A unique index
is created to enforce the constraint; if a usable unique index already exists for the column, the
primary key constraint uses that index.

Referential Integrity Values
The referential integrity or FOREIGN KEY constraint is more complicated than the others we have
covered so far because it relies on another table to restrict what values can be entered into the
column with the referential integrity constraint.

In the preceding example, a FOREIGN KEY is declared on the CUSTOMER_NUMBER
column; any values entered into this column must also exist in the CUSTOMER_NUMBER
column of another table (in this case, the CUSTOMER table).

As with other constraints that allow NULL values, a column with a referential integrity
constraint can be NULL without requiring that the referenced column contain a NULL value.

01-ch01.indd 17 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

18 Oracle Database 12c DBA Handbook

Furthermore, a FOREIGN KEY constraint can be self-referential. In an EMPLOYEE table whose
primary key is EMPLOYEE_NUMBER, the MANAGER_NUMBER column can have a FOREIGN
KEY declared against the EMPLOYEE_NUMBER column in the same table. This allows for the
creation of a reporting hierarchy within the EMPLOYEE table itself.

Indexes should almost always be declared on a FOREIGN KEY column to improve
performance; the only exception to this rule is when the referenced primary or unique key in the
parent table is never updated or deleted.

Complex In-Line Integrity
More complex business rules may be enforced at the column level by using a CHECK constraint.
In the preceding example, the ORDER_LINE_ITEM_QTY column must never exceed 99.

A CHECK constraint can use other columns in the row being inserted or updated to evaluate
the constraint. For example, a constraint on the STATE_CD column would allow NULL values
only if the COUNTRY_CD column is not USA. In addition, the constraint can use literal values
and built-in functions such as TO_CHAR or TO_DATE, as long as these functions operate on
literals or columns in the table.

Multiple CHECK constraints are allowed on a column. All the CHECK constraints must
evaluate to TRUE to allow a value to be entered in the column. For example, we could modify the
preceding CHECK constraint to ensure that ORDER_LINE_ITEM_QTY is greater than 0 in addition
to being less than 100.

Trigger-Based Integrity
If the business rules are too complex to implement using unique constraints, a database trigger
can be created on a table using the CREATE TRIGGER command along with a block of PL/SQL
code to enforce the business rule.

Triggers are required to enforce referential integrity constraints when the referenced table
exists in a different database. Triggers are also useful for many things outside the realm of
constraint checking (auditing access to a table, for example). We cover database triggers in depth
in Chapter 17.

Indexes
An Oracle index allows faster access to rows in a table when a small subset of the rows will be
retrieved from the table. An index stores the value of the column or columns being indexed, along
with the physical ROWID of the row containing the indexed value, except for index-organized
tables (IOTs), which use the primary key as a logical ROWID. Once a match is found in the
index, the ROWID in the index points to the exact location of the table row: which file, which
block within the file, and which row within the block.

Indexes are created on a single column or multiple columns. Index entries are stored in a
B-tree structure so that traversing the index to find the key value of the row uses very few I/O
operations. An index may serve a dual purpose in the case of a unique index: Not only will it
speed the search for the row, but it enforces a unique or primary key constraint on the indexed
column. Entries within an index are automatically updated whenever the contents of a table row
are inserted, updated, or deleted. When a table is dropped, all indexes created on the table are
also automatically dropped.

Several types of indexes are available in Oracle, each suitable for a particular type of table,
access method, or application environment. I will present the highlights and features of the most
common index types in the following subsections.

01-ch01.indd 18 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 19

Unique Indexes
A unique index is the most common form of B-tree index. It is often used to enforce the primary
key constraint of a table. Unique indexes ensure that duplicate values will not exist in the column
or columns being indexed. A unique index may be created on a column in the EMPLOYEE table
for the Social Security Number because there should not be any duplicates in this column.
However, some employees may not have a Social Security Number, so this column would contain
a NULL value.

Non-Unique Indexes
A non-unique index helps speed access to a table without enforcing uniqueness. For example, we
can create a non-unique index on the LAST_NAME column of the EMPLOYEE table to speed up
our searches by last name, but we would certainly have many duplicates for any given last name.

A non-unique B-tree index is created on a column by default if no other keywords are
specified in a CREATE INDEX statement.

Reverse Key Indexes
A reverse key index is a special kind of index used typically in an OLTP (online transaction
processing) environment. In a reverse key index, all the bytes in each column’s key value of the
index are reversed. The REVERSE keyword specifies a reverse key index in the CREATE INDEX
command. Here is an example of creating a reverse key index:

create index ie_line_item_order_number
 on line_item(order_number) reverse;

If an order number of 123459 is placed, the reverse key index stores the order number as
954321. Inserts into the table are distributed across all leaf keys in the index, reducing the
contention among several writers all doing inserts of new rows. A reverse key index also reduces
the potential for these “hot spots” in an OLTP environment if orders are queried or modified soon
after they are placed. On the other hand, although a reverse key index reduces hot spots, it
dramatically increases the number of blocks that have to be read from disks and increases the
number of index block splits.

Function-Based Indexes
A function-based index is similar to a standard B-tree index, except that a transformation of a
column or columns, declared as an expression, is stored in the index instead of the columns
themselves.

Function-based indexes are useful in cases where names and addresses might be stored in the
database as mixed case. A regular index on a column containing the value “SmiTh” would not
return any values if the search criterion was “Smith”. On the other hand, if the index stored the
last names in all uppercase, all searches on last names could use uppercase. Here is an example
of creating a function-based index on the LAST_NAME column of the EMPLOYEE table:

create index up_name on employee(upper(last_name));

As a result, searches using queries such as the following will use the index we just created
instead of doing a full table scan:

select employee_number, last_name, first_name, from employee
 where upper(last_name) = 'SMITH';

01-ch01.indd 19 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

20 Oracle Database 12c DBA Handbook

Bitmap Indexes
A bitmap index has a significantly different structure from a B-tree index in the leaf node of the
index. It stores one string of bits for each possible value (the cardinality) of the column being
indexed. The length of the string of bits is the same as the number of rows in the table being
indexed.

In addition to saving a tremendous amount of space compared to traditional indexes, a
bitmap index can provide dramatic improvements in response time because Oracle can quickly
remove potential rows from a query containing multiple WHERE clauses long before the table
itself needs to be accessed. Multiple bitmaps can use logical AND and OR operations to
determine which rows to access from the table.

Although you can use a bitmap index on any column in a table, it is most efficient when the
column being indexed has a low cardinality, or number of distinct values. For example, the
GENDER column in the PERS table will be either NULL, M, or F. The bitmap index on the
GENDER column will have only three bitmaps stored in the index. On the other hand, a bitmap
index on the LAST_NAME column will have close to the same number of bitmap strings as rows
in the table itself! The queries looking for a particular last name will most likely take less time if a
full table scan is performed instead of using an index. In this case, a traditional B-tree non-unique
index makes more sense.

A variation of bitmap indexes called bitmap join indexes creates a bitmap index on a table
column that is frequently joined with one or more other tables on the same column. This provides
tremendous benefits in a data warehouse environment where a bitmap join index is created on a
fact table and one or more dimension tables, essentially pre-joining those tables and saving CPU
and I/O resources when an actual join is performed.

NOTE
Bitmap indexes are only available in the Enterprise Edition of Oracle
11g and 12c. Because bitmap indexes include extra overhead of
locking and block splits when performing DML on the table, they are
intended only for columns that are rarely updated.

Views
Views allow users to see a customized presentation of the data in a single table or even a join
between many tables. A view is also known as a stored query—the query details underlying the
view are hidden from the user of the view. A regular view does not store any data, only the
definition, and the underlying query is run every time the view is accessed. An enhanced type of
view, called a materialized view, allows the results of the query to be stored along with the
definition of the query to speed processing, among other benefits. Object views, like traditional
views, hide the details of the underlying table joins and allow object-oriented development and
processing to occur in the database while the underlying tables are still in a relational format.

In the following subsections, we’ll review the basics of the types of views a typical database
user, developer, or DBA will create and use on a regular basis.

01-ch01.indd 20 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 21

Regular Views
A regular view, or more commonly referred to as a view, is not allocated any storage; only its
definition, a query, is stored in the data dictionary. The tables in the query underlying the view are
called base tables; each base table in a view can be further defined as a view.

The advantages of a view are many. Views hide data complexity—a senior analyst can define
a view containing the EMPLOYEE, DEPARTMENT, and SALARY tables to make it easier for upper
management to retrieve information about employee salaries by using a SELECT statement against
what appears to be a table but is actually a view containing a query that joins the EMPLOYEE,
DEPARTMENT, and SALARY tables.

Views can also be used to enforce security. A view on the EMPLOYEE table called EMP_INFO
may contain all columns except for SALARY, and the view can be defined as READ ONLY to
prevent updates to the table:

create view emp_info as
 select employee_number, last_name,
 first_name, middle_initial, surname
from employee
with read only;

Without the READ ONLY clause, it is possible to update or add rows to a view, even to a view
containing multiple tables. There are some constructs in a view that prevent it from being
updatable, such as having a DISTINCT operator, an aggregate function, or a GROUP BY clause.

When Oracle processes a query containing a view, it substitutes the underlying query definition
in the user’s SELECT statement and processes the resulting query as if the view did not exist. As a
result, the benefits of any existing indexes on the base tables are not lost when a view is used.

Materialized Views
In some ways, a materialized view is very similar to a regular view: The definition of the view is
stored in the data dictionary, and the view hides the details of the underlying base query from the
user. That is where the similarities end. A materialized view also allocates space in a database
segment to hold the result set from the execution of the base query.

You can use a materialized view to replicate a read-only copy of a table to another database,
with the same column definitions and data as the base table. This is the simplest implementation
of a materialized view. To enhance the response time when a materialized view needs to be
refreshed, a materialized view log can be created to refresh the materialized view. Otherwise, a full
refresh is required when a refresh is required—the results of the base query must be run in their
entirety to refresh the materialized view. The materialized view log facilitates incremental updates
of the materialized views.

In a data warehouse environment, materialized views can store aggregated data from a
GROUP BY ROLLUP or a GROUP BY CUBE query. If the appropriate initialization parameter
values are set, such as QUERY_REWRITE_ENABLED, and the query itself allows for query
rewrites (with the QUERY REWRITE clause), then any query that appears to do the same kind of
aggregation as the materialized view will automatically use the materialized view instead of
running the original query.

Regardless of the type of materialized view, it can be refreshed automatically when a committed
transaction occurs in the base table, or it can be refreshed on demand.

01-ch01.indd 21 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

22 Oracle Database 12c DBA Handbook

Materialized views have many similarities to indexes: they are directly tied to a table and take
up space, they must be refreshed when the base tables are updated, their existence is virtually
transparent to the user, and they can aid in optimizing queries by using an alternate access path
to return the results of a query.

More details on how to use materialized views in a distributed environment can be found in
Chapter 17.

Object Views
Object-oriented (OO) application development environments are becoming increasingly prevalent,
and the Oracle 12c database fully supports the implementation of objects and methods natively
in the database. However, a migration from a purely relational database environment to a purely
OO database environment is not an easy transition to make; few organizations have the time and
resources to build a new system from the ground up. Oracle 12c makes the transition easier with
object views. Object views allow the object-oriented applications to see the data as a collection
of objects that have attributes and methods, while the legacy systems can still run batch jobs
against the INVENTORY table. Object views can simulate abstract datatypes, OIDs, and
references that a purely OO database environment would provide.

As with regular views, you can use INSTEAD OF triggers in the view definition to allow DML
against the view by running a block of PL/SQL code instead of the actual DML statement supplied
by the user or application.

Users and Schemas
Access to the database is granted to a database account known as a user. A user may exist in the
database without owning any objects. However, if the user creates and owns objects in the database,
those objects are part of a schema that has the same name as the database user. A schema can
own any type of object in the database: tables, indexes, sequences, views, and so forth. The
schema owner or DBA can grant access to these objects to other database users. The user always
has full privileges and control over the objects in the user’s schema.

When a user is created by the DBA (or by any other user with the CREATE USER system
privilege), a number of other characteristics can be assigned to the user, such as which
tablespaces are available to the user for creating objects, and whether the password is pre-
expired.

You can authenticate users in the database with three methods: database authentication,
operating system authentication, and network authentication. With database authentication, the
encrypted password for the user is stored in the database. In contrast, operating system
authentication makes an assumption that a user who is already authenticated by an operating
system connection has the same privileges as a user with the same or similar name (depending on
the value of the OS_AUTHENT_PREFIX initialization parameter). Network authentication uses
solutions based on Public Key Infrastructure (PKI). These network authentication methods require
Oracle 11g or 12c Enterprise Edition with the Oracle Advanced Security option.

Profiles
Database resources are not unlimited; therefore, a DBA must manage and allocate resources
among all database users. Some examples of database resources are CPU time, concurrent
sessions, logical reads, and connect time.

01-ch01.indd 22 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 23

A database profile is a named set of resource limits that you can assign to a user. After Oracle
is installed, the DEFAULT profile exists and is assigned to any user not explicitly assigned a
profile. The DBA can add new profiles or change the DEFAULT profile to suit the needs of the
enterprise. The initial values for the DEFAULT profile allow for unlimited use of all database
resources.

Sequences
An Oracle sequence assigns sequential numbers, guaranteed to be unique unless the sequence is
re-created or reset. It produces a series of unique numbers in a multi-user environment without
the overhead of disk locking or any special I/O calls, other than what is involved in loading the
sequence into the shared pool.

Sequences can generate numbers up to 38 digits in length; the series of numbers can be
ascending or descending, the interval can be any user-specified value, and Oracle can cache
blocks of numbers from a sequence in memory for even faster performance.

The numbers from sequences are guaranteed to be unique, but not necessarily sequential. If a
block of numbers is cached, and the instance is restarted or a transaction that uses a number from
a sequence is rolled back, the next call to retrieve a number from the sequence will not return the
number that was not used in the original reference to the sequence.

Synonyms
An Oracle synonym is simply an alias to a database object, to simplify references to database
objects and to hide the details of the source of the database objects. Synonyms can be assigned
to tables, views, materialized views, sequences, procedures, functions, and packages. Like views,
a synonym allocates no space in the database, other than its definition in the data dictionary.

Synonyms can be either public or private. A private synonym is defined in the schema of a
user and is available only to the user. A public synonym is usually created by a DBA and is
automatically available for use by any database user.

TIP
After creating a public synonym, make sure the users of the synonym
have the correct privileges to the object referenced by the synonym.

When referencing a database object, Oracle first checks whether the object exists in the user’s
schema. If no such object exists, Oracle checks for a private synonym. If there is no private synonym,
Oracle checks for a public synonym. If there is no public synonym, Oracle returns an error.

PL/SQL
Oracle PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL is useful when the
standard DML and SELECT statements cannot produce the desired results in an easy fashion
because of the lack of the procedural elements found in a traditional third-generation language
such as C++ and Ada. Since Oracle Database 9i, the SQL processing engine is shared between
SQL and PL/SQL, which means that all new features added to SQL are automatically available to
PL/SQL.

In the next few sections, we’ll take a whirlwind tour of the benefits of using Oracle PL/SQL.

01-ch01.indd 23 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

24 Oracle Database 12c DBA Handbook

Procedures/Functions
PL/SQL procedures and functions are examples of PL/SQL named blocks. A PL/SQL block is a
sequence of PL/SQL statements treated as a unit for the purposes of execution, and it contains up
to three sections: a variable declaration section, an executable section, and an exception section.

The difference between a procedure and function is that a function will return a single value
to a calling program such as a SQL SELECT statement. A procedure, on the other hand, does not
return a value, only a status code. However, procedures may have one or many variables that can
be set and returned as part of the argument list to the procedure.

Procedures and functions have many advantages in a database environment. Procedures are
compiled and stored in the data dictionary once; when more than one user needs to call the
procedure, it is already compiled, and only one copy of the stored procedure exists in the shared
pool. In addition, network traffic is reduced, even if the procedural features of PL/SQL are not
used. One PL/SQL call uses up much less network bandwidth than several SQL SELECT and
INSERT statements sent separately over the network, not to mention the reparsing that occurs for
each statement sent over the network.

Packages
PL/SQL packages group together related functions and procedures, along with common variables
and cursors. Packages consist of two parts: a package specification and a package body. In the
package specification, the methods and attributes of the package are exposed; the implementation
of the methods along with any private methods and attributes are hidden in the package body.
Using a package instead of a standalone procedure or function allows the embedded procedure
or function to be changed without invalidating any objects that refer to elements of the package
specification, thus avoiding recompilation of the objects that reference the package.

Triggers
Triggers are a specialized type of a PL/SQL or Java block of code that is executed, or triggered,
when a specified event occurs. The types of events can be DML statements on a table or view, DDL
statements, and even database events such as startup or shutdown. The specified trigger can be
refined to execute on a particular event for a particular user as part of an auditing strategy.

Triggers are extremely useful in a distributed environment to simulate a foreign key relationship
between tables that do not exist in the same database. They are also very useful in implementing
complex integrity rules that cannot be defined using the built-in Oracle constraint types.

More information on how triggers can be used in a robust distributed environment can be
found in Chapter 17.

External File Access
In addition to external tables, there are a number of other ways Oracle can access external files:

 ■ From SQL*Plus, either by accessing an external script containing other SQL commands
to be run or by sending the output from a SQL*Plus SPOOL command to a file in the
operating system’s file system.

 ■ Text information can be read or written from a PL/SQL procedure using the UTL_FILE
built-in package; similarly, DBMS_OUTPUT calls within a PL/SQL procedure can
generate text messages and diagnostics that can be captured by another application and
saved to a text file.

01-ch01.indd 24 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 25

 ■ External data can be referenced by the BFILE datatype. A BFILE datatype is a pointer to an
external binary file. Before BFILEs can be used in a database, a directory alias needs to be
created with the CREATE DIRECTORY command that specifies a prefix containing the full
directory path where the BFILE target is stored.

 ■ DBMS_PIPE can communicate with any 3GL language that Oracle supports, such as C++,
Ada, Java, or COBOL, and exchange information.

 ■ UTL_MAIL, a package added in Oracle 10g, allows a PL/SQL application to send e-mails
without knowing how to use the underlying SMTP protocol stack.

When using an external file as a data source, for either input or output, a number of cautions
are in order. Carefully consider the following before you use an external data source:

 ■ The database data and the external data may be frequently out of synch when one of the
data sources changes without synchronizing with the other.

 ■ It is important to make sure that the backups of the two data sources occur at nearly the
same time to ensure that the recovery of one data source will keep the two data sources
in synch.

 ■ Script files may contain passwords; many organizations forbid the plain-text
representation of any user account in a script file. In this situation, operating system
validation may be a good alternative for user authentication.

 ■ You should review the security of files located in a directory that is referenced by each
DIRECTORY object. Extreme security measures on database objects are mitigated by lax
security on referenced operating system files.

Database Links and Remote Databases
Database links allow an Oracle database to reference objects stored outside of the local database.
The command CREATE DATABASE LINK creates the path to a remote database, which in turn
allows access to objects in the remote database. A database link wraps together the name of the
remote database, a method for connecting to the remote database, and a username/password
combination to authenticate the connection to the remote database. In some ways, a database
link is similar to a database synonym: A database link can be public or private, and it provides a
convenient shorthand way to access another set of resources. The main difference is that the
resource is outside of the database instead of in the same database, and therefore requires more
information to resolve the reference. The other difference is that a synonym is a reference to a
specific object, whereas a database link is a defined path used to access any number of objects in
a remote database.

For links to work between databases in a distributed environment, the global database name
of each database in the domain must be different. Therefore, it is important to assign the initialization
parameters DB_NAME and DB_DOMAIN correctly.

To make using database links even easier, you can assign a synonym to a database link to
make the table access even more transparent; the user does not know if the synonym accesses an
object locally or on a distributed database. The object can move to a different remote database, or
to the local database, and the synonym name can remain the same, making access to the object
transparent to users.

01-ch01.indd 25 13/05/15 9:54 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

26 Oracle Database 12c DBA Handbook

How database links to remote databases are leveraged in a distributed environment is covered
further in Chapter 17.

Oracle Physical Storage Structures
The Oracle database uses a number of physical storage structures on disk to hold and manage the
data from user transactions. Some of these storage structures, such as the datafiles, redo log files,
and archived redo log files, hold actual user data; other structures, such as control files, maintain
the state of the database objects, and text-based alert and trace files contain logging information
for both routine events and error conditions in the database. Figure 1-3 shows the relationship
between these physical structures and the logical storage structures we reviewed in the earlier
section “Oracle Logical Database Structures.”

FIGURE 1-3. Oracle physical storage structures

01-ch01.indd 26 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 27

Datafiles
Every Oracle database must contain at least one datafile. One Oracle datafile corresponds to one
physical operating system file on disk. Each datafile in an Oracle database is a member of one
and only one tablespace; a tablespace, however, can consist of many datafiles. (A bigfile
tablespace consists of exactly one datafile.)

An Oracle datafile may automatically expand when it runs out of space, if the DBA created
the datafile with the AUTOEXTEND parameter. The DBA can also limit the amount of expansion
for a given datafile by using the MAXSIZE parameter. In any case, the size of the datafile is
ultimately limited by the disk volume on which it resides.

TIP
The DBA often has to decide whether to allocate one datafile that
can AUTOEXTEND indefinitely or to allocate many smaller datafiles
with a limit to how much each can extend. In earlier releases of
Oracle, you had no choice but to have multiple datafiles and manage
the tablespace at the datafile level. Now that you can have bigfile
tablespaces, you can manage most aspects at the tablespace level.
Now that RMAN can back up a bigfile tablespace in parallel as well
(since Oracle Database 11g), it makes sense to create one datafile and
let it AUTOEXTEND when necessary.

The datafile is the ultimate resting place for all data in the database. Frequently accessed
blocks in a datafile are cached in memory; similarly, new data blocks are not immediately written
out to the datafile but rather are written to the datafile depending on when the database writer
process is active. Before a user’s transaction is considered complete, however, the transaction’s
changes are written to the redo log files.

Redo Log Files
Whenever data is added, removed, or changed in a table, index, or other Oracle object, an entry
is written to the current redo log file. Every Oracle database must have at least two redo log files,
because Oracle reuses redo log files in a circular fashion. When one redo log file is filled with
redo log entries, the current log file is marked as ACTIVE, if it is still needed for instance recovery,
or INACTIVE, if it is not needed for instance recovery; the next log file in the sequence is reused
from the beginning of the file and is marked as CURRENT.

Ideally, the information in a redo log file is never used. However, when a power failure
occurs, or some other server failure causes the Oracle instance to fail, the new or updated data
blocks in the database buffer cache may not yet have been written to the datafiles. When the
Oracle instance is restarted, the entries in the redo log file are applied to the database datafiles in
a roll forward operation, to restore the state of the database up to the point where the failure
occurred.

To be able to recover from the loss of one redo log file within a redo log group, multiple
copies of a redo log file can exist on different physical disks. Later in this chapter, you will see
how redo log files, archived log files, and control files can be multiplexed to ensure the availability
and data integrity of the Oracle database.

01-ch01.indd 27 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

28 Oracle Database 12c DBA Handbook

Control Files
Every Oracle database has at least one control file that maintains the metadata of the database (in
other words, data about the physical structure of the database itself). Among other things, the
control file contains the name of the database, when the database was created, and the names
and locations of all datafiles and redo log files. In addition, the control file maintains information
used by RMAN, such as the persistent RMAN settings and the types of backups that have been
performed on the database. RMAN is covered in depth in Chapter 12. Whenever any changes are
made to the structure of the database, the information about the changes is immediately reflected
in the control file.

Because the control file is so critical to the operation of the database, it can also be
multiplexed. However, no matter how many copies of the control file are associated with an
instance, only one of the control files is designated as primary for purposes of retrieving database
metadata.

The ALTER DATABASE BACKUP CONTROLFILE TO TRACE command is another way to back
up the control file. It produces a SQL script that you can use to re-create the database control file
in case all multiplexed binary versions of the control file are lost due to a catastrophic failure.

This trace file can also be used, for example, to re-create a control file if the database needs to
be renamed, or to change various database limits that could not otherwise be changed without
re-creating the entire database. As of Oracle 10g, you can use the nid utility to rename the
database without having to re-create the control file.

Archived Log Files
An Oracle database can operate in one of two modes: ARCHIVELOG or NOARCHIVELOG mode.
When the database is in NOARCHIVELOG mode, the circular reuse of the redo log files (also
known as the online redo log files) means that redo entries (the contents of previous transactions)
are no longer available in case of a failure to a disk drive or another media-related failure.
Operating in NOARCHIVELOG mode does protect the integrity of the database in the event of an
instance failure or system crash, because all transactions that are committed but not yet written to
the datafiles are available in the online redo log files.

In contrast, ARCHIVELOG mode sends a filled redo log file to one or more specified
destinations and can be available to reconstruct the database at any given point in time in the
event that a database media failure occurs. For example, if the disk drive containing the datafiles
crashes, the contents of the database can be recovered to a point in time before the crash, given a
recent backup of the datafiles and the redo log files that were generated since the backup
occurred.

The use of multiple archived log destinations for filled redo log files is critical for one of
Oracle’s high-availability features known as Oracle Data Guard, formerly known as Oracle
Standby Database. Oracle Data Guard is covered in detail in Chapter 13.

Initialization Parameter Files
When a database instance starts, the memory for the Oracle instance is allocated, and one of two
types of initialization parameter files is opened: either a text-based file called init<SID>.ora
(known generically as init.ora or a PFILE) or a server parameter file (otherwise known as an
SPFILE). The instance first looks for an SPFILE in the default location for the operating system
($ORACLE_HOME/dbs on Unix, for example) as either spfile<SID>.ora or spfile.ora. If neither of

01-ch01.indd 28 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 29

these files exists, the instance looks for a PFILE with the name init<SID>.ora. Alternatively, the
STARTUP command can explicitly specify a PFILE to use for startup.

Initialization parameter files, regardless of the format, specify file locations for trace files,
control files, filled redo log files, and so forth. They also set limits on the sizes of the various
structures in the SGA as well as how many users can connect to the database simultaneously.

Until Oracle9i, using the init.ora file was the only way to specify initialization parameters for
the instance. Although init.ora is easy to edit with a text editor, it has some drawbacks. If a
dynamic system parameter is changed at the command line with the ALTER SYSTEM command,
the DBA must remember to change the init.ora file so that the new parameter value will be in
effect the next time the instance is restarted.

An SPFILE makes parameter management easier and more effective for the DBA. If an SPFILE
is in use for the running instance, any ALTER SYSTEM command that changes an initialization
parameter can change the initialization parameter automatically in the SPFILE, change it only for
the running instance, or both. No editing of the SPFILE is necessary, or even possible without
corrupting the SPFILE itself.

Although you cannot mirror a parameter file or SPFILE per se, you can back up an SPFILE to
an init.ora file, and both the init.ora and the SPFILE for the Oracle instance should be backed up
using conventional operating system commands or using RMAN in the case of an SPFILE.

When the DBCA is used to create a database, an SPFILE is created by default.

Alert and Trace Log Files
When things go wrong, Oracle can and often does write messages to the alert log and, in the case
of background processes or user sessions, trace log files.

The alert log file, located in the directory specified by the initialization parameter
BACKGROUND_DUMP_DEST, contains both routine status messages and error conditions. When
the database is started up or shut down, a message is recorded in the alert log, along with a list of
initialization parameters that are different from their default values. In addition, any ALTER
DATABASE or ALTER SYSTEM commands issued by the DBA are recorded. Operations involving
tablespaces and their datafiles are recorded here, too, such as adding a tablespace, dropping a
tablespace, and adding a datafile to a tablespace. Error conditions, such as tablespaces running
out of space, corrupted redo logs, and so forth, are also recorded here.

The trace files for the Oracle instance background processes are also located in
BACKGROUND_DUMP_DEST. For example, the trace files for the Process Monitor (PMON) and
System Monitor (SMON) contain an entry when an error occurs or when SMON needs to perform
instance recovery; the trace files for the Queue Monitor (QMON) contain informational messages
when it spawns a new process.

Trace files are also created for individual user sessions or connections to the database. These
trace files are located in the directory specified by the initialization parameter USER_DUMP_
DEST. Trace files for user processes are created in two situations: The first is when some type of
error occurs in a user session because of a privilege problem, running out of space, and so forth.
In the second situation, a trace file can be created explicitly with the command ALTER SESSION
SET SQL_TRACE=TRUE. Trace information is generated for each SQL statement that the user
executes, which can be helpful when tuning a user’s SQL statement.

The alert log file can be deleted or renamed at any time; it is re-created the next time an alert
log message is generated. The DBA will often set up a daily batch job (either through an operating
system mechanism or using Oracle Enterprise Manager’s scheduler) to rename and archive the
alert log on a daily basis.

01-ch01.indd 29 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

30 Oracle Database 12c DBA Handbook

Backup Files
Backup files can originate from a number of sources, such as operating system copy commands or
Oracle RMAN. If the DBA performs a “cold” backup (see the section titled “Backup/Recovery
Overview” for more details on backup types), the backup files are simply operating system copies
of the datafiles, redo log files, control files, archived redo log files, and so forth.

In addition to bit-for-bit image copies of datafiles (the default in RMAN), RMAN can generate
full and incremental backups of datafiles, control files, archived redo log files, and SPFILEs that
are in a special format, called backupsets, only readable by RMAN. RMAN backupset backups
are generally smaller than the original datafiles because RMAN does not back up unused blocks.

Oracle Managed Files
Oracle Managed Files (OMF), introduced in Oracle version 9i, makes the DBA’s job easier by
automating the creation and removal of the datafiles that make up the logical structures in the
database.

Without OMF, a DBA might drop a tablespace and forget to remove the underlying operating
system files. This makes inefficient use of disk resources, and it unnecessarily increases backup
time for datafiles that are no longer needed by the database.

OMF is well suited for small databases with a low number of users and a part-time DBA,
where optimal configuration of a production database is not necessary. Even if the database is
small, Oracle best practices recommend using Automatic Storage Management (ASM) for all of
the datafiles that make up a database, and also recommend making only two disk groups—one
for table and index segments (e.g., +DATA) and one for RMAN backups, a second copy of the
control file, and copies of the archived redo logs (e.g., +RECOV). The initialization parameter DB_
FILE_CREATE_DEST points to the +DATA disk group and DB_CREATE_ONLINE_DEST_1 points to
the +DATA disk group and DB_CREATE_ONLINE_DEST_2 points to +RECOV. The same is true for
the online log file destinations LOG_ARCHIVE_DEST_n.

Password Files
An Oracle password file is a file within the Oracle administrative or software directory structure
on disk used to authenticate Oracle system administrators for tasks such as creating a database or
starting up and shutting down the database. The privileges granted through this file are the
SYSDBA and SYSOPER privileges. Authenticating any other type of user is done within the
database itself; because the database may be shut down or not mounted, another form of
administrator authentication is necessary in these cases.

The Oracle command-line utility orapwd creates a password file if one does not exist or is
damaged. Because of the extremely high privileges granted via this file, it should be stored in a
secure directory location that is not available to anyone except for DBAs and operating system
administrators. Once this file is created, the initialization parameter REMOTE_LOGIN_
PASSWORDFILE should be set to EXCLUSIVE to allow users other than SYS to use the password
file. Also, the password file must be in the $ORACLE_HOME/dbs directory.

TIP
Create at least one user other than SYS or SYSTEM who has DBA
privileges for daily administrative tasks. If there is more than one DBA
administering a database, each DBA should have their own account
with DBA privileges.

01-ch01.indd 30 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 31

Alternatively, authentication for the SYSDBA and SYSOPER privileges can be done with OS
authentication; in this case, a password file does not have to be created, and the initialization
parameter REMOTE_LOGIN_PASSWORDFILE is set to NONE.

Multiplexing Database Files
To minimize the possibility of losing a control file or a redo log file, multiplexing of database files
reduces or eliminates data-loss problems caused by media failures. Multiplexing can be somewhat
automated by using an ASM instance, available starting in Oracle 10g. For a more budget-
conscious enterprise, control files and redo log files can be multiplexed manually.

Automatic Storage Management
Using ASM is a multiplexing solution that automates the layout of datafiles, control files, and redo
log files by distributing them across all available disks. When new disks are added to the ASM
cluster, the database files are automatically redistributed across all disk volumes for optimal
performance. The multiplexing features of an ASM cluster minimize the possibility of data loss
and are generally more effective than a manual scheme that places critical files and backups on
different physical drives.

Manual Multiplexing
Without a RAID or ASM solution, you can still provide some safeguards for your critical database
files by setting some initialization parameters and providing an additional location for control
files, redo log files, and archived redo log files.

Control Files
Control files can be multiplexed immediately when the database is created, or they can be
multiplexed later with a few extra steps to manually copy them to multiple destinations. You can
multiplex up to eight copies of a control file.

Whether you multiplex the control files when the database is created or you multiplex them
later, the initialization parameter value for CONTROL_FILES is the same.

If you want to add another multiplexed location, you need to edit the initialization parameter
file and add another location to the CONTROL_FILES parameter. If you are using an SPFILE
instead of an init.ora file, then use a command similar to the following to change the CONTROL_
FILES parameter:

alter system
 set control_files = '/u01/oracle/whse2/ctrlwhse1.ctl,
 /u02/oracle/whse2/ctrlwhse2.ctl,
 /u03/oracle/whse2/ctrlwhse3.ctl'
scope=spfile;

The other possible values for SCOPE in the ALTER SYSTEM command are MEMORY and
BOTH. Specifying either one of these for SCOPE returns an error, because the CONTROL_FILES
parameter cannot be changed for the running instance, only for the next restart of the instance.
Therefore, only the SPFILE is changed.

01-ch01.indd 31 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

32 Oracle Database 12c DBA Handbook

In either case, the next step is to shut down the database. Copy the control file to the new
destinations, as specified in CONTROL_FILES, and restart the database. You can always verify the
names and locations of the control files by looking in one of the data dictionary views:

select value from v$spparameter where name='control_files';

This query will return one row for each multiplexed copy of the control file. In addition, the
view V$CONTROLFILE contains one row for each copy of the control file along with its status.

Redo Log Files
Redo log files are multiplexed by changing a set of redo log files into a redo log file group. In a
default Oracle installation, a set of three redo log files is created. As you learned in the previous
section on redo log files, after each log file is filled, it starts filling the next in sequence. After the
third is filled, the first one is reused. To change the set of three redo log files to a group, we can
add one or more identical files as a companion to each of the existing redo log files. After the
groups are created, the redo log entries are concurrently written to the group of redo log files. When
the group of redo log files is filled, it begins to write redo entries to the next group. Figure 1-4 shows
how a set of four redo log files can be multiplexed with four groups, each group containing three
members.

FIGURE 1-4. Multiplexing redo log files

01-ch01.indd 32 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 33

Adding a member to a redo log group is very straightforward. In the ALTER DATABASE
command, we specify the name of the new file and the group to add it to. The new file is created
with the same size as the other members in the group:

alter database
 add logfile member '/u05/oracle/dc2/log_3d.dbf'
 to group 3;

If the redo log files are filling up faster than they can be archived, one possible solution is to
add another redo log group. Here is an example of how to add a fifth redo log group to the set of
redo log groups in Figure 1-4:

alter database
 add logfile group 5
 ('/u02/oracle/dc2/log_3a.dbf',
 '/u03/oracle/dc2/log_3b.dbf',
 '/u04/oracle/dc2/log_3c.dbf') size 250m;

All members of a redo log group must be the same size. However, the log file sizes between
groups may be different. In addition, redo log groups may have a different number of members. In
the preceding example, we started with four redo log groups, added an extra member to redo log
group 3 (for a total of four members), and added a fifth redo log group with three members.

As of Oracle 10g, you can use the Redo Logfile Size Advisor to assist in determining the optimal
size for redo log files to avoid excessive I/O activity or bottlenecks. See Chapter 8 for more
information on how to use the Redo Logfile Size Advisor.

Archived Redo Log Files
If the database is in ARCHIVELOG mode, Oracle copies redo log files to a specified location before
they can be reused in the redo log switch cycle.

Oracle Memory Structures
Oracle uses the server’s physical memory to hold many things for an Oracle instance: the Oracle
executable code itself, session information, individual processes associated with the database,
and information shared between processes (such as locks on database objects). In addition, the
memory structures contain user and data dictionary SQL statements, along with cached information
that is eventually permanently stored on disk, such as data blocks from database segments and
information about completed transactions in the database. The data area allocated for an Oracle
instance is called the System Global Area (SGA). The Oracle executables reside in the software
code area. In addition, an area called the Program Global Area (PGA) is private to each server
and background process; one PGA is allocated for each process. Figure 1-5 shows the relationships
between these Oracle memory structures.

System Global Area
The System Global Area is a group of shared memory structures for an Oracle instance, shared by
the users of the database instance. When an Oracle instance is started, memory is allocated for
the SGA based on the values specified in the initialization parameter file or hard-coded in the
Oracle software. Many of the parameters that control the size of the various parts of the SGA are
dynamic; however, if the parameter SGA_MAX_SIZE is specified, the total size of all SGA areas

01-ch01.indd 33 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

34 Oracle Database 12c DBA Handbook

must not exceed the value of SGA_MAX_SIZE. If SGA_MAX_SIZE is not specified, but the
parameter SGA_TARGET is specified, Oracle automatically adjusts the sizes of the SGA components
so that the total amount of memory allocated is equal to SGA_TARGET. SGA_TARGET is a
dynamic parameter; it can be changed while the instance is running. The parameter MEMORY_
TARGET, new to Oracle 11g, balances all memory available to Oracle between the SGA and the
Program Global Area (discussed later in this chapter) to optimize performance.

Memory in the SGA is allocated in units of granules. A granule can be either 4MB or 16MB,
depending on the total size of the SGA. If the SGA is less than or equal to 128MB, a granule is 4MB;
otherwise, it is 16MB.

In the next few subsections, we will cover the highlights of how Oracle uses each section in
the SGA. You can find more information on how to adjust the initialization parameters associated
with these areas in Chapter 8.

Buffer Caches
The database buffer cache holds blocks of data from disk that have been recently read to satisfy a
SELECT statement or that contain modified blocks that have been changed or added from a DML
statement. As of Oracle9i, the memory area in the SGA that holds these data blocks is dynamic.

FIGURE 1-5. Oracle logical memory structures

01-ch01.indd 34 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 35

This is a good thing, considering that there may be tablespaces in the database with block sizes
other than the default block size; tablespaces with up to five different block sizes (one block size
for the default, and up to four others) require their own buffer cache. As the processing and
transactional needs change during the day or during the week, the values of DB_CACHE_SIZE
and DB_nK_CACHE_SIZE can be dynamically changed without restarting the instance to enhance
performance for a tablespace with a given block size.

Oracle can use two additional caches with the same block size as the default (DB_CACHE_
SIZE) block size: the KEEP buffer pool and the RECYCLE buffer pool. As of Oracle9i, both of these
pools allocate memory independently of other caches in the SGA.

When a table is created, you can specify the pool where the table’s data blocks will reside by
using the BUFFER_POOL KEEP or BUFFER_POOL_RECYCLE clause in the STORAGE clause. For
tables that you use frequently throughout the day, it would be advantageous to place this table
into the KEEP buffer pool to minimize the I/O needed to retrieve blocks in the table.

Shared Pool
The shared pool contains two major subcaches: the library cache and the data dictionary cache.
The shared pool is sized by the SHARED_POOL_SIZE initialization parameter. This is another
dynamic parameter that can be resized as long as the total SGA size is less than SGA_MAX_SIZE
or SGA_TARGET.

Library Cache The library cache holds information about SQL and PL/SQL statements that are
run against the database. In the library cache, because it is shared by all users, many different
database users can potentially share the same SQL statement.

Along with the SQL statement itself, the execution plan and parse tree of the SQL statement
are stored in the library cache. The second time an identical SQL statement is run, by the same
user or a different user, the execution plan and parse tree are already computed, improving the
execution time of the query or DML statement.

If the library cache is sized too small, the execution plans and parse trees are flushed out of
the cache, requiring frequent reloads of SQL statements into the library cache. See Chapter 8 for
ways to monitor the efficiency of the library cache.

Data Dictionary Cache The data dictionary is a collection of database tables, owned by the
SYS and SYSTEM schemas, that contain the metadata about the database, its structures, and the
privileges and roles of database users. The data dictionary cache holds a subset of the columns
from data dictionary tables after first being read into the buffer cache. Data blocks from tables in the
data dictionary are used continually to assist in processing user queries and other DML commands.

If the data dictionary cache is too small, requests for information from the data dictionary will
cause extra I/O to occur; these I/O-bound data dictionary requests are called recursive calls and
should be avoided by sizing the data dictionary cache correctly.

Redo Log Buffer
The redo log buffer holds the most recent changes to the data blocks in the datafiles. When the
redo log buffer is one-third full, or every three seconds, Oracle writes redo log records to the redo
log files. As of Oracle 10g, the LGWR process will write the redo log records to the redo log files
when 1MB of redo is stored in the redo log buffer. The entries in the redo log buffer, once written
to the redo log files, are critical to database recovery if the instance crashes before the changed
data blocks are written from the buffer cache to the datafiles. A user’s committed transaction is not
considered complete until the redo log entries have been successfully written to the redo log files.

01-ch01.indd 35 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

36 Oracle Database 12c DBA Handbook

Large Pool
The large pool is an optional area of the SGA. It is used for transactions that interact with more
than one database, message buffers for processes performing parallel queries, and RMAN parallel
backup and restore operations. As the name implies, the large pool makes available large blocks
of memory for operations that need to allocate large blocks of memory at a time.

The initialization parameter LARGE_POOL_SIZE controls the size of the large pool and is a
dynamic parameter as of Oracle9i release 2.

Java Pool
The Java pool is used by the Oracle JVM (Java Virtual Machine) for all Java code and data within a
user session. Storing Java code and data in the Java pool is analogous to caching SQL and PL/SQL
code in the shared pool.

Streams Pool
New as of Oracle 10g, the streams pool is sized by using the initialization parameter STREAMS_
POOL_SIZE. The streams pool holds data and control structures to support the Oracle Streams
feature of Oracle Enterprise Edition. Oracle Streams manages the sharing of data and events in a
distributed environment. If the initialization parameter STREAMS_POOL_SIZE is uninitialized or
set to zero, the memory used for Streams operations is allocated from the shared pool and may
use up to 10 percent of the shared pool. For more information on Oracle Streams, see Chapter 17.

Program Global Area
The Program Global Area is an area of memory allocated and private for one process. The
configuration of the PGA depends on the connection configuration of the Oracle database:
either shared server or dedicated.

In a shared server configuration, multiple users share a connection to the database, minimizing
memory usage on the server, but potentially affecting response time for user requests. In a shared
server environment, the SGA holds the session information for a user instead of the PGA. Shared
server environments are ideal for a large number of simultaneous connections to the database
with infrequent or short-lived requests.

In a dedicated server environment, each user process gets its own connection to the database;
the PGA contains the session memory for this configuration.

The PGA also includes a sort area. The sort area is used whenever a user request requires a
sort, bitmap merge, or hash join operation.

As of Oracle9i, the PGA_AGGREGATE_TARGET parameter, in conjunction with the
WORKAREA_SIZE_POLICY initialization parameter, can ease system administration by allowing
the DBA to choose a total size for all work areas and let Oracle manage and allocate the memory
between all user processes. As mentioned earlier in this chapter, the parameter MEMORY_TARGET
manages the PGA and SGA memory as a whole to optimize performance.

Software Code Area
Software code areas store the Oracle executable files that are running as part of an Oracle
instance. These code areas are static in nature and only change when a new release of the software
is installed. Typically, the Oracle software code areas are located in a privileged memory area
separate from other user programs.

01-ch01.indd 36 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 37

Oracle software code is strictly read-only and can be installed either shared or non-shared.
Installing Oracle software code as sharable saves memory when multiple Oracle instances are
running on the same server at the same software release level.

Background Processes
When an Oracle instance starts, multiple background processes start. A background process is a
block of executable code designed to perform a specific task. Figure 1-6 shows the relationship
between the background processes, the database, and the Oracle SGA. In contrast to a foreground
process, such as a SQL*Plus session or a web browser, a background process works behind the
scenes. Together, the SGA and the background processes compose an Oracle instance.

FIGURE 1-6. Oracle background processes

01-ch01.indd 37 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

38 Oracle Database 12c DBA Handbook

SMON
SMON is the System Monitor process. In the case of a system crash or instance failure, due to a
power outage or CPU failure, the SMON process performs crash recovery by applying the entries
in the online redo log files to the datafiles. In addition, temporary segments in all tablespaces are
purged during system restart.

One of SMON’s routine tasks is to coalesce the free space in tablespaces on a regular basis if
the tablespace is dictionary managed.

PMON
If a user connection is dropped, or a user process otherwise fails, PMON, also known as the
Process Monitor, does the cleanup work. It cleans up the database buffer cache along with any
other resources that the user connection was using. For example, a user session may be updating
some rows in a table, placing a lock on one or more of the rows. A thunderstorm knocks out the
power at the user’s desk, and the SQL*Plus session disappears when the workstation is powered
off. Within moments, PMON will detect that the connection no longer exists and perform the
following tasks:

 ■ Roll back the transaction that was in progress when the power went out.

 ■ Mark the transaction’s blocks as available in the buffer cache.

 ■ Remove the locks on the affected rows in the table.

 ■ Remove the process ID of the disconnected process from the list of active processes.

PMON will also interact with the listeners by providing information about the status of the
instance for incoming connection requests.

DBWn
The database writer process, known as DBWR in older versions of Oracle, writes new or changed
data blocks (known as dirty blocks) in the buffer cache to the datafiles. Using an LRU algorithm,
DBWn writes the oldest, least active blocks first. As a result, the most commonly requested blocks,
even if they are dirty blocks, are in memory.

Up to 20 DBWn processes can be started, DBW0 through DBW9 and DBWa through DBWj.
The number of DBWn processes is controlled by the DB_WRITER_PROCESSES parameter.

LGWR
LGWR, or the log writer process, is in charge of redo log buffer management. LGWR is one of the
most active processes in an instance with heavy DML activity. A transaction is not considered
complete until LGWR successfully writes the redo information, including the commit record, to
the redo log files. In addition, the dirty buffers in the buffer cache cannot be written to the datafiles
by DBWn until LGWR has written the redo information.

If the redo log files are grouped, and one of the multiplexed redo log files in a group is damaged,
LGWR writes to the remaining members of the group and records an error in the alert log file. If
all members of a group are unusable, the LGWR process fails and the entire instance hangs until
the problem can be corrected.

ARCn
If the database is in ARCHIVELOG mode, then the archiver process, or ARCn, copies redo logs to
one or more destination directories, devices, or network locations whenever a redo log fills up

01-ch01.indd 38 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 39

and redo information starts to fill the next redo log in sequence. Optimally, the archiver process
finishes before the filled redo log is needed again; otherwise, serious performance problems
occur—users cannot complete their transactions until the entries are written to the redo log files,
and the redo log file is not ready to accept new entries because it is still being written to the
archive location. There are at least three potential solutions to this problem: make the redo log
files larger, increase the number of redo log groups, and increase the number of ARCn processes.
Up to 30 ARCn processes can be started for each instance by increasing the value of the LOG_
ARCHIVE_MAX_PROCESSES initialization parameter.

CKPT
The checkpoint process, or CKPT, helps to reduce the amount of time required for instance
recovery. During a checkpoint, CKPT updates the header of the control file and the datafiles to
reflect the last successful System Change Number (SCN). A checkpoint occurs automatically every
time a redo log file switch occurs. The DBWn processes routinely write dirty buffers to advance the
checkpoint from where instance recovery can begin, thus reducing the Mean Time to Recovery
(MTTR).

RECO
The RECO, or recoverer process, handles failures of distributed transactions (that is, transactions
that include changes to tables in more than one database). If a table in the CCTR database is
changed along with a table in the WHSE database, and the network connection between the
databases fails before the table in the WHSE database can be updated, RECO will roll back the
failed transaction.

Backup/Recovery Overview
Oracle supports many different forms of backup and recovery. Some of them can be managed at
the user level, such as export and import; most of them are strictly DBA-centric, such as online or
offline backups and using operating system commands or the RMAN utility.

Details for configuring and using these backup and recovery methods can be found in Chapter 11
and also in Chapter 12.

Export/Import
You can use Oracle’s logical data Export and Import utilities to back up and restore database
objects. Export is considered a logical backup, because the underlying storage characteristics of
the tables are not recorded, only the table metadata, user privileges, and table data. Depending
on the task at hand, and whether you have DBA privileges or not, you can export either all tables
in the database, all the tables of one or more users, or a specific set of tables. The corresponding
import utility can selectively restore the previously exported objects.

One advantage to using Export and Import is that a database power user may be able to manage
their own backups and recoveries, especially in a development environment. Also, a binary file
generated by Export is typically readable across Oracle versions, making a transfer of a small set of
tables from an older version to a newer version of Oracle fairly straightforward.

Export and Import are inherently “point in time” backups and therefore are not the most robust
backup and recovery solutions if the data is volatile.

Previous releases of Oracle Database included the exp and imp commands, but these are not
available in Oracle Database 12c. As of Oracle 10g, Oracle Data Pump replaces the legacy export

01-ch01.indd 39 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

40 Oracle Database 12c DBA Handbook

and import commands and takes those operations to a new performance level. Exports to an
external data source can be up to two times faster, and an import operation can be up to 45 times
faster because Data Pump Import uses direct path loading, unlike traditional import. In addition,
an export from the source database can be simultaneously imported into the target database
without an intermediate dump file, saving time and administrative effort. Oracle Data Pump is
implemented using the DBMS_DATAPUMP package with the expdb and impdb commands and
includes numerous other manageability features, such as fine-grained object selection. Data
Pump also keeps up with all new features of Oracle 12c, such as moving entire pluggable
databases (PDBs) from one container database (CDB) to another. More information on Oracle
Data Pump is provided in Chapter 17.

Offline Backups
One of the ways to make a physical backup of the database is to perform an offline backup. To
perform an offline backup, the database is shut down and all database-related files, including
datafiles, control files, SPFILEs, password files, and so forth, are copied to a second location.
Once the copy operation is complete, the database instance can be started.

Offline backups are similar to export backups because they are point-in-time backups and
therefore of less value if up-to-the-minute recovery of the database is required and the database is
not in ARCHIVELOG mode. Another downside to offline backups is the amount of downtime
necessary to perform the backup; any multinational company that needs 24/7 database access
will most likely not do offline backups very often.

Online Backups
If a database is in ARCHIVELOG mode, it is possible to do online backups of the database. The
database can be open and available to users even while the backup is in process. The procedure
for doing online backups is as easy as placing a tablespace into a backup state by using the ALTER
TABLESPACE USERS BEGIN BACKUP command, backing up the datafiles in the tablespace with
operating system commands, and then taking the tablespace out of the backup state with the
ALTER TABLESPACE USERS END BACKUP command.

RMAN
The backup tool Recovery Manager, known more commonly as RMAN, has been around since
Oracle8. RMAN provides many advantages over other forms of backup. It can perform incremental
backups of only changed data blocks in between full database backups while the database remains
online throughout the backup.

RMAN keeps track of the backups via one of two methods: through the control file of the
database being backed up, or through a recovery catalog stored in another database. Using
the target database’s control file for RMAN is easy, but it’s not the best solution for a robust
enterprise backup methodology. Although a recovery catalog requires another database to store
the metadata for the target database along with a record of all backups, it is well worth it when all
the control files in the target database are lost due to a catastrophic failure. In addition, a recovery
catalog retains historical backup information that may be overwritten in the target database’s
control file if the value of CONTROL_FILE_RECORD_KEEP_TIME is set too low.

RMAN is discussed in detail in Chapter 12.

01-ch01.indd 40 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 41

Security Capabilities
This section provides a brief overview of the different ways that Oracle 12c controls and enforces
security in a database. An in-depth look at these and other security capabilities within Oracle is
covered in Chapter 9.

Privileges and Roles
In an Oracle database, privileges control access to both the actions a user can perform and the
objects in the database. Privileges that control access to actions in the database are called system
privileges, whereas privileges that control access to data and other objects are called object
privileges.

To make assignment and management of privileges easier for the DBA, a database role groups
privileges together. To put it another way, a role is a named group of privileges. In addition, a role
can itself have roles assigned to it.

Privileges and roles are granted and revoked with the GRANT and REVOKE commands. The
user group PUBLIC is neither a user nor a role, nor can it be dropped; however, when privileges
are granted to PUBLIC, they are granted to every user of the database, both present and future.

System Privileges
System privileges grant the right to perform a specific type of action in the database, such as
creating users, altering tablespaces, or dropping any view. Here is an example of granting a
system privilege:

grant drop any table to scott with admin option;

The user SCOTT can drop anyone’s table in any schema. The WITH GRANT OPTION clause
allows SCOTT to grant his newly granted privilege to other users.

Object Privileges
Object privileges are granted on a specific object in the database. The most common object
privileges are SELECT, UPDATE, DELETE, and INSERT for tables, EXECUTE for a PL/SQL stored
object, and INDEX for granting index-creation privileges on a table. In the following example,
the user RJB can perform any DML on the JOBS table owned by the HR schema:

grant select, update, insert, delete on hr.jobs to rjb;

Auditing
To audit access to objects in the database by users, you can set up an audit trail on a specified
object or action by using the AUDIT command. Both SQL statements and access to a particular
database object can be audited; the success or failure of the action (or both) can be recorded in
the audit trail table, SYS.AUD$, or in an OS file if specified by the AUDIT_TRAIL initialization
parameter with a value of OS.

For each audited operation, Oracle creates an audit record with the username, the type of
operation that was performed, the object involved, and a timestamp. Various data dictionary
views, such as DBA_AUDIT_TRAIL and DBA_FGA_AUDIT_TRAIL, make interpreting the results
from the raw audit trail table SYS.AUD$ easier.

01-ch01.indd 41 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

42 Oracle Database 12c DBA Handbook

CAUTION
Excessive auditing on database objects can have an adverse effect
on performance. Start out with basic auditing on key privileges and
objects, and expand the auditing when the basic auditing has revealed
a potential problem.

Fine-Grained Auditing
The fine-grained auditing capability that was introduced in Oracle9i and enhanced in Oracle 10g,
11g, and Oracle 12c takes auditing one step further: Standard auditing can detect when a SELECT
statement was executed on an EMPLOYEE table; fine-grained auditing will record an audit record
containing specific columns accessed in the EMPLOYEE table, such as the SALARY column.

Fine-grained auditing is implemented using the DBMS_FGA package along with the data
dictionary view DBA_FGA_AUDIT_TRAIL. The data dictionary view DBA_COMMON_AUDIT_
TRAIL combines standard audit records in DBA_AUDIT_TRAIL with fine-grained audit records.

Virtual Private Database
The Virtual Private Database feature of Oracle, first introduced in Oracle8i, couples fine-grained
access control with a secure application context. The security policies are attached to the data,
and not to the application; this ensures that security rules are enforced regardless of how the data
is accessed.

For example, a medical application context may return a predicate based on the patient
identification number accessing the data; the returned predicate will be used in a WHERE clause
to ensure that the data retrieved from the table is only the data associated with the patient.

Label Security
Oracle Label Security provides an out-of-the-box virtual private database (VPD) solution to restrict
access to rows in any table based on the label of the user requesting the access and the label on
the row of the table itself. Oracle Label Security administrators do not need any special programming
skills to assign security policy labels to users and rows in the table.

This highly granular approach to data security can, for example, allow a DBA at an Application
Service Provider (ASP) to create only one instance of an accounts receivable application and to
use Label Security to restrict rows in each table to an individual company’s accounts receivable
information.

Real Application Clusters
Oracle’s Real Application Clusters (RAC) feature allows more than one instance, on separate
servers, to access the same database files.

A RAC installation can provide extreme high availability for both planned and unplanned
outages. One instance can be restarted with new initialization parameters while the other instance
is still servicing requests against the database. If one of the hardware servers crashes due to a fault
of some type, the Oracle instance on the other server will continue to process transactions, even
from users who were connected to the crashed server, transparently and with minimal downtime.

RAC, however, is not a software-only solution: The hardware that implements RAC has special
requirements. The shared database should be on a RAID-enabled disk subsystem to ensure that

01-ch01.indd 42 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 43

each component of the storage system is fault tolerant. In addition, RAC requires a high-speed
interconnect, or a private network, between the nodes in the cluster to support messaging and
transfer of blocks from one instance to another using the Cache Fusion mechanism.

The diagram in Figure 1-7 shows a two-node RAC installation. How to set up and configure
Real Application Clusters is discussed in depth in Chapter 10.

Oracle Streams
As a component of Oracle Enterprise Edition, Oracle Streams is the higher-level component of the
Oracle infrastructure that complements Real Application Clusters. Oracle Streams allows the
smooth flow and sharing of both data and events within the same database or from one database
to another. It is another key piece in Oracle’s long list of high-availability solutions, tying together
and enhancing Oracle’s message queuing, data replication, and event management functions.
More information on how to implement Oracle Streams can be found in Chapter 17.

Oracle Enterprise Manager
Oracle Enterprise Manager (OEM) is a valuable set of tools that facilitates the comprehensive
management of all components of an Oracle infrastructure, including Oracle database instances,
Oracle application servers, and web servers. If a management agent exists for a third-party
application, then OEM can manage the third-party application in the same framework as any
Oracle-supplied target.

OEM is fully web-enabled via Internet Explorer, Firefox, or Chrome, and as a result any
operating system platform that supports IE, Firefox, or Chrome can be used to launch the OEM
console.

FIGURE 1-7. A two-node Real Application Clusters (RAC) configuration

01-ch01.indd 43 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

44 Oracle Database 12c DBA Handbook

One of the key decisions to make when using OEM with Oracle Grid Control is the location
to store the management repository. The OEM management repository is stored in a database
separate from the nodes or services being managed or monitored. The metadata from the nodes
and services is centralized and facilitates the administration of these nodes. The management
repository database should be backed up often and separately from the databases being managed.

An installation of OEM provides a tremendous amount of value “out of the box.” When the
OEM installation is complete, e-mail notifications are already set up to send messages to the
SYSMAN or any other e-mail account for critical conditions, and the initial target discovery is
automatically completed.

Oracle Initialization Parameters
An Oracle database uses initialization parameters to configure memory settings, disk locations,
and so forth. There are two ways to store initialization parameters: using an editable text file and
using a server-side binary file. Regardless of the method used to store the initialization
parameters, there is a defined set of basic initialization parameters (as of Oracle 10g) that every
DBA should be familiar with when creating a new database.

As of Oracle 10g, initialization parameters fall into two broad categories: basic initialization
parameters and advanced initialization parameters. As Oracle becomes more and more self-managing,
the number of parameters that a DBA must be familiar with and adjust on a daily basis is reduced.

Basic Initialization Parameters
The list of Oracle 12c basic initialization parameters appears in Table 1-3 along with a brief
description of each. In the sections that follow, I will give some further explanation and advice
regarding how some of these parameters should be set, depending on the hardware and software
environment, the types of applications, and the number of users in the database.

Some of these parameters will be revisited throughout this book, where we will present optimal
values for SGA, PGA, and other parameters. Here are a few that you will set for every new database.

COMPATIBLE
The COMPATIBLE parameter allows a newer version of Oracle to be installed while restricting the
feature set of the new version as if an older version of Oracle was installed. This is a good way to
move forward with a database upgrade while remaining compatible with an application that may
fail when it runs with the new version of the software. The COMPATIBLE parameter can then be
bumped up as the applications are reworked or rewritten to work with the new version of the
database.

The downside of using this parameter is that none of the new applications for the database
can take advantage of new features until the COMPATIBLE parameter is set to the same value as
the current release.

DB_NAME
DB_NAME specifies the local portion of the database name. It can be up to eight characters and
must begin with an alphanumeric character. Once set, it can only be changed with the Oracle
DBNEWID utility (nid); the DB_NAME is recorded in each datafile, redo log file, and control file
in the database. At database startup, the value of this parameter must match the value of DB_NAME
recorded in the control file.

01-ch01.indd 44 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 45

Initialization Parameter Description

CLUSTER_DATABASE Enables this node to be a member of a cluster.

COMPATIBLE Allows a new database version to be installed while ensuring
compatibility with the release specified by this parameter.

CONTROL_FILES Specifies the location of the control files for this instance.

DB_BLOCK_SIZE Specifies the size of Oracle blocks. This block size is used for the
SYSTEM, SYSAUX, and temporary tablespaces at database creation.

DB_CREATE_FILE_DEST The default location for OMF datafiles. Also specifies the location
of control files and redo log files if DB_CREATE_ONLINE_LOG_
DEST_n is not set.

DB_CREATE_ONLINE_LOG_
DEST_n

The default location for OMF control files and online redo log
files.

DB_DOMAIN The logical domain name where the database resides in a
distributed database system (for example, us.oracle.com).

DB_NAME A database identifier of up to eight characters. Prepended to the
DB_DOMAIN value for a fully qualified name (for example,
marketing.us.oracle.com).

DB_RECOVERY_FILE_DEST The default location for the recovery area. Must be set along with
DB_RECOVERY_FILE_DEST_SIZE.

DB_RECOVERY_FILE_DEST_SIZE The maximum size, in bytes, for the files used for recovery in
the recovery area location.

DB_UNIQUE_NAME A globally unique name for the database. This distinguishes
databases that have the same DB_NAME within the same DB_
DOMAIN.

INSTANCE_NUMBER In a RAC installation, the instance number of this node in the
cluster.

JOB_QUEUE_PROCESSES The maximum number of processes allowed for executing jobs,
ranging from 0 to 1000.

LDAP_DIRECTORY_SYSAUTH Enables or disables directory-based authorization for users with
the SYSDBA and SYSOPER roles.

LOG_ARCHIVE_DEST_n For ARCHIVELOG mode, up to 31 locations for sending archived
log files.

LOG_ARCHIVE_DEST_STATE_n Sets the availability of the corresponding LOG_ARCHIVE_
DEST_n sites.

NLS_LANGUAGE Specifies the default language of the database, including
messages, day and month names, and sorting rules (for example,
“AMERICAN”).

TABLE 1-3. Basic Initialization Parameters

01-ch01.indd 45 13/05/15 9:54 AM

http://us.oracle.com
http://marketing.us.oracle.com

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

46 Oracle Database 12c DBA Handbook

Initialization Parameter Description

NLS_LENGTH_SEMANTICS Specifies the default length semantics for VARCHAR2 or CHAR
table columns. Its value is either ‘BYTE’ or ‘CHAR’.

NLS_TERRITORY The territory name used for day and week numbering (for
example, ‘SWEDEN’, ‘TURKEY’, or ‘AMERICA’).

OPEN_CURSORS The maximum number of open cursors per session.

PGA_AGGREGATE_TARGET The total memory to allocate for all server processes in this
instance.

PROCESSES The maximum number of operating system processes that
can connect to Oracle simultaneously. SESSIONS and
TRANSACTIONS are derived from this value.

REMOTE_LISTENER A network name resolving to an Oracle Net remote listener.

REMOTE_LOGIN_
PASSWORDFILE

Specifies how Oracle uses password files. Required for RAC.

ROLLBACK_SEGMENTS Names of private rollback segments to bring online, if undo
management is not used for transaction rollback. There is
rarely a need to change this parameter since Automatic Undo
Management was introduced in Oracle Database 10g.

SESSIONS The maximum number of sessions, and therefore simultaneous
users, in the instance. Defaults to 1.1 * PROCESSES + 5. Oracle
best practices dictates you let this parameter default except in
rare circumstances.

SGA_TARGET Specifies the total size of all SGA components; this parameter
automatically determines DB_CACHE_SIZE, SHARED_POOL_
SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_
POOL_SIZE.

SHARED_SERVERS The number of shared server processes to allocate when an
instance is started.

STAR_TRANSFORMATION_
ENABLED

Controls query optimization when star queries are executed.

UNDO_MANAGEMENT Specifies whether undo management is automatic (AUTO) or
manual (MANUAL). If MANUAL is specified, rollback segments
are used for undo management.

UNDO_TABLESPACE The tablespace to use when UNDO_MANAGEMENT is set to
AUTO.

TABLE 1-3. Basic Initialization Parameters (Continued)

01-ch01.indd 46 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 47

DB_DOMAIN
DB_DOMAIN specifies the name of the network domain where the database will reside. The
combination of DB_NAME and DB_DOMAIN must be unique within a distributed database system.

DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
When database recovery operations occur, either due to an instance failure or a media failure, it
is convenient to have a flash recovery area to store and manage files related to a recovery or
backup operation. Starting with Oracle 10g, the parameter DB_RECOVERY_FILE_DEST can be a
directory location on the local server, a network directory location, or an ASM disk area. The
parameter DB_RECOVERY_FILE_DEST_SIZE places a limit on how much space is allowed for the
recovery or backup files.

These parameters are optional, but if they are specified, RMAN can automatically manage the
files needed for backup and recovery operations. The size of this recovery area should be large
enough to hold two copies of all datafiles, incremental RMAN backups, online redo logs,
archived log files not yet backed up to tape, the SPFILE, and the control file.

CONTROL_FILES
The CONTROL_FILES parameter is not required when you create a database. If it is not specified,
Oracle creates one control file in a default location, or if OMF is configured, in the location specified
by either DB_CREATE_FILE_DEST or DB_CREATE_ONLINE_LOG_DEST_n and a secondary location
specified by DB_RECOVERY_FILE DEST. Once the database is created, the CONTROL_FILES
parameter reflects the names of the control file locations if you are using an SPFILE; if you are using
a text initialization parameter file, you must add the location to this file manually.

However, it is strongly recommended that multiple copies of the control file be created on
separate physical volumes. Control files are so critical to the database integrity and are so small
that at least three multiplexed copies of the control file should be created on separate physical
disks. In addition, the command ALTER DATABASE BACKUP CONTROLFILE TO TRACE should be
executed to create a text-format copy of the control file in the event of a major disaster.

The following example specifies three locations for copies of the control file:

control_files = (/u01/oracle10g/test/control01.ctl,
 /u03/oracle10g/test/control02.ctl,
 /u07/oracle10g/test/control03.ctl)

DB_BLOCK_SIZE
The parameter DB_BLOCK_SIZE specifies the size of the default Oracle block in the database. At
database creation, the SYSTEM, TEMP, and SYSAUX tablespaces are created with this block size.
Ideally, this parameter is the same as or a multiple of the operating system block size for I/O
efficiency.

Before Oracle9i, you might specify a smaller block size (4KB or 8KB) for OLTP systems and a
larger block size (up to 32KB) for DSS (decision support system) databases. However, now that
tablespaces with up to five block sizes can coexist in the same database, a smaller value for DB_
BLOCK_SIZE is fine. However, 8KB is probably preferable as a minimum for any database, unless
it has been rigorously proven in the target environment that a 4KB block size will not cause
performance issues. Unless there are specific reasons (such as many tables with rows wider than 8KB),
Oracle recommends that an 8KB block size is ideal for every database in Oracle Database 12c.

01-ch01.indd 47 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

48 Oracle Database 12c DBA Handbook

SGA_TARGET
Another way that Oracle 12c can facilitate a “set it and forget it” database is by the ability to specify
a total amount of memory for all SGA components. If SGA_TARGET is specified, the parameters
DB_CACHE_SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_
POOL_SIZE are automatically sized by Automatic Shared Memory Management (ASMM). If any of
these four parameters are manually sized when SGA_TARGET is also set, ASMM uses the manually
sized parameters as minimums.

Once the instance starts, the automatically sized parameters can be dynamically increased or
decreased, as long as the parameter SGA_MAX_SIZE is not exceeded. The parameter SGA_MAX_
SIZE specifies a hard upper limit for the entire SGA, and it cannot be exceeded or changed until
the instance is restarted.

Regardless of how the SGA is sized, be sure that enough free physical memory is available in
the server to hold the components of the SGA and all background processes; otherwise, excessive
paging will occur and performance will suffer.

MEMORY_TARGET
Even though MEMORY_TARGET is not a “basic” parameter according to the Oracle documentation,
it can greatly simplify instance memory management. This parameter specifies the Oracle system-
wide usable memory; Oracle in turn reallocates memory between, for example, the SGA and
PGA to optimize performances. This parameter is not available on some hardware and OS
combinations. For example, MEMORY_TARGET is not available if your OS is Linux and huge
pages are defined.

DB_CACHE_SIZE and DB_nK_CACHE_SIZE
The parameter DB_CACHE_SIZE specifies the size of the area in the SGA to hold blocks of the
default size, including those from the SYSTEM, TEMP, and SYSAUX tablespaces. Up to four other
caches can be defined if there are tablespaces with block sizes other than the SYSTEM and
SYSAUX tablespaces. The value of n can be 2, 4, 8, 16, or 32; if the value of n is the same as the
default block size, the corresponding DB_nK_CACHE_SIZE parameter is illegal. Although this
parameter is not one of the basic initialization parameters, it becomes very basic when you
transport a tablespace from another database with a block size other than DB_BLOCK_SIZE!

There are few advantages to a database containing multiple block sizes, however. Even
though the tablespace handling OLTP applications can have a smaller block size and the
tablespace with the data warehouse table can have a larger block size, an 8KB block is almost
always the optimal block size unless you have very large row sizes and you therefore use a larger
block size to prevent single rows from crossing a block boundary. However, be careful when
allocating memory for multiple cache sizes so as not to allocate too much memory for one at the
expense of another. If you must use multiple block sizes, then use Oracle’s Buffer Cache Advisory
feature to monitor the cache usage for each cache size in the view V$DB_CACHE_ADVICE to
assist you in sizing these memory areas. More information on how to use the Buffer Cache
Advisory feature can be found in Chapter 8.

SHARED_POOL_SIZE, LARGE_POOL_SIZE,
STREAMS_POOL_SIZE, and JAVA_POOL_SIZE
The parameters SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_
POOL_SIZE, which size the shared pool, large pool, streams pool, and Java pool, respectively, are

01-ch01.indd 48 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 1: Getting Started with the Oracle Architecture 49

automatically sized by Oracle if the SGA_TARGET initialization parameter is specified. More
information on manually tuning these areas can be found in Chapter 8.

PROCESSES
The value for the PROCESSES initialization parameter represents the total number of processes
that can simultaneously connect to the database. This includes both the background processes
and the user processes; a good starting point for the PROCESSES parameter would be 50 for the
background processes plus the number of expected maximum concurrent users; for a smaller
database, 150 is a good starting point, because there is little or no overhead associated with
making PROCESSES too big. A small departmental database would likely have a value of 256.

UNDO_MANAGEMENT and UNDO_TABLESPACE
Automatic Undo Management (AUM), introduced in Oracle9i, eliminates or at least greatly reduces
the headaches in trying to allocate the right number and size of rollback segments to handle the
undo information for transactions. Instead, a single undo tablespace is specified for all undo
operations (except for a SYSTEM rollback segment), and all undo management is handled
automatically when the UNDO_MANAGEMENT parameter is set to AUTO.

The remaining task for the DBA is sizing the undo tablespace. Data dictionary views such as
V$UNDOSTAT and the Undo Advisor can help you adjust the size of the undo tablespace.
Multiple undo tablespaces may be created; for example, a smaller undo tablespace is online
during the day to handle relatively small transaction volumes, and a larger undo tablespace is
brought online overnight to handle batch jobs and long-running queries that load the data
warehouse and need transactional consistency. Only one undo tablespace may be active at any
given time. In a RAC environment, each instance of the database has its own undo tablespace.

As of Oracle 11g, AUM is enabled by default. In addition, new PL/SQL procedures are
available to supplement the information you get from the Undo Advisor and V$UNDOSTAT.

Advanced Initialization Parameters
The advanced initialization parameters include the balance of the initialization parameters not
listed here, for a total of 368 of them in Release 1 of Oracle Database 12c. Most of these can be
automatically set and tuned by the Oracle instance when the basic initialization parameters are
set. We will review many of these throughout this book.

Summary
The Oracle database is the most advanced database technology available but its complexity can
be understood when it’s broken down into its core components. The database itself is the set of
files where the tables and index reside; the instance, in contrast, consists of the memory structures
on one or more servers that access the database files.

In this chapter I also reviewed the key database objects which for the most part are the
variations on an Oracle table. Each type of table has a purpose that makes it suitable for OLTP,
batch processing, or business intelligence.

Once your database objects exist, they must be backed up. They must also be secured from
unauthorized access. Oracle Database does this with a combination of system and object
privileges. Various types of auditing and security features ensure that only the right people can
access the most sensitive information in your databases.

01-ch01.indd 49 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

50 Oracle Database 12c DBA Handbook

Finally, I gave a brief overview of some initialization parameters that you will likely configure
in your environment and likely change later as your database grows. These parameters both the
locations of key database files but also control how much memory is allocated for each Oracle
feature. The variety of memory-related parameters give you the option to set only a couple of
parameters and let Oracle manage the rest. If you need to fine-tune Oracle memory usage you
can do that as well if your database environment is used for more than one type of application or
the use of the database changes on an hourly basis.

01-ch01.indd 50 13/05/15 9:54 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 51

CHAPTER
2

Upgrading to Oracle
Database 12c

02-ch02.indd 51 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

52 Oracle Database 12c DBA Handbook

I f you have previously installed an earlier version of the Oracle database server, you can
upgrade your database to Oracle Database 12c. Multiple upgrade paths are supported;
the right choice for you will depend on factors such as your current Oracle software version

and your database size. In this chapter, you will see descriptions of these methods along with
guidelines for their use.

If you have not used a version of Oracle prior to Oracle Database 12c, you can skip this
chapter for now. However, you will likely need to refer to it when you upgrade from Oracle
Database 12c to a later version or when you migrate data from a different database into your
database.

Prior to beginning the upgrade, you should read the Oracle Database 12c Installation Guide
for your operating system. A successful installation is dependent on a properly configured
environment, including operating system patch levels and system parameter settings. Plan to get
the installation and upgrade right the first time rather than attempting to restart a partially successful
installation. Configure the system to support both the installation of the Oracle software and the
creation of a usable starter database.

This chapter assumes that your installation of the Oracle Database 12c software completed
successfully and that you have an Oracle database that uses an earlier version of the Oracle
software on the same server. Note that whether you are installing from scratch or upgrading a
previous version of Oracle Database, there are distinct advantages to installing the Oracle
Database 12c software and creating the database in separate steps. When installing from scratch,
you have greater control over initialization parameters, database file locations, memory allocation,
and so forth when you create the database in a separate step; when upgrading from a previous
release, installing the software first provides you with the Oracle Pre-Upgrade Information Tool
that you use against the existing database to alert you to any potential compatibility problems
when you upgrade to Oracle Database 12c. To upgrade that database, you have four options:

 ■ Use the Database Upgrade Assistant (DBUA) to guide and perform the upgrade in place.
The old database will become an Oracle 12c database during this process. DBUA supports
both Oracle Real Application Clusters (RAC) and Automatic Storage Management (ASM);
you can launch DBUA as part of the installation process or as a standalone tool after
installation. Oracle strongly recommends using DBUA for Oracle Database major releases
or patch release upgrades.

 ■ Perform a manual upgrade of the database. The old database will become an Oracle 12c
database during this process. While you have very precise control over every step
of the process, this method is more susceptible to error if you miss a step or forget a
prerequisite step.

 ■ Use Oracle Data Pump to move data from an earlier version of Oracle to the Oracle 12c
database. Two separate databases will be used: the old database as the source for the
export and the new database as the target for the import. If you are upgrading from Oracle
Database 11g, you will use Oracle Data Pump to move your data from the old database
to the new database. Although Oracle Data Pump is the recommended migration method
if available, the original import/export (imp and exp) are available to export from Oracle
Database 10g and earlier and to import from an older release into Oracle Database 12c.

 ■ Copy data from an earlier version of Oracle to an Oracle 12c database. Two separate
databases will be used: the old database as the source for the copy and the new database

02-ch02.indd 52 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 2: Upgrading to Oracle Database 12c 53

as the target for the copy. This method is the most straightforward because your migration
consists primarily of CREATE TABLE AS SELECT SQL statements referencing the old
and new databases. However, unless your database has very few tables and you aren’t
concerned with using existing SQL tuning sets, statistics, and so forth, Oracle does not
recommend this method for production databases. One exception is if you’re migrating to
Oracle Exadata, in which case this method enables you to leverage Exadata features such
as Hybrid Columnar Compression (HCC) and partitioning, outweighing any disadvantages
of using this method.

Upgrading a database in place via either the Database Upgrade Assistant or the manual
upgrade path is called a direct upgrade. Because a direct upgrade does not involve creating a
second database for the one being upgraded, it may complete faster and require less disk space
than an indirect upgrade.

NOTE
Direct upgrade of the database to version 12c is only supported if your
present database is using one of these releases of Oracle: 10.2.0.5,
11.1.0.7, or 11.2.0.2 or later. If you are using any other release, you
will first have to upgrade the database to one of those releases or you
will need to use a different upgrade option.

Choosing an Upgrade Method
As described in the introduction, both direct upgrade and indirect upgrade paths are available. In
this section, you will see a more detailed description of the options, followed by usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either across a database link or
via a Data Pump Export. For very large databases, the time required to completely re-create the
database via the indirect methods may exclude them as viable options. One drawback to upgrading
in place, however, is that none of the datafiles, tablespaces, or segments get reorganized and old
objects that are now obsolete in Oracle Database 12c are still in the database.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. After you accept the recommendations, DBUA performs the upgrade in the
background while a progress panel is displayed. DBUA is very similar in approach to the Database
Configuration Assistant (DBCA). As discussed in Chapter 1, DBCA is a graphical interface to the
steps and parameters required to make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds to
the level of risk in the upgrade because you must perform the steps in the proper order.

You can use Oracle Data Pump Export/Import (first available with Oracle Database 10g) as
an indirect method for upgrading a database. In this method, you export the data from the old
version of the database and then import it into a database that uses the new version of the Oracle
software. This process may require disk space for multiple copies of the data in the source database,
in the Export dump file, and in the target database. In exchange for these costs, this method gives

02-ch02.indd 53 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

54 Oracle Database 12c DBA Handbook

you great flexibility in choosing which data will be migrated. You can select specific tablespaces,
schemas, tables, and rows to be exported.

In the Data Pump method, the original database is not upgraded; its data is extracted and
moved, and the database can then either be deleted or be run in parallel with the new database
until testing of the new database has been completed. In the process of performing the export/
import, you are selecting and reinserting each row of the database. If the database is very large,
the import process may take a long time, impacting your ability to provide the upgraded database
to your users in a timely fashion. This is mainly because of your network’s bandwidth limitations:
if you have a 10-Gbps or faster network connection, then Data Pump can be run across the
network in parallel for multiple schemas and even individual tables. See Chapter 12 for details on
the Data Pump utilities.

In the data-copying method, you issue a series of CREATE TABLE AS SELECT . . . or INSERT
INTO . . . SELECT commands that cross database links (see Chapter 16) to retrieve the source
data. The tables are created in the Oracle 12c database based on queries of data from a separate
source database. This method allows you to bring over data incrementally and to limit the rows
and columns migrated. However, you will need to be careful that the copied data maintains all
the necessary relationships among tables as well as any indexes or constraints. As with the Data
Pump method, this method may require a significant amount of time for large databases.

NOTE
If you are changing the operating platform at the same time, you can
use transportable tablespaces to move the data from the old database
to the new database. For very large databases, this method may be
faster than the other data-copying methods. See Chapter 17 for the
details on transportable tablespaces.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
using an indirect method may be more appropriate for smaller databases.

Before Upgrading
Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance
of specific database operations or the overall performance of the database under a significant
user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so that you can identify any missing components (such as operating
system patches) and measure the time required for the upgrade.

Oracle Database 12c includes the Pre-Upgrade Information Tool called preupgrd.sql. This
tool is included in the installation files in the directory $ORACLE_HOME/rdbms/admin. Copy this

02-ch02.indd 54 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 2: Upgrading to Oracle Database 12c 55

script to a location accessible by the old database, connect to the old database with SYSDBA
privileges, and run this tool from a SQL*Plus session similar to the following:

SQL> @preupgrd.sql

This script produces a file called preupgrade.log containing the output from the script. Two
other scripts are created by the pre-upgrade script: preupgrade_fixups.sql and postupgrade_
fixups.sql. As the script names imply, they contain the commands to fix any issues with the
existing database before the upgrade starts or to fix other issues that can only be fixed after the
upgrade is completed. Any issues that cannot be fixed via the script are marked in the log file as
*** USER ACTION REQUIRED ***.

The Pre-Upgrade Information Tool identifies invalid objects in the database. The list of invalid
SYS or SYSTEM objects is stored in REGISTRY$SYS_INV_OBJS, and the list of non-SYS and non-
SYSTEM objects is stored in REGISTRY$NONSYS_INV_OBJS. Typical invalid objects include
corrupted indexes and triggers or other PL/SQL functions and procedures that will not compile
due to missing objects or syntax problems.

Using the Database Upgrade Assistant
You can start the DBUA via the dbua command (in Unix environments) or by selecting Database
Upgrade Assistant from the Oracle Configuration and Migration Tools menu option (in Windows
environments). If you are using a Unix environment, you will need to enable an X Window display
prior to starting DBUA.

When started, DBUA will display a Welcome screen. At the next screen, select the database
you want to upgrade from the list of available databases. You can upgrade only one database at
a time.

After you make your selection, the upgrade process begins. DBUA will perform pre-upgrade
checks (such as for obsolete initialization parameters or files that are too small) using the
preupgrd.sql script described earlier in this chapter. DBUA also includes the option to recompile
invalid PL/SQL objects following the upgrade. To speed up the recompilation process, you can
specify a degree of parallelism to run the recompiles in parallel. If you do not recompile these
objects after the upgrade, the first user of these objects will be forced to wait while Oracle
performs a run-time recompilation.

DBUA will then prompt you to back up the database as part of the upgrade process. If you
have already backed up the database prior to starting DBUA, you may elect to skip this step. If
you choose to have DBUA back up the database, it will use RMAN to create a backup in the
location you specify. DBUA will also create a batch file in that directory to automate the restoration
of those files to their earlier locations.

The next step is to choose whether to enable Oracle Enterprise Manager (OEM) to manage the
database. If you enable the Oracle Management Agent, the upgraded database will automatically
be available via OEM. If you are already using a centralized database and resource manager tool
such as Oracle Enterprise Manager Cloud Control 12c, you can register the new database with
Cloud Control at this time.

You will then be asked to finalize the security configuration for the upgraded database. As with
the database-creation process, you can specify passwords for each privileged account or you can
set a single password to apply to all the OEM user accounts.

Finally, you will be prompted for details on the flash recovery area location (see Chapter 14),
the archive log setting, and the network configuration. A final summary screen displays your choices

02-ch02.indd 55 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

56 Oracle Database 12c DBA Handbook

for the upgrade, and the upgrade starts when you accept them. After the upgrade has completed,
DBUA will display the Checking Upgrade Results screen, showing the steps performed, the
related log files, and the status. The section of the screen titled Password Management allows you
to manage the passwords and the locked/unlocked status of accounts in the upgraded database.

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded database,
and reloads the file.

Performing a Manual Direct Upgrade
In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
As mentioned earlier in this chapter, this tool is provided in a SQL script that is installed with the
Oracle Database 12c software; you will need to run it against the database to be upgraded. You
should run that file in the database to be upgraded as a SYSDBA-privileged user. The results will
show potential problems that should be addressed prior to the upgrade.

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process. This ensures that if you
have any serious problems with the database upgrade, you can always get back to the state of
your old database as of when you started the upgrade process. The automated version of the
database upgrade process includes an option to back up the current database using RMAN.

Once you have a backup that you can restore if needed, you are ready to proceed with the
upgrade process. The process is detailed and script-based, so you should consult with the Oracle
installation and upgrade documentation for your environment and version. The steps are as
follows:

1. Copy configuration files (init.ora, spfile.ora, password file) from their old location to the new
Oracle software home directory. By default, the configuration files are found in the /dbs
subdirectory on Unix platforms and the \database directory on Windows platforms.

2. Remove obsolete and deprecated initialization parameter from the configuration files
identified in the Pre-Upgrade Information Tool. Update any initialization parameters to at
least the minimum values specified in the Pre-Upgrade Information Tool report. Use full
pathnames in the parameter files.

3. If you are upgrading a cluster database, set the CLUSTER_DATABASE initialization parameter
to FALSE. After the upgrade, you must set this initialization parameter back to TRUE.

4. Shut down the instance.

5. If you are using Windows, stop the service associated with the instance and delete the
Oracle service at the command prompt using this command:

NET STOP OracleService<service_name>
ORADIM –DELETE –SID <instance_name>

02-ch02.indd 56 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 2: Upgrading to Oracle Database 12c 57

Next, create the new Oracle Database 12c service using the ORADIM command, as
shown here. The variables for this command are shown in the following table.

C:\> ORADIM -NEW -SID <SID> -INTPWD <PASSWORD> -MAXUSERS <USERS>
 -STARTMODE AUTO -PFILE <ORACLE_HOME>\<DATABASE>\INIT<SID>.ORA

Variable Description

SID The name of the SID (instance identifier) of the database you are
upgrading.

PASSWORD The password for the new release 12.1 database instance. This is
the password for the user connected with SYSDBA privileges. If
you do not specify INTPWD, operating system authentication is
used and no password is required.

USERS The maximum number of users who can be granted SYSDBA and
SYSOPER privileges.

ORACLE_HOME The release 12.1 Oracle home directory. Ensure that you specify
the full pathname with the -PFILE option, including the drive
letter of the Oracle home directory.

DATABASE The database name.

6. If your operating system is Unix or Linux, make sure the environment variables ORACLE_
HOME and PATH point to the new release 12.1 directories, ORACLE_SID is set to the
existing database’s SID, and the file /etc/oratab points to the new Oracle Database 12c
home directory. In addition, any server or client-side scripts that set ORACLE_HOME
must be changed to point to the new Oracle software home directory.

7. Log into the system as the owner of the Oracle Database 12c software.

8. Change your directory to the $ORACLE_HOME/rdbms/admin subdirectory under the
Oracle software home directory.

9. Connect to SQL*Plus as a user with SYSDBA privileges.

10. Issue the STARTUP UPGRADE command.

11. Use the SPOOL command to log the results of the following steps.

12. Run the Perl script catctl.pl in the 12c environment, specifying the SQL script catupgrd.sql
as one of the arguments. The catctl.pl script also allows for a parallel upgrade process, to
reduce upgrade time. This script automatically determines which upgrade scripts must be
run, runs them, and then shuts down the database.

SQL> $ORACLE_HOME/perl/bin/perl catctl.pl catupgrd.sql

13. The database is shut down after running the Perl script. Next, restart the database as follows.
The upgrade is complete.

SQL> startup

Run the post-upgrade tool, utlu121s.sql, to see if there are any upgrade issues. After fixing
the issues, run this script again to make sure they are fixed.

14. Gather fixed object statistics to minimize object recompilation time:

SQL> exec dbms_stats.gather_fixed_objects_stats;

02-ch02.indd 57 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

58 Oracle Database 12c DBA Handbook

15. Run utlrp.sql to compile any PL/SQL or Java procedures that still need recompilation:

SQL> @utlrp.sql

16. Verify that all objects and classes are valid:

SQL> @utluiobj.sql

NOTE
After the upgrade, you should never start your Oracle 12c database
with the software from an earlier release.

Using Data Pump Export and Import
Export and Import provide you with an indirect method for the upgrade. You can create an
Oracle 11g database alongside your existing database and use Data Pump Export and Import
to move data from the old database to the new database. When the movement of the data is
complete, you will need to point your applications to connect to the new database instead of
the old database. You will also need to update any configuration files, version-specific scripts,
and the networking configuration files (tnsnames.ora and listener.ora) to point to the new
database.

The advantage to using the Export/Import method is that the existing database is unaffected
throughout the upgrade process; however, to ensure that relational integrity remains intact and
no new transactions are left behind in the old database, you can run the old database in restricted
mode for the duration of the export and upgrade.

Export and Import Versions to Use
When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. When you create a Data Pump Export dump file, you can only import it into
the same or later versions of Data Pump Export. Export dump files are not backward compatible,
so if you ever need to revert to an earlier version of Oracle, you will need to carefully select the
version of Export and Import used.

Note that when you are exporting in order to downgrade your database release, you should use
the older version of the Export utility to minimize compatibility problems. You may still encounter
compatibility problems if the newer version of the database uses new features (such as new datatypes)
that the old version will not support.

Performing the Upgrade
Export the data from the source database using Data Pump Export (recommended) or Export/Import
(Oracle Database 10g). Since a direct upgrade to Oracle Database 12c must be from a database
running Oracle Database 10g or later, Data Pump Export will be available in that release and all
interim releases. Perform a consistent export or perform the export when the database is not available
for updates during and after the export.

Install the Oracle Database 12c software and create the target database. In the target database,
pre-create the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from one
database with datafiles from the other. The Data Pump Import utility will attempt to execute the
CREATE TABLESPACE commands found in the Data Pump Export dump file, and those commands

02-ch02.indd 58 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 2: Upgrading to Oracle Database 12c 59

will include the datafile names from the source database. By default, those commands will fail if the
files already exist (although this can be overridden via Import’s REUSE_DATAFILES=Y parameter).
Pre-create the tablespaces with the proper datafile names to avoid this problem.

NOTE
You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Data Pump Import to load the data from the Export
dump file into the target database. Review the log file for information about objects that did not
import successfully. See Chapter 11 for detailed instructions on how to use Data Pump Export
and Import.

Using the Data-Copying Method
The data-copying method requires that the source database and target database coexist. This method
is most appropriate when the tables to be migrated are fairly small and few in number. As with the
Data Pump Export/Import method, you must guard against transactions occurring in the source
database during and after the extraction of the data. In this method, the data is extracted via queries
across database links.

Create the target database using the Oracle Database 12c software-only installation and
then pre-create the tablespaces, users, and tables to be populated with data from the source
database. Create database links (see Chapter 16) in the target database that access accounts
in the source database. Use commands such as INSERT INTO . . . SELECT to move data from
the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so that you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

To improve the performance of this method, you may consider the following options:

 ■ Disable all indexes and constraints until all the data has been loaded.

 ■ Run multiple data-copying jobs in parallel.

 ■ Use parallel query and DML to enhance the performance of individual queries and inserts.

 ■ Use the APPEND hint to enhance the performance of inserts (direct-path insert).

 ■ Collect statistics on the tables before re-creating the indexes. Oracle will automatically
collect statistics on the indexes as they are being rebuilt.

As of Oracle 10g, you can use cross-platform transportable tablespaces. When transporting
tablespaces, you export and import only the metadata for the tablespace, while the datafiles are
physically moved to the new platform. For very large databases, the time required to move the
datafiles may be significantly shorter than the time required to reinsert the rows. See Chapter 17
for details on the use of transportable tablespaces; see Chapter 8 for additional advice on performance
tuning.

02-ch02.indd 59 17/04/15 6:10 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

60 Oracle Database 12c DBA Handbook

After Upgrading
Following the upgrade, you should double-check the configuration and parameter files related to the
database, particularly if the instance name changed in the migration process. These files include

 ■ The tnsnames.ora file

 ■ The listener.ora file

 ■ Programs that may have hard-coded instance names in them

NOTE
You will need to manually reload the modified listener.ora file if you
are not using DBUA to perform the upgrade.

You should review your database initialization parameters to make sure deprecated and
obsolete parameters have been removed; these should have been identified during the migration
process when you ran the Pre-Upgrade Information Tool preupgrd.sql. Be sure to recompile any
programs you have written that rely on the database software libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release. If you performed a full backup
before starting the upgrade, you should be able to easily revert to the old release with minimal
downtime.

Summary
Upgrading a database from Oracle Database 11g to 12c is easy and you can accomplish the upgrade
with one of several methods depending on your storage available and database size. If your options
are few, the Database Upgrade Assistant (DBUA) will use a GUI interface to step you through all of
the options that would otherwise require several complex OS commands.

Using Data Pump Export and Import has the advantage of being a logical migration: it gives
you the option to change your physical database layout that may have been sub-optimal in the
original database.

The data-copying method is the simplest method but is only appropriate if your database is
small and there are few database objects. Both the old and new databases must be up and running
at the same time; in addition, you must create INSERT statements to copy table data from the old
database to the new database. After all table data is copied you create the appropriate indexes,
create users, and grant permissions on the new tables.

02-ch02.indd 60 08/04/15 1:15 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 61

CHAPTER
3

Planning and Managing
Tablespaces

03-ch03.indd 61 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

62 Oracle Database 12c DBA Handbook

How a DBA configures the layout of the tablespaces in a database directly affects the
performance and manageability of the database. In this chapter, we’ll review the different
types of tablespaces as well as how temporary tablespace usage can drive the size and

number of tablespaces in a database leveraging the temporary tablespace group feature introduced
in Oracle 10g.

I’ll also show how Oracle’s Optimal Flexible Architecture (OFA), supported since Oracle 7,
helps to standardize the directory structure for both Oracle executables and the database files
themselves; Oracle Database 12c further enhances OFA to complement its original role of
improving performance to enhancing security and simplifying cloning and upgrade tasks.

A default installation of Oracle provides the DBA with a good starting point, not only creating
an OFA-compliant directory structure but also segregating segments into a number of tablespaces
based on their function. We’ll review the space requirements for each of these tablespaces and
provide some tips on how to fine-tune the characteristics of these tablespaces.

Using Oracle Automatic Storage Management (ASM) as your logical volume manager makes
tablespace maintenance easier and more efficient by automatically spreading out the segments
within a tablespace across all disks of an ASM disk group. Adding datafiles to a tablespace is
almost trivial when using ASM; using bigfile tablespaces means you only have to allocate a single
datafile for the tablespace. In both cases, you don’t need to specify, or even need to know, the
name of the datafile itself within the ASM directory structure.

In Oracle Database 12c, container databases (CDBs) and pluggable databases (PDBs) in a
multitenant database architecture change how some tablespaces are used and managed in a
pluggable database. All permanent tablespaces can be associated with one and only one database—
either the CDB or one PDB. In contrast, temporary tablespaces or temporary tablespace groups
are managed at the CDB level and are used by all PDBs within the CDB. See Chapter 10 for an
in-depth discussion of the Oracle Database 12c multitenant architecture.

At the end of the chapter, I’ll provide some guidelines to help you place segments into different
tablespaces based on their type, size, and frequency of access, as well as ways to identify hotspots
in one or more tablespaces.

Tablespace Architecture
A prerequisite to competently setting up the tablespaces in your database is understanding the
different types of tablespaces and how they are used in an Oracle database. In this section, we’ll
review the different types of tablespaces and give some examples of how they are managed. In
addition, I’ll review the types of tablespaces by category—permanent tablespaces (SYSTEM,
SYSAUX, and so on), temporary tablespaces, undo tablespaces, and bigfile tablespaces—and
describe their function. Finally, I’ll also discuss Oracle’s Optimal Flexible Architecture (OFA)
and how it can ease maintenance tasks.

Tablespace Types
The primary types of tablespaces in an Oracle database are permanent, undo, and temporary.
Permanent tablespaces contain segments that persist beyond the duration of a session or a transaction.

Although the undo tablespace may have segments that are retained beyond the end of a session
or a transaction, it provides read consistency for SELECT statements that access tables being modified
as well as provides undo data for a number of the Oracle Flashback features of the database. Primarily,
however, undo segments store the previous values of columns being updated or deleted. This ensures

03-ch03.indd 62 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 63

that if a user’s session fails before the user issues a COMMIT or a ROLLBACK, the UPDATEs, INSERTs,
and DELETEs will be removed and will never be accessible by other sessions. Undo segments are
never directly accessible by a user session, and undo tablespaces may only have undo segments.

As the name implies, temporary tablespaces contain transient data that exists only for the
duration of the session, such as space to complete a sort operation that will not fit in memory.

Bigfile tablespaces can be used for any of these three types of tablespaces, and they simplify
tablespace management by moving the maintenance point from the datafile to the tablespace.
Bigfile tablespaces consist of one and only one datafile. There are a couple of downsides to bigfile
tablespaces, however, and they will be presented later in this chapter.

Permanent
The SYSTEM and SYSAUX tablespaces are two examples of permanent tablespaces. In addition,
any segments that need to be retained by a user or an application beyond the boundaries of a
session or transaction should be stored in a permanent tablespace.

SYSTEM Tablespace User segments should never reside in the SYSTEM or SYSAUX tablespace,
period. If you do not specify a default permanent or temporary tablespace when creating users,
the database-level default permanent and temporary tablespaces are used.

If you use the Oracle Universal Installer (OUI) to create a database for you, a separate tablespace
other than SYSTEM is created for both permanent and temporary segments. If you create a database
manually, be sure to specify both a default permanent tablespace and a default temporary tablespace,
as in the sample CREATE DATABASE command that follows.

CREATE DATABASE rjbdb
 USER SYS IDENTIFIED BY melsm25
 USER SYSTEM IDENTIFIED BY welisa45
 LOGFILE GROUP 1 ('/u02/oracle11g/oradata/rjbdb/redo01.log') SIZE 100M,
 GROUP 2 ('/u04/oracle11g/oradata/rjbdb/redo02.log') SIZE 100M,
 GROUP 3 ('/u06/oracle11g/oradata/rjbdb/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 MAXINSTANCES 1
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE '/u01/oracle11g/oradata/rjbdb/system01.dbf' SIZE 2G REUSE
 EXTENT MANAGEMENT LOCAL
 SYSAUX DATAFILE '/u01/oracle11g/oradata/rjbdb/sysaux01.dbf'
 SIZE 800M REUSE
 DEFAULT TABLESPACE USERS
 DATAFILE '/u03/oracle11g/oradata/rjbdb/users01.dbf'
 SIZE 4G REUSE
 DEFAULT TEMPORARY TABLESPACE TEMPTS1
 TEMPFILE '/u01/oracle11g/oradata/rjbdb/temp01.dbf'
 SIZE 500M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u02/oracle11g/oradata/rjbdb/undotbs01.dbf'
 SIZE 400M REUSE AUTOEXTEND ON MAXSIZE 2G;

03-ch03.indd 63 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

64 Oracle Database 12c DBA Handbook

As of Oracle 10g, the SYSTEM tablespace is locally managed by default; in other words, all
space usage is managed by a bitmap segment in the first part of the first datafile for the tablespace.
In a database where the SYSTEM tablespace is locally managed, the other tablespaces in the
database must also be locally managed or they must be read-only. Using locally managed
tablespaces takes some of the contention off the SYSTEM tablespace because space allocation
and deallocation operations for a tablespace do not need to use data dictionary tables. More
details on locally managed tablespaces can be found in Chapter 6. Other than to support the import
of a transportable tablespace that is dictionary managed from a legacy database, there are no
advantages to having a dictionary-managed tablespace in your database.

SYSAUX Tablespace Like the SYSTEM tablespace, the SYSAUX tablespace should not have any
user segments. The contents of the SYSAUX tablespace, broken down by application, can be
reviewed using Oracle Enterprise Manager Database Express (EM Express) or Cloud Control 12c.
You can edit the SYSAUX tablespace in Cloud Control 12c by choosing Administration | Storage |
Tablespaces and clicking the SYSAUX link in the tablespace list. Figure 3-1 shows a graphical
representation of the space usage within SYSAUX.

If the space usage for a particular application that resides in the SYSAUX tablespace becomes
too high or creates an I/O bottleneck through high contention with other applications that use the
SYSAUX tablespace, you can move one or more of these applications to a different tablespace. Any
SYSAUX occupant listed in Figure 3-1 that has a Change Tablespace link available can be moved
by clicking the link and then choosing a destination tablespace in the field shown in Figure 3-2.
The XDB objects will be moved to the SYSAUX2 tablespace. An example of moving a SYSAUX
occupant to a different tablespace using the command line interface can be found in Chapter 6.

The SYSAUX tablespace can be monitored just like any other tablespace; later in this chapter,
I’ll show how EM Cloud Control can help us to identify hotspots in a tablespace.

Undo
Multiple undo tablespaces can exist in a database, but only one undo tablespace can be active
at any given time for a single database instance. Undo tablespaces are used for rolling back
transactions, for providing read consistency for SELECT statements that run concurrently with DML
statements on the same table or set of tables, and for supporting a number of Oracle Flashback
features, such as Flashback Query.

The undo tablespace needs to be sized correctly to prevent ORA-01555 “Snapshot too old”
errors and to provide enough space to support initialization parameters such as UNDO_RETENTION.
More information on how to monitor, size, and create undo tablespaces can be found in Chapter 7.

Temporary
More than one temporary tablespace can be online and active in the database, but until Oracle
10g, multiple sessions by the same user would use the same temporary tablespace because only
one default temporary tablespace could be assigned to a user. To solve this potential performance
bottleneck, Oracle supports temporary tablespace groups. A temporary tablespace group is a
synonym for a list of temporary tablespaces.

A temporary tablespace group must consist of at least one temporary tablespace; it cannot be
empty. Once a temporary tablespace group has no members, it no longer exists.

One of the big advantages of using temporary tablespace groups is to provide a single user
with multiple sessions with the ability to use a different actual temporary tablespace for each
session. In the diagram shown in Figure 3-3, the user OE has two active sessions that need
temporary space for performing sort operations.

03-ch03.indd 64 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 65

Instead of a single temporary tablespace being assigned to a user, the temporary tablespace
group is assigned; in this example, the temporary tablespace group TEMPGRP has been assigned
to OE. However, because there are three actual temporary tablespaces within the TEMPGRP
temporary tablespace group, the first OE session may use temporary tablespace TEMP1, and the
SELECT statement executed by the second OE session may use the other two temporary tablespaces,
TEMP2 and TEMP3, in parallel. Before Oracle 10g, both sessions would use the same temporary
tablespace, potentially causing a performance issue.

FIGURE 3-1. EM Cloud Control 12c SYSAUX tablespace contents

03-ch03.indd 65 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

66 Oracle Database 12c DBA Handbook

FIGURE 3-3. Temporary tablespace group TEMPGRP

FIGURE 3-2. Using EM Cloud Control 12c to move a SYSAUX occupant

03-ch03.indd 66 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 67

Creating a temporary tablespace group is very straightforward. After creating the individual
tablespaces TEMP1, TEMP2, and TEMP3, we can create a temporary tablespace group named
TEMPGRP as follows:

SQL> alter tablespace temp1 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp2 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp3 tablespace group tempgrp;
Tablespace altered.

Changing the database’s default temporary tablespace to TEMPGRP uses the same command
as assigning an actual temporary tablespace as the default; temporary tablespace groups are treated
logically the same as a temporary tablespace:

SQL> alter database default temporary tablespace tempgrp;
Database altered.

To drop a tablespace group, we must first drop all its members. Dropping a member of a
tablespace group is accomplished by assigning the temporary tablespace to a group with an empty
string (in other words, removing the tablespace from the group):

SQL> alter tablespace temp3 tablespace group '';
Tablespace altered.

As you might expect, assigning a temporary tablespace group to a user is identical to assigning
a temporary tablespace to a user; this assignment can happen either when the user is created or at
some point in the future. In the following example, the new user JENWEB is assigned the temporary
tablespace TEMPGRP:

SQL> create user jenweb identified by pi4001
 2 default tablespace users
 3 temporary tablespace tempgrp;
User created.

Note that if we did not assign the tablespace during user creation, the user JENWEB would
still be assigned TEMPGRP as the temporary tablespace because it is the database default from our
previous CREATE DATABASE example.

A couple of changes were made to the data dictionary views in Oracle Database 10g and
Oracle Database 11g to support temporary tablespace groups. The data dictionary view DBA_USERS
still has the column TEMPORARY_TABLESPACE, as in previous versions of Oracle, but this column
may now contain either the name of the temporary tablespace assigned to the user or the name of
a temporary tablespace group:

SQL> select username, default_tablespace, temporary_tablespace
 2 from dba_users where username = 'JENWEB';

USERNAME DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
-------------------- ------------------ --------------------
JENWEB USERS TEMPGRP

1 row selected.

03-ch03.indd 67 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

68 Oracle Database 12c DBA Handbook

The new data dictionary view DBA_TABLESPACE_GROUPS shows the members of each
temporary tablespace group:

SQL> select group_name, tablespace_name from dba_tablespace_groups;

GROUP_NAME TABLESPACE_NAME
---------------------------- ----------------------------
TEMPGRP TEMP1
TEMPGRP TEMP2
TEMPGRP TEMP3

3 rows selected.

As with most every other feature of Oracle that can be accomplished with the command line,
assigning members to temporary tablespace groups or removing members from temporary
tablespace groups can be performed using EM Cloud Control 12c. In Figure 3-4, we can add or
remove members from a temporary tablespace group.

Bigfile
A bigfile tablespace eases database administration because it consists of only one datafile. The
single datafile can be up to 128TB (terabytes) in size if the tablespace block size is 32KB; if you
use the more common 8KB block size, 32TB is the maximum size of a bigfile tablespace. Many of
the commands previously available only for maintaining datafiles can now be used at the tablespace
level if the tablespace is a bigfile tablespace. Chapter 6 reviews how BIGFILE tablespaces are
created and maintained.

The maintenance convenience of bigfile tablespaces can be offset by some potential
disadvantages. Because a bigfile tablespace is a single datafile, a full backup of a single large
datafile will take significantly longer than a full backup of several smaller datafiles (with the same
total size as the single bigfile tablespace) even when Oracle uses multiple slave processes per
datafile. If your bigfile tablespaces are read-only or if only changed blocks are backed up on a
regular basis, the backup issue may not be critical in your environment. If you use the SECTION
SIZE option in RMAN, available as of Oracle Database 11g, then an entire bigfile tablespace
(and therefore the entire datafile) can be backed up in parallel.

Optimal Flexible Architecture
Oracle’s Optimal Flexible Architecture (OFA) provides guidelines to ease the maintenance of the
Oracle software and database files as well as improve the performance of the database by placing
the database files such that I/O bottlenecks are minimized.

Although using OFA is not strictly enforced when you’re installing or maintaining an Oracle
environment, using OFA makes it easy for someone to understand how your database is organized
on disk, preventing that phone call in the middle of the night during the week you’re on vacation!

OFA is slightly different depending on the type of storage options you use: either an ASM
environment or a standard operating system file system that may or may not be using a third-party
logical volume manager or RAID-enabled disk subsystem. In either case, the Database Configuration
Assistant can create an OFA-compliant datafile directory structure for you.

03-ch03.indd 68 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 69

Non-ASM Environment
In a non-ASM environment on a Unix server, at least three file systems on separate physical
devices are required to implement OFA recommendations. Starting at the top, the recommended
format for a mount point is /<string const><numeric key>, where <string const> can be one or
several letters and <numeric key> is either two or three digits. For example, on one system we
may have mount points /u01, /u02, /u03, and /u04, with room to expand to an additional 96
mount points without changing the file-naming convention. Figure 3-5 shows a typical Unix file
system layout with an OFA-compliant Oracle directory structure.

There are two instances on this server: an ASM instance to manage disk groups and a standard
RDBMS instance (dw).

FIGURE 3-4. Using EM Cloud Control 12c to edit temporary tablespace groups

03-ch03.indd 69 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

70 Oracle Database 12c DBA Handbook

Software Executables The software executables for each distinct product name reside in the
directory /<string const><numeric key>/<directory type>/<product owner>, where <string const>
and <numeric key> are defined previously, <directory type> implies the type of files installed in
this directory, and <product owner> is the name of the user that owns and installs the files in this
directory. For example, /u01/app/oracle would contain application-related files (executables)
installed by the user oracle on the server. The directory /u01/app/apache would contain the
executables for the middleware web server installed from a previous version of Oracle.

As of Oracle 10g, the OFA standard makes it easy for the DBA to install multiple versions of
the database and client software within the same high-level directory. The OFA-compliant Oracle
home path, corresponding to the environment variable ORACLE_HOME, contains a suffix that
corresponds to the type and incarnation of the installation. For example, one installation of

FIGURE 3-5. OFA-compliant Unix directory structure

03-ch03.indd 70 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 71

Oracle 12c, one installation of Oracle 11g, two different installations of Oracle 10g, and one
installation of Oracle9i may reside in the following three directories:

/u01/app/oracle/product/9.2.0.1
/u01/app/oracle/product/10.1.0/db_1
/u01/app/oracle/product/10.1.0/db_2
/u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/12.1.0/dbhome_1

At the same time, the Oracle client executables and configuration may be stored in the same
parent directory as the database executables:

/u01/app/oracle/product/12.1.0/client_1

Some installation directories will never have more than one instance for a given product; for
example, Oracle Grid Infrastructure (one installation per server) will be installed in the following
directory given the previous installations:

/u01/app/oracle/product/12.1.0/grid

Because Grid Infrastructure can be installed only once on a system, it does not have an
incrementing numeric suffix.

Database Files Any non-ASM Oracle datafiles reside in /<mount point>/oradata/<database
name>, where <mount point> is one of the mount points we discussed earlier, and <database
name> is the value of the initialization parameter DB_NAME. For example, /u02/oradata/rac0
and /u03/oradata/rac0 would contain the non-ASM control files, redo log files, and datafiles for
the instance rac0, whereas /u05/oradata/dev1 would contain the same files for the dev1 instance
on the same server. The naming convention for the different file types under the oradata directory
are detailed in Table 3-1.

Although Oracle tablespace names can be as long as 30 characters, it is advisable to keep the
tablespace names eight characters or less in a Unix environment. Because portable Unix filenames
are restricted to 14 characters, and the suffix of an OFA datafile name is <n>.dbf, where n is two digits,
a total of six characters are needed for the suffix in the file system. This leaves eight characters for
the tablespace name itself.

File Type Filename Format Variables

Control files control.ctl None.

Redo log files redo<n>.log n is a two-digit number.

Datafiles <tn>.dbf t is an Oracle tablespace name, and n is a two-digit number.

TABLE 3-1. OFA-Compliant Control File, Redo Log File, and Datafile Naming Conventions

03-ch03.indd 71 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

72 Oracle Database 12c DBA Handbook

Only control files, redo log files, and datafiles associated with the database <database name>
should be stored in the directory /<mount point>/oradata/<database name>. For the database ord
managed without ASM, the datafile names are as follows:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- -----------------------------------
 1 /u05/oradata/ord/system01.dbf
 2 /u05/oradata/ord/undotbs01.dbf
 3 /u05/oradata/ord/sysaux01.dbf
 4 /u05/oradata/ord/users01.dbf
 5 /u09/oradata/ord/example01.dbf
 6 /u09/oradata/ord/oe_trans01.dbf
 7 /u05/oradata/ord/users02.dbf
 8 /u06/oradata/ord/logmnr_rep01.dbf
 9 /u09/oradata/ord/big_users.dbf
 10 /u08/oradata/ord/idx01.dbf
 11 /u08/oradata/ord/idx02.dbf
 12 /u08/oradata/ord/idx03.dbf
 13 /u08/oradata/ord/idx04.dbf
 14 /u08/oradata/ord/idx05.dbf
 15 /u08/oradata/ord/idx06.dbf
 16 /u08/oradata/ord/idx07.dbf
 17 /u08/oradata/ord/idx08.dbf
17 rows selected.

Other than file numbers 8 and 9, all the datafiles in the ord database are OFA compliant and
are spread out over four different mount points. The tablespace name in file number 8 is too long,
and file number 9 does not have a numeric two-digit counter to represent new datafiles for the
same tablespace.

ASM Environment
In an ASM environment, the executables are stored in the directory structure presented previously;
however, if you browsed the directory /u02/oradata in Figure 3-5, you would see no files. All the
control files, redo log files, and datafiles for the instance dw are managed by the ASM instance
+ASM on this server.

The actual datafile names are not needed for most administrative functions because ASM files
are all Oracle Managed Files (OMF). This eases the overall administrative effort required for the
database. Within the ASM storage structure, an OFA-like syntax is used to subdivide the file types
even further:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- --
 1 +DATA/dw/datafile/system.256.622426913
 2 +DATA/dw/datafile/sysaux.257.622426915
 3 +DATA/dw/datafile/undotbs1.258.622426919

03-ch03.indd 72 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 73

 4 +DATA/dw/datafile/users.259.622426921
 5 +DATA/dw/datafile/example.265.622427181
5 rows selected.

SQL> select name from v$controlfile;

NAME
--
+DATA/dw/controlfile/current.260.622427059
+RECOV/dw/controlfile/current.256.622427123
2 rows selected.

SQL> select member from v$logfile;

MEMBER
--
+DATA/dw/onlinelog/group_3.263.622427143
+RECOV/dw/onlinelog/group_3.259.622427145
+DATA/dw/onlinelog/group_2.262.622427135
+RECOV/dw/onlinelog/group_2.258.622427137
+DATA/dw/onlinelog/group_1.261.622427127
+RECOV/dw/onlinelog/group_1.257.622427131
6 rows selected.

Within the disk groups +DATA and +RECOV, we see that each of the database file types, such
as datafiles, control files, and online log files, has its own directory. Fully qualified ASM filenames
have the format

+<group>/<dbname>/<file type>/<tag>.<file>.<incarnation>

where <group> is the disk group name, <dbname> is the database to which the file belongs,
<file type> is the Oracle file type, <tag> is information specific to the file type, and the pair
<file>.<incarnation> ensures uniqueness within the disk group.

Automatic Storage Management is covered in Chapter 6.

Oracle Installation Tablespaces
Table 3-2 lists the tablespaces created with a standard Oracle 12c installation using the Oracle
Universal Installer (OUI); the EXAMPLE tablespace is optional; it is installed if you specify that you
want the sample schemas created during the installation.

03-ch03.indd 73 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

74 Oracle Database 12c DBA Handbook

SYSTEM
As mentioned previously in this chapter, no user segments should ever be stored in the SYSTEM
tablespace. The clause DEFAULT TABLESPACE in the CREATE DATABASE command helps to
prevent this occurrence by automatically assigning a permanent tablespace for all users that have
not explicitly been assigned a permanent tablespace. An Oracle installation performed using the
OUI will automatically assign the USERS tablespace as the default permanent tablespace.

The SYSTEM tablespace will grow more quickly the more you use procedural objects such as
functions, procedures, triggers, and so forth, because these objects must reside in the data dictionary.
This also applies to abstract datatypes and Oracle’s other object-oriented features.

SYSAUX
As with the SYSTEM tablespace, user segments should never be stored in the SYSAUX tablespace.
If one particular occupant of the SYSAUX tablespace takes up too much of the available space or
significantly affects the performance of other applications that use the SYSAUX tablespace, you
should consider moving the occupant to another tablespace.

TEMP
Instead of one very large temporary tablespace, consider using several smaller temporary
tablespaces and creating a temporary tablespace group to hold them. As you found out earlier
in this chapter, this can improve the response time for applications that create many sessions
with the same username. For Oracle container databases and pluggable databases (in Oracle’s
multitenant architecture, new to Oracle Database 12c), the container database owns the temporary
tablespace used by all plugged-in databases.

UNDOTBS1
Even though a database may have more than one undo tablespace, only one undo tablespace can
be active at any given time for a given instance. If more space is needed for an undo tablespace,
and AUTOEXTEND is not enabled, another datafile can be added. One undo tablespace must be
available for each node in a Real Application Clusters (RAC) environment because each instance
manages its own undo.

Tablespace Type
Segment Space
Management

Approx. Initial
Allocated Size (MB)

SYSTEM Permanent Manual 790

SYSAUX Permanent Auto 1000

TEMP Temporary Manual 160

UNDOTBS1 Permanent Manual 180

USERS Permanent Auto 255

EXAMPLE Permanent Auto 358

TABLE 3-2. Standard Oracle Installation Tablespaces

03-ch03.indd 74 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 3: Planning and Managing Tablespaces 75

USERS
The USERS tablespace is intended for miscellaneous segments created by each database user, and
it’s not appropriate for any production applications. A separate tablespace should be created for
each application and segment type; later in this chapter I’ll present some additional criteria you
can use to decide when to segregate segments into their own tablespace.

EXAMPLE
In a production environment, the EXAMPLE tablespace should be dropped; it takes up hundreds of
megabytes of disk space and has examples of all types of Oracle segments and data structures.
A separate database should be created for training purposes with these sample schemas; for an
existing training database, the sample schemas can be installed into the tablespace of your choice
by using the scripts in $ORACLE_HOME/demo/schema.

Segment Segregation
As a general rule of thumb, you want to divide segments into different tablespaces based on their
type, size, and frequency of access. Furthermore, each of these tablespaces would benefit from
being on its own disk group or disk device; in practice, however, most shops will not have the
luxury of storing each tablespace on its own device. The following list identifies some of the
conditions you might use to determine how segments should be segregated among tablespaces.
The list is not prioritized because the priority depends on your particular environment. Using ASM
eliminates many of the contention issues listed with no additional effort by the DBA. ASM is discussed
in detail in Chapter 4. In most of these scenarios the recommendations primarily enhance
manageability over performance to enhance availability.

 ■ Big segments and small segments should be in separate tablespaces, especially for
manageability and reclaiming empty space from a large table.

 ■ Table segments and their corresponding index segments should be in separate tablespaces
(if you are not using ASM and each tablespace is stored in its own set of disks).

 ■ A separate tablespace should be used for each application.

 ■ Segments with low usage and segments with high usage should be in different tablespaces.

 ■ Static segments should be separated from high DML segments.

 ■ Read-only tables should be in their own tablespace.

 ■ Staging tables for a data warehouse should be in their own tablespace.

 ■ Tablespaces should be created with the appropriate block size, depending on whether
segments are accessed row by row or in full table scans.

 ■ Tablespaces should be allocated for different types of activity, such as primarily UPDATEs,
primarily read-only, or temporary segment usage.

 ■ Materialized views should be in a separate tablespace from the base table.

 ■ For partitioned tables and indexes, each partition should be in its own tablespace.

Using EM Cloud Control 12c, you can identify overall contention on any tablespace by
identifying hotspots, either at the file level or at the object level. We’ll cover performance tuning,
including resolving I/O contention issues, in Chapter 8.

03-ch03.indd 75 13/05/15 9:55 AM

www.allitebooks.com

http://www.allitebooks.org

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

76 Oracle Database 12c DBA Handbook

Summary
The basic logical building block of a database is the tablespace. It consists of one or more physical
datafiles, only one datafile if you create a bigfile tablespace. Whether you’re creating a permanent,
undo, or temporary tablespace you can create those tablespaces as bigfile tablespaces for ease of
management.

When you create tablespaces or other objects, you can use Optimal Flexible Architecture (OFA)
to automatically create an appropriate OS file name and directory location. This is even more
useful in an ASM environment where you only need to specify the disk group name; Oracle puts
it in the right directory location automatically and you may never need to know where in the ASM
file structure Oracle places the object.

In a default Oracle database installation, Oracle creates five required tablespaces: SYSTEM,
SYSAUX, TEMP, UNDOTBS1, and USERS; if you choose to install the sample schemas they will
exist in the EXAMPLE tablespace. You will most likely create many more tablespaces in your
environment to segregate applications to their own tablespace or to restrict how much disk space
a tablespace may use for that application.

03-ch03.indd 76 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 77

CHAPTER
4

Physical Database Layouts
and Storage Management

04-ch04.indd 77 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

78 Oracle Database 12c DBA Handbook

Chapter 3 discussed the logical components of the database, tablespaces, and how to not
only create the right number and types of tablespaces but also place table and index
segments in the appropriate tablespace, based on their usage patterns and function. In this

chapter, I’ll focus more on the physical aspects of a database, the datafiles, and where to store
them to maximize I/O throughput and overall database performance.

The assumption throughout this chapter is that you are using locally managed tablespaces
with automatic segment space management. In addition to reducing the load on the SYSTEM
tablespace by using bitmaps stored in the tablespace itself instead of freelists stored in the table or
index header blocks, automatic segment space management (by specifying AUTOALLOCATE or
UNIFORM) makes more efficient use of the space in the tablespace. As of Oracle 10g, the SYSTEM
tablespace is created as locally managed. As a result, this requires all read-write tablespaces to
also be locally managed.

In the first part of this chapter, I’ll review some of the common problems and solutions when
using traditional disk space management using a file system on a database server. In the second
half of the chapter, I’ll present an overview of Automatic Storage Management (ASM), a built-in
logical volume manager that eases administration, enhances performance, and improves availability.

Traditional Disk Space Storage
In lieu of using a third-party logical volume or Oracle’s Automatic Storage Management (discussed
later in this chapter), you must be able to manage the physical datafiles in your database to ensure
a high level of performance, availability, and recoverability. In general, this means spreading out
your datafiles to different physical disks. In addition to ensuring availability by keeping mirrored
copies of redo log files and control files on different disks, I/O performance is improved when
users access tables that reside in tablespaces on multiple physical disks instead of one physical
disk. Identifying an I/O bottleneck or a storage deficiency on a particular disk volume is only half
the battle; once the bottleneck is identified, you need to have the tools and knowledge to move
datafiles to different disks. If a datafile has too much space or not enough space, resizing an
existing datafile is a common task.

In this section, I’ll discuss a number of different ways to resize tablespaces, whether they are
smallfile or bigfile tablespaces. In addition, I’ll cover the most common ways to move datafiles,
online redo log files, and control files to different disks.

Resizing Tablespaces and Datafiles
In an ideal database, all tablespaces and the objects within them are created at their optimal sizes.
Resizing a tablespace proactively or setting up a tablespace to automatically extend can potentially
avoid a performance hit when the tablespace expands or an application failure occurs if the datafile(s)
within the tablespace cannot extend. More details on how to monitor space usage can be found
in Chapter 6.

The procedures and methods available for resizing a tablespace are slightly different, depending
on whether the tablespace is a smallfile or a bigfile tablespace. A smallfile tablespace, the only
type of tablespace available before Oracle 10g, can consist of multiple datafiles. A bigfile tablespace,
in contrast, consists of only one datafile, but the datafile can be much larger than a datafile in a
smallfile tablespace: A bigfile tablespace with 32K blocks can have a datafile as large as 128TB.
In addition, bigfile tablespaces must be locally managed.

04-ch04.indd 78 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 79

Resizing a Smallfile Tablespace Using ALTER DATABASE
In the following examples, we attempt to resize the USERS tablespace, which contains one datafile,
starting out at 5GB. First, we make it 15GB, then realize it’s too big, and shrink it down to 10GB.
Then, we attempt to shrink it too much. Finally, we try to increase its size too much.

SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 15g;
 Database altered.
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 10g;
 Database altered.
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 1g;
alter database
*
ERROR at line 1:
ORA-03297: file contains used data beyond requested RESIZE value
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 100t;
alter database
*
ERROR at line 1:
ORA-00740: datafile size of (13421772800) blocks exceeds maximum file size
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 50g;
alter database
*
ERROR at line 1:
ORA-01144: File size (6553600 blocks) exceeds maximum of 4194303 blocks

If the resize request cannot be supported by the free space available, or there is data beyond
the requested decreased size, or an Oracle file size limit is exceeded, Oracle returns an error.

To avoid manual resizing of tablespaces reactively, we can instead be proactive and use the
AUTOEXTEND, NEXT, and MAXSIZE clauses when modifying or creating a datafile. Table 4-1 lists
the space-related clauses for modifying or creating datafiles in the ALTER DATAFILE and ALTER
TABLESPACE commands.

In the following example, we set AUTOEXTEND to ON for the datafile /u01/app/oracle/
oradata/rmanrep/users01.dbf, specify that each extension of the datafile is 500MB, and specify
that the total size of the datafile cannot exceed 10GB:

SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf'
 3 autoextend on
 4 next 500MB
 5 maxsize 10g;
Database altered.

If the disk volume containing the datafile does not have the disk space available for the
expansion of the datafile, we must either move the datafile to another disk volume or create a
second datafile for the tablespace on another disk volume. In this example, we’re going to add

04-ch04.indd 79 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

80 Oracle Database 12c DBA Handbook

a second datafile to the USERS tablespace on a different disk volume with an initial size of
500MB, allowing for the automatic extension of the datafile, with each extension 100MB and
a maximum datafile size of 2000MB (2GB):

SQL> alter tablespace users
 2 add datafile '/u03/oradata/users02.dbf'
 3 size 500m
 4 autoextend on
 5 next 100m
 6 maxsize 2000m;
Tablespace altered.

Notice that when we modify an existing datafile in a tablespace, we use the ALTER DATABASE
command, whereas when we add a datafile to a tablespace, we use the ALTER TABLESPACE command.
As you will see shortly, using a bigfile tablespace simplifies these types of operations.

Resizing a Smallfile Tablespace Using EM Database Express
Using EM Database Express, we can use either of the methods described in the preceding section:
increase the size and turn on AUTOEXTEND for the tablespace’s single datafile, or add a second
datafile.

Resizing a Datafile in a Smallfile Tablespace To resize a datafile in EM Database Express,
from the database instance home page, choose Storage | Tablespaces. In Figure 4-1, the XPORT

Clause Description

AUTOEXTEND When this clause is set to ON, the datafile will be allowed to expand.
When it’s set to OFF, no expansion is allowed, and the other clauses are
set to zero.

NEXT <size> The size, in bytes, of the next amount of disk space to allocate for the
datafile when expansion is required; the <size> value can be qualified
with K, M, G, or T to specify the size in kilobytes, megabytes, gigabytes,
or terabytes, respectively.

MAXSIZE <size> When this clause is set to UNLIMITED, the size of the datafile is unlimited
within Oracle, up to 128TB for a bigfile tablespace, and 128GB for a
smallfile tablespace with 32K blocks (otherwise limited by the file system
containing the datafile). Otherwise, MAXSIZE is set to the maximum
number of bytes in the datafile, using the same qualifiers used in the NEXT
clause: K, M, G, or T. Using the Oracle-recommended block size of 8K,
the maximum size of a smallfile tablespace is therefore 32GB.

TABLE 4-1. Datafile Extension Clauses

04-ch04.indd 80 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 81

tablespace has been selected; it is over 80 percent full, so we will expand its size by extending the
size of the existing datafile. This tablespace was originally created using this command:

create tablespace xport datafile '/u02/oradata/xport.dbf' size 1000m
 autoextend on next 500m maxsize 2000m;

Rather than let the tablespace’s datafile autoextend, we will change the current size of the
datafile to 2000MB from 1000MB.

By clicking the “+” icon to the left of XPORT, you can see the additional characteristics of
the XPORT tablespace, as shown in Figure 4-2. The single datafile is /u02/oradata/xport.dbf.

With the single XPORT datafile selected, choose Actions | Resize, and you will see the Resize
Datafile dialog box, shown in Figure 4-3, where you can change the size of the datafile. Change
the file size to 2G (2000MB) and click OK.

FIGURE 4-1. Using EM Database Express to edit tablespace characteristics

FIGURE 4-2. Tablespace characteristics

04-ch04.indd 81 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

82 Oracle Database 12c DBA Handbook

Before committing the changes, it is often beneficial to review the SQL commands about to
be executed by clicking the Show SQL button on almost any page where a DDL operation is going
to be executed. It is a good way to brush up on your SQL command syntax! Here is the command
that was executed when you clicked OK:

ALTER DATABASE DATAFILE '/u02/oradata/xport.dbf' RESIZE 2G

When you click OK, Oracle changes the size of the datafile. The Tablespaces reflects the
successful operation and the new size of the datafile, as you can see in Figure 4-4.

FIGURE 4-3. Editing a tablespace’s datafile

FIGURE 4-4. Datafile resizing results

04-ch04.indd 82 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 83

Adding a Datafile to a Smallfile Tablespace Adding a datafile to a smallfile tablespace is just
as easy as resizing a datafile using EM Database Express. In our preceding example, we expanded
the datafile for the XPORT tablespace to 2000MB. Because the file system (/u02) containing the
datafile for the XPORT tablespace is now at capacity, you will have to turn off AUTOEXTEND on
the existing datafile and then create a new datafile on a different file system. To turn off AUTOEXTEND
for the existing datafile from the Tablespaces page, choose Actions | Edit Auto Extend. In the
dialog box that opens, uncheck the Auto Extend check box, as shown in Figure 4-5, and click OK.
Here is the SQL command that is executed for this operation when you click OK:

ALTER DATABASE
 DATAFILE '/u02/oradata/xport.dbf'
 AUTOEXTEND OFF;

To add the second datafile on /u04, select the XPORT tablespace and click Add Datafile.
You will see the dialog box shown in Figure 4-6. Specify the filename and directory location
for the new datafile. Because you know that the /u04 file system has at least 500MB free,
specify /u04/oradata as the directory and xport2.dbf as the filename, although the filename
itself need not contain the tablespace name. In addition, set the file size to 500MB. Do not
check the Auto Extend check box.

After clicking OK, you see the new size of the XPORT tablespace’s datafiles on the Tablespaces
page, as shown in Figure 4-7.

FIGURE 4-5. Editing a tablespace’s datafile characteristics

04-ch04.indd 83 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

84 Oracle Database 12c DBA Handbook

FIGURE 4-6. Adding a datafile to the XPORT tablespace

FIGURE 4-7. Results of adding a datafile

04-ch04.indd 84 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 85

Dropping a Datafile from a Tablespace
In versions of Oracle Database prior to 11g, dropping a datafile from a tablespace was problematic;
there was not a single command you could issue to drop a datafile unless you dropped the entire
tablespace. You only had three alternatives:

 ■ Live with it.

 ■ Shrink it and turn off AUTOEXTEND.

 ■ Create a new tablespace, move all the objects to the new tablespace, and drop the original
tablespace.

Although creating a new tablespace was the most ideal approach from a maintenance and
metadata point of view, performing the steps involved was error-prone and involved some amount
of downtime for the tablespace, impacting availability.

Using Cloud Control 12c or EM Database Express, you can drop a datafile and minimize
downtime, and let Cloud Control 12c or EM Database Express generate the scripts for you if you
want to run it manually. Following our previous example in which we expanded the XPORT
tablespace by adding a datafile, I’ll step through an example of how you can remove the datafile
by reorganizing the tablespace. On the Tablespaces page shown in Figure 4-7, select the datafile
to be dropped (xport2.dbf in this case), and choose Actions | Drop, as shown in Figure 4-8.

If there are objects occupying the specified datafile to be dropped, you will have to reorganize
the tablespace to move all of the objects to the first datafile or create a new tablespace and
migrate the objects to the new tablespace.

FIGURE 4-8. Dropping a datafile

04-ch04.indd 85 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

86 Oracle Database 12c DBA Handbook

Resizing a Bigfile Tablespace Using ALTER TABLESPACE
A bigfile tablespace consists of one and only one datafile. Although you will learn more about
bigfile tablespaces in Chapter 6, this section presents a few details about how a bigfile tablespace
can be resized. Most of the parameters available for changing the characteristics of a tablespace’s
datafile, such as the maximum size, whether it can extend at all, and the size of the extents, are
now modifiable at the tablespace level. Let’s start with a bigfile tablespace created as follows:

create bigfile tablespace dmarts
 datafile '/u05/oradata/dmarts.dbf' size 750m
 autoextend on next 100m maxsize 50g;

Operations that are valid only at the datafile level with smallfile tablespaces can be used with
bigfile tablespaces at the tablespace level:

SQL> alter tablespace dmarts resize 1g;
Tablespace altered.

Although using ALTER DATABASE with the datafile specification for the DMARTS tablespace
will work, the advantage of the ALTER TABLESPACE syntax is obvious: You don’t have to or need
to know where the datafile is stored. As you might suspect, trying to change datafile parameters at
the tablespace level with smallfile tablespaces is not allowed:

SQL> alter tablespace users resize 500m;
alter tablespace users resize 500m
*
ERROR at line 1:
ORA-32773: operation not supported for smallfile tablespace USERS

If a bigfile tablespace runs out of space because its single datafile cannot extend on the disk,
you need to relocate the datafile to another volume, as discussed in the next section. Using
Automatic Storage Management, presented later in this chapter, can potentially eliminate the
need to manually move datafiles at all: Instead of moving the datafile, you can add another disk
volume to the ASM storage group.

Moving Datafiles
To better manage the size of a datafile or improve the overall I/O performance of the database, it
may be necessary to move one or more datafiles in a tablespace to a different location. There are
three methods for relocating the datafiles: using ALTER DATABASE, using ALTER TABLESPACE,
and via EM Database Control or EM Database Express, although neither EM Database Control
nor EM Database Express provides all the commands necessary to relocate the datafile.

For Oracle Database 11g and earlier, the ALTER TABLESPACE method works for datafiles in all
tablespaces except for SYSTEM, SYSAUX, the online undo tablespace, and the temporary tablespace.
The ALTER DATABASE method works for datafiles in all tablespaces because the instance is shut
down when the move operation occurs.

If you are using Oracle Database 12c, you can move any datafile while the entire database is
online, even from a traditional file system to ASM or vice versa. However, there is some slight

04-ch04.indd 86 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 87

overhead using this method, so you should be cognizant of your service-level agreement (SLA)
and ensure that the move operation will not adversely affect response time.

Moving Datafiles with ALTER DATABASE
The steps for moving one or more datafiles (non-ASM) with ALTER DATABASE are as follows:

1. Connect to the database as SYSDBA and shut down the instance.

2. Use operating system commands to move the datafile(s).

3. Open the database in MOUNT mode.

4. Use ALTER DATABASE to change the references to the datafile in the database.

5. Open the database in OPEN mode.

6. Perform an incremental or full backup of the database that includes the control file.

In the following example, I will show you how to move the datafile of the XPORT tablespace
from the file system /u02 to the file system /u06. First, you connect to the database with SYSDBA
privileges using the following command:

sqlplus / as sysdba

Next, you use a query against the dynamic performance views V$DATAFILE and V$TABLESPACE
to confirm the names of the datafiles in the XPORT tablespace:

SQL> select d.name from
 2 v$datafile d join v$tablespace t using(ts#)
 3 where t.name = 'XPORT';

NAME

/u02/oradata/xport.dbf

1 row selected.

SQL>

To complete step 1, shut down the database:

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

For step 2, you stay in SQL*Plus and use the “!” escape character to execute the operating
system command to move the datafile:

SQL> ! mv /u02/oradata/xport.dbf /u06/oradata

04-ch04.indd 87 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

88 Oracle Database 12c DBA Handbook

In step 3, you start up the database in MOUNT mode so that the control file is available without
opening the datafiles:

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.

For step 4, you change the pathname reference in the control file to point to the new location
of the datafile:

SQL> alter database rename file
 2 '/u02/oradata/xport.dbf' to
 3 '/u06/oradata/xport.dbf';
Database altered.

In step 5, you open the database to make it available to users:

SQL> alter database open;
Database altered.

Finally, in step 6, you can make a backup copy of the updated control file:

SQL> alter database backup controlfile to trace;
Database altered.
SQL>

Alternatively, you can use RMAN to perform an incremental backup that includes a backup of
the control file.

Moving Datafiles with ALTER TABLESPACE in Offline Mode (11g or earlier)
If the datafile you want to move is part of a tablespace other than SYSTEM, SYSAUX, the active
undo tablespace, or the temporary tablespace, then it is preferable to use the ALTER TABLESPACE
method to move a tablespace for one primary reason: The rest of the database, except for the
tablespace whose datafile will be moved, remains available to all users during the entire operation.

The steps for moving one or more datafiles with ALTER TABLESPACE are as follows:

1. Using an account with the ALTER TABLESPACE privilege, take the tablespace offline.

2. Use operating system commands to move the datafile(s).

3. Use ALTER TABLESPACE to change the references to the datafile in the database.

4. Bring the tablespace back online.

04-ch04.indd 88 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 89

In the ALTER DATABASE example, assume that you moved the datafile for the XPORT tablespace
to the wrong file system. In this example, you’ll move it from /u06/oradata to /u05/oradata:

alter tablespace xport offline;
Tablespace altered.

! mv /u06/oradata/xport.dbf /u05/oradata/xport.dbf

alter tablespace xport rename datafile
 '/u06/oradata/xport.dbf' to '/u05/oradata/xport.dbf';
Tablespace altered.

alter tablespace xport online;
Tablespace altered.

Note how this method is much more straightforward and much less disruptive than the ALTER
DATABASE method. The only downtime for the XPORT tablespace is the amount of time it takes
to move the datafile from one disk volume to another.

Moving Datafiles Online (Oracle Database 12c)
In Oracle Database 12c, you can move any datafile to or from an ASM disk group while the
tablespace containing the datafile remains online. This enhances Oracle’s ease of manageability
for the DBA and the availability for the user.

In this example, the DMARTS tablespace resides on the /u02 file system, and it needs to be
moved to the +DATA disk group:

SQL> select ts#,ts.name,df.name
 2 from v$tablespace ts
 3 join v$datafile df
 4 using(ts#);

 TS# NAME NAME
------ ------------------------- -------------------------
 0 SYSTEM +DATA/DWCDB/E7B2AFD1B8211
 382E043E3A0080A0732/DATAF
 ILE/system.375.827672253
. . .
 3 USERS +DATA/DWCDB/E7B2AFD1B8211
 382E043E3A0080A0732/DATAF
 ILE/users.377.827672261
 10 DMARTS /u02/oradata/dmartsbf.dbf

25 rows selected.

Moving the single datafile within the DMARTS tablespace to the +DATA disk group is
accomplished with one command while the tablespace remains online:

SQL> alter database
 2 move datafile '/u02/oradata/dmartsbf.dbf'
 3 to '+DATA';

Database altered.

04-ch04.indd 89 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

90 Oracle Database 12c DBA Handbook

Moving Online Redo Log Files
Although it is possible to indirectly move online redo log files by dropping entire redo log groups
and re-adding the groups in a different location, this solution will not work if there are only two
redo log file groups, because a database will not open with only one redo log file group. Temporarily
adding a third group and dropping the first or second group is an option if the database must be
kept open; alternatively, the method shown here will move the redo log file(s) while the database
is shut down.

In the following example, we have three redo log file groups with two members each. One
member of each group is on the same volume as the Oracle software and should be moved to a
different volume to eliminate any contention between log file filling and accessing Oracle software
components. The method you will use here is very similar to the method used to move datafiles
with the ALTER DATABASE method.

SQL> select group#, member from v$logfile
 2 order by group#, member;

 GROUP# MEMBER
---------- --
 1 /u01/app/oracle/oradata/redo01.log
 1 /u05/oradata/redo01.log
 2 /u01/app/oracle/oradata/redo02.log
 2 /u05/oradata/redo02.log
 3 /u01/app/oracle/oradata/redo03.log
 3 /u05/oradata/redo03.log
6 rows selected.

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> ! mv /u01/app/oracle/oradata/redo0[1-3].log /u04/oradata

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.

SQL> alter database rename file '/u01/app/oracle/oradata/redo01.log'
 2 to '/u04/oradata/redo01.log';
Database altered.

SQL> alter database rename file '/u01/app/oracle/oradata/redo02.log'
 2 to '/u04/oradata/redo02.log';
Database altered.

04-ch04.indd 90 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 91

SQL> alter database rename file '/u01/app/oracle/oradata/redo03.log'
 2 to '/u04/oradata/redo03.log';
Database altered.

SQL> alter database open;
Database altered.

SQL> select group#, member from v$logfile
 2 order by group#, member;

 GROUP# MEMBER
---------- --
 1 /u04/oradata/redo01.log
 1 /u05/oradata/redo01.log
 2 /u04/oradata/redo02.log
 2 /u05/oradata/redo02.log
 3 /u04/oradata/redo03.log
 3 /u05/oradata/redo03.log

6 rows selected.

SQL>

The I/O for the redo log files no longer contends with the Oracle software; in addition, the redo
log files are multiplexed between two different mount points, /u04 and /u05.

Moving Control Files
Moving a control file when you use an initialization parameter file follows a procedure similar to
the one you used for datafiles and redo log files: Shut down the instance, move the file with operating
system commands, and restart the instance.

When you use a server parameter file (SPFILE), however, the procedure is a bit different. The
initialization file parameter CONTROL_FILES is changed using ALTER SYSTEM . . . SCOPE=SPFILE
when either the instance is running or it’s shut down and opened in NOMOUNT mode. Because
the CONTROL_FILES parameter is not dynamic, the instance must be shut down and restarted in
either case.

In this example, you discover that you have three copies of the control file in your database,
but they are not multiplexed on different disks. You will edit the SPFILE with the new locations,
shut down the instance so that you can move the control files to different disks, and then restart
the instance.

SQL> select name, value from v$spparameter
 2 where name = 'control_files';

NAME VALUE
--------------- --
control_files /u01/app/oracle/oradata/control01.ctl
control_files /u01/app/oracle/oradata/control02.ctl
control_files /u01/app/oracle/oradata/control03.ctl

SQL> show parameter control_files

04-ch04.indd 91 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

92 Oracle Database 12c DBA Handbook

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u01/app/oracle/oradata/contro
 l01.ctl, /u01/app/oracle/orada
 ta/control02.ctl, /u01/app/ora
 cle/oradata/control03.ctl

SQL> alter system set control_files =
 2 '/u02/oradata/control01.ctl',
 3 '/u03/oradata/control02.ctl',
 4 '/u04/oradata/control03.ctl'
 5 scope = spfile;

System altered.

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> ! mv /u01/app/oracle/oradata/control01.ctl /u02/oradata
SQL> ! mv /u01/app/oracle/oradata/control02.ctl /u03/oradata
SQL> ! mv /u01/app/oracle/oradata/control03.ctl /u04/oradata

SQL> startup
ORACLE instance started.

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.
Database opened.
SQL> select name, value from v$spparameter
 2 where name = 'control_files';

NAME VALUE
--------------- --
control_files /u02/oradata/control01.ctl
control_files /u03/oradata/control02.ctl
control_files /u04/oradata/control03.ctl

SQL> show parameter control_files

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u02/oradata/control01.ctl, /u
 03/oradata/control02.ctl, /u04
 /oradata/control03.ctl
SQL>

04-ch04.indd 92 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 93

The three control files have been moved to separate file systems, no longer on the volume
with the Oracle software and in a higher-availability configuration (if the volume containing one
of the control files fails, two other volumes contain up-to-date control files).

NOTE
In a default installation of Oracle Database 11g or 12c using ASM
disks for tablespace storage and the flash recovery area, one copy
of the control file is created in the default tablespace ASM disk and
another in the flash recovery area.

Making one or more copies of the control file to an ASM volume is just as easy: using the
RMAN utility (described in detail in Chapter 12), restore a control file backup to an ASM disk
location, as in this example:

RMAN> restore controlfile to
 '+DATA/dw/controlfile/control_bak.ctl';

The next step is identical to adding file system–based control files as I presented earlier in this
section: change the CONTROL_FILES parameter to add the location +DATA/dw/controlfile/
control_bak.ctl in addition to the existing control file locations, and then shut down and restart
the database.

SQL> show parameter control_files

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u02/oradata/control01.ctl, /u
 03/oradata/control02.ctl, /u04
 /oradata/control03.ctl, +DATA/
 dw/controlfile/control_bak.ctl
SQL>

Similarly, you can use the Linux utility asmcmd to make copies of the control file from one
disk group to another, and change the CONTROL_FILES parameter to reflect the new control file
location. I present an overview of the asmcmd command later in this chapter.

Automatic Storage Management
In Chapter 3, I presented some of the file naming conventions used for ASM objects. In this
section, I’ll delve more deeply into how we can create tablespaces—and ultimately datafiles
behind the scenes—in an ASM environment with one or more disk groups.

When creating a new tablespace or other database structure, such as a control file or redo
log file, you can specify a disk group as the storage area for the database structure instead of an
operating system file. ASM takes the ease of use of Oracle Managed Files (OMF) and combines
it with mirroring and striping features to provide a robust file system and logical volume manager
that can even support multiple nodes in an Oracle Real Application Cluster (RAC). ASM eliminates
the need to purchase a third-party logical volume manager.

04-ch04.indd 93 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

94 Oracle Database 12c DBA Handbook

ASM not only enhances performance by automatically spreading out database objects over
multiple devices, but also increases availability by allowing new disk devices to be added to the
database without shutting down the database; ASM automatically rebalances the distribution of
files with minimal intervention.

We’ll also review the ASM architecture. In addition, I’ll show how you create a special type of
Oracle instance to support ASM as well as how to start up and shut down an ASM instance. We’ll
review the new initialization parameters related to ASM and the existing initialization parameters
that have new values to support an ASM instance. Also, I’ll introduce the asmcmd command-line
utility, new as of Oracle 10g Release 2, that gives you an alternate way to browse and maintain
objects in your ASM disk groups. Finally, I’ll use some raw disk devices on a Linux server to
demonstrate how disk groups are created and maintained.

ASM Architecture
ASM divides the datafiles and other database structures into extents, and it divides the extents among
all the disks in the disk group to enhance both performance and reliability. Instead of mirroring
entire disk volumes, ASM mirrors the database objects to provide the flexibility to mirror or stripe
the database objects differently depending on their type. Optionally, the objects do not have to be
striped at all if the underlying disk hardware is already RAID enabled, part of a storage area network
(SAN), or part of a network-attached storage (NAS) device.

Automatic rebalancing is another key feature of ASM. When an increase in disk space is
needed, additional disk devices can be added to a disk group, and ASM moves a proportional
number of files from one or more existing disks to the new disks to maintain the overall I/O
balance across all disks. This happens in the background while the database objects contained in
the disk files are still online and available to users. If the impact to the I/O subsystem is high
during a rebalance operation, the speed at which the rebalance occurs can be reduced using an
initialization parameter.

ASM requires a special type of Oracle instance to provide the interface between a traditional
Oracle instance and the file system; the ASM software components are shipped with the Oracle
database software and are always available as a selection when you’re selecting the storage type
for the SYSTEM, SYSAUX, and other tablespaces when the database is created.

Using ASM does not, however, prevent you from mixing ASM disk groups with manual Oracle
datafile management techniques such as those I presented in Chapter 3 and earlier in this chapter.
However, the ease of use and performance of ASM makes a strong case for eventually using ASM
disk groups for all your storage needs.

Two Oracle background processes introduced in Oracle Database 10g support ASM instances:
RBAL and ARBn. RBAL coordinates the disk activity for disk groups, whereas ORBn, where n can
be a number from 0 to 9 or the letter A (Oracle Database 12c), performs the actual extent movement
between disks in the disk groups.

For databases that use ASM disks, there are also two new background processes as of Oracle
Database 10g: ASMB and RBAL. ASMB performs the communication between the database and
the ASM instance, whereas RBAL performs the opening and closing of the disks in the disk group
on behalf of the database.

Creating an ASM Instance
ASM requires a dedicated Oracle instance to manage the disk groups. An ASM instance generally
has a smaller memory footprint, in the range of 100MB to 150MB, and is automatically configured

04-ch04.indd 94 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 95

when ASM (as part of the Grid Infrastructure) is specified as the database’s file storage option when
the Oracle software is installed and an existing ASM instance does not already exist, as you can
see in the Oracle Universal Installer screen in Figure 4-9.

Oracle best practices for servers with over 128GB of memory recommend having the ASM
instance’s initialization parameters set to something close to this:

 ■ SGA_TARGET=1250M (ASMM)

 ■ PGA_AGGREGATE_TARGET=400M

 ■ MEMORY_TARGET=0 or not set (No AMM)

As an example of disk devices used to create ASM disk groups, suppose our Linux server has
two unused disks with the capacities listed in Table 4-2.

FIGURE 4-9. Specifying Grid Infrastructure (ASM) as the database file storage method

04-ch04.indd 95 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

96 Oracle Database 12c DBA Handbook

You configure the first disk group within the Oracle Universal Installer, as shown in Figure 4-10.
The name of the first disk group is DATA, and you will be using /dev/sdb1 and /dev/sdc1 to

create the normal redundancy disk group. If an insufficient number of raw disks are selected for
the desired redundancy level, OUI generates an error message. After the database is created, both
the regular instance and the ASM instance are started.

Device Name Capacity

/dev/sdb1 32GB

/dev/sdc1 32GB

TABLE 4-2. Raw Disks for ASM Disk Groups

FIGURE 4-10. Configuring the initial ASM disk group with OUI

04-ch04.indd 96 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 97

An ASM instance has a few other unique characteristics. Although it does have an initialization
parameter file and a password file, it has no data dictionary, and therefore all connections to an
ASM instance are via SYS and SYSTEM using operating system authentication only. If you are
using Oracle Database 12c, however, you can create a password file and even put it in an ASM
disk group, much like you can do with an RDBMS password file, as in this example:

[oracle@tettnang ~]$. oraenv
ORACLE_SID = [RPT12C] ? +ASM
The Oracle base remains unchanged with value /u00/app/oracle
[oracle@tettnang ~]$ orapwd file=+DATA asm=y
Enter password for SYS: xxxxxxxxxxx
[oracle@tettnang ~]$ srvctl config asm –detail
ASM home: /u00/app/oracle/product/12.1.0/grid
Password file: +DATA/ASM/PASSWORD/pwdasm.406.834577299
ASM listener: LISTENER
Spfile: +DATA/ASM/ASMPARAMETERFILE/registry.253.826648367
ASM diskgroup discovery string: /dev/oracleasm/disks
ASM is enabled.
[oracle@tettnang ~]$

Disk group commands such as CREATE DISKGROUP, ALTER DISKGROUP, and DROP
DISKGROUP are only valid in an ASM instance. Finally, an ASM instance is either in a
NOMOUNT or MOUNT state; it is never in an OPEN state.

ASM Instance Components
ASM instances cannot be accessed using the variety of methods available with a traditional
database. In this section, I’ll talk about the privileges available to you that connect with SYSASM
privilege. I’ll also distinguish an ASM instance by the new and expanded initialization parameters
(introduced in Oracle Database 10g and enhanced in Oracle Database 11g and 12c) available
only for an ASM instance. At the end of this section, I’ll present the procedures for starting and
stopping an ASM instance along with the dependencies between ASM instances and the database
instances they serve.

Accessing an ASM Instance
As mentioned earlier in the chapter, an ASM instance does not have a data dictionary, so access
to the instance is restricted to users who can authenticate with the operating system—in other
words, connecting as SYSASM by an operating system user in the dba group.

Users who connect to an ASM instance as SYSASM can perform all ASM operations, such as
creating and deleting disk groups as well as adding and removing disks from disk groups. In
Oracle Database 11g and 12c, a user with the SYSDBA privilege can still perform the same tasks
as a user with SYSASM privileges, but that role is deprecated and will not have the same
privileges as SYSASM in future releases.

The SYSOPER users have a much more limited set of commands available in an ASM instance.
In general, the commands available to SYSOPER users give only enough privileges to perform
routine operations for an already configured and stable ASM instance. The following list contains
the operations available as SYSOPER:

 ■ Starting up and shutting down an ASM instance

 ■ Mounting or dismounting a disk group

04-ch04.indd 97 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

98 Oracle Database 12c DBA Handbook

 ■ Altering a disk group’s disk status from ONLINE to OFFLINE, or vice versa

 ■ Rebalancing a disk group

 ■ Performing an integrity check of a disk group

 ■ Accessing the V$ASM_* dynamic performance views

In Oracle Database 12c, the following three new privileges for ASM instances have been added.
These roles are task-oriented and help to enforce enterprise separation of duties requirements.

 ■ SYSBACKUP Perform backup and recovery from RMAN or the SQL*Plus command line

 ■ SYSDG Perform Data Guard operations with Data Guard Broker or at the dgmgrl
command line

 ■ SYSKM Manage encryption keys for Transparent Data Encryption (TDE)

ASM Initialization Parameters
A number of initialization parameters are either specific to ASM instances or have new values
within an ASM instance. An SPFILE is highly recommended instead of an initialization parameter
file for an ASM instance. For example, parameters such as ASM_DISKGROUPS will automatically
be maintained when a disk group is added or dropped, potentially freeing you from ever having
to manually change this value.

The ASM-related initialization parameters are presented next.

INSTANCE_TYPE For an ASM instance, the INSTANCE_TYPE parameter has a value of ASM.
The default, for a traditional Oracle instance, is RDBMS.

DB_UNIQUE_NAME The default value for the DB_UNIQUE_NAME parameter is +ASM and is
the unique name for a group of ASM instances within a cluster or on a single node.

ASM_POWER_LIMIT To ensure that rebalancing operations do not interfere with ongoing user
I/O, the ASM_POWER_LIMIT parameter controls how fast rebalance operations occur. For Oracle
Database 12c, the values range from 0 to 1024 (1 to 11 in Oracle Database 11g unless you are
using version 11.2.0.2 and the COMPATIBLE.ASM disk group attribute is set to 11.2.0.2 or
higher), with 1024 being the highest possible value; the default value is 1 (low I/O overhead).
Because this is a dynamic parameter, you may set this to a low value during the day and set it
higher overnight whenever a disk-rebalancing operation must occur.

ASM_DISKSTRING The ASM_DISKSTRING parameter specifies one or more strings, operating
system dependent, to limit the disk devices that can be used to create disk groups. If this value is
NULL, all disks visible to the ASM instance are potential candidates for creating disk groups. For
the examples in this chapter for our test server, the value of the ASM_DISKSTRING parameter is
/dev/raw/*:

SQL> select name, type, value from v$parameter
 2 where name = 'asm_diskstring';

NAME TYPE VALUE
--------------- ---------- -------------------------
asm_diskstring 2 /dev/sd*

04-ch04.indd 98 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 99

ASM_DISKGROUPS The ASM_DISKGROUPS parameter specifies a list containing the names
of the disk groups to be automatically mounted by the ASM instance at startup or by the ALTER
DISKGROUP ALL MOUNT command. Even if this list is empty at instance startup, any existing
disk group can be manually mounted.

LARGE_POOL_SIZE The LARGE_POOL_SIZE parameter is useful for both regular and ASM
instances; however, this pool is used differently for an ASM instance. All internal ASM packages
are executed from this pool. The default value for this parameter is usually sufficient, which is
12MB for a single instance and 16GB in a RAC environment.

ASM_PREFERRED_READ_FAILURE_GROUPS The ASM_PREFERRED_READ_FAILURE_
GROUPS parameter, new to Oracle Database 11g, contains a list of the preferred failure groups
for a given database instance when using clustered ASM instances. This parameter is instance
specific: each instance can specify a failure group that is closest to the instance’s node (for
example, a failure group on the server’s local disk) to improve performance.

ASM Instance Startup and Shutdown
An ASM instance is started much like a database instance, except that the STARTUP command
defaults to STARTUP MOUNT. Because there is no control file, database, or data dictionary to
mount, the ASM disk groups are mounted instead of a database. The command STARTUP
NOMOUNT starts up the instance but does not mount any ASM disks. In addition, you can
specify STARTUP RESTRICT to temporarily prevent database instances from connecting to the
ASM instance to mount disk groups.

NOTE
Even though the ASM instance is in a MOUNT state, the STATUS
column is set to STARTED instead of MOUNTED, as in an RDBMS
instance.

Performing a SHUTDOWN command on an ASM instance performs the same SHUTDOWN
command on any database instances using the ASM instance; before the ASM instance finishes a
shutdown, it waits for all dependent databases to shut down. The only exception to this is if you
use the SHUTDOWN ABORT command on the ASM instance, which eventually forces all
dependent databases to perform a SHUTDOWN ABORT.

For multiple ASM instances sharing disk groups, such as in a Real Application Clusters (RAC)
environment, the failure of an ASM instance does not cause the database instances to fail. Instead,
another ASM instance performs a recovery operation for the failed instance.

ASM Dynamic Performance Views
A few new dynamic performance views are associated with ASM instances. Table 4-3 contains
the common ASM-related dynamic performance views. I’ll provide further explanation, where
appropriate, later in this chapter for some of these views.

ASM Filename Formats
All ASM files are Oracle Managed Files (OMF), so the details of the actual filename within the
disk group is not needed for most administrative functions. When an object in an ASM disk group

04-ch04.indd 99 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

100 Oracle Database 12c DBA Handbook

is dropped, the file is automatically deleted. Certain commands will expose the actual filenames,
such as ALTER DATABASE BACKUP CONTROLFILE TO TRACE, as well as some data dictionary
and dynamic performance views. For example, the dynamic performance view V$DATAFILE
shows the actual filenames within each disk group. Here is an example:

SQL> select file#, name, blocks from v$datafile;

 FILE# NAME BLOCKS
---------- -- ----------
 1 +DATA/dw/datafile/system.256.627432971 89600
 2 +DATA/dw/datafile/sysaux.257.627432973 77640
 3 +DATA/dw/datafile/undotbs1.258.627432975 12800
 4 +DATA/dw/datafile/users.259.627432977 640
 5 +DATA/dw/datafile/example.265.627433157 12800
 6 /u05/oradata/dmarts.dbf 32000
 8 /u05/oradata/xport.dbf 38400

7 rows selected.

View Name
Used in Standard
Database? Description

V$ASM_DISK Yes One row for each disk discovered by an ASM
instance, whether used by a disk group or not. For
a database instance, one row for each disk group
in use by the instance.

V$ASM_DISKGROUP Yes For an ASM instance, one row for each disk group
containing general characteristics of the disk
group. For a database instance, one row for each
disk group in use whether mounted or not.

V$ASM_FILE No One row for each file in every mounted disk group.

V$ASM_OPERATION No One row for each executing long-running
operation in the ASM instance.

V$ASM_TEMPLATE Yes One row for each template in each mounted disk
group in the ASM instance. For a database instance,
one row for each template for each mounted disk
group.

V$ASM_CLIENT Yes One row for each database using disk groups
managed by the ASM instance. For a database
instance, one row for the ASM instance if any
ASM files are open.

V$ASM_ALIAS No One row for every alias in every mounted disk
group.

TABLE 4-3. ASM-Related Dynamic Performance Views

04-ch04.indd 100 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 101

ASM filenames can be one of six different formats. In the sections that follow, I’ll give an
overview of the different formats and the context where they can be used—either as a reference to
an existing file, during a single-file creation operation, or during a multiple-file creation operation.

Fully Qualified Names
Fully qualified ASM filenames are used only when referencing an existing file. A fully qualified
ASM filename has the format

+<group>/<dbname>/<file type>/<tag>.<file>.<incarnation>

where group is the disk group name, dbname is the database to which the file belongs, file type is
the Oracle file type, tag is information specific to the file type, and the file.incarnation pair ensures
uniqueness. Here is an example of an ASM file for the USERS tablespace:

+DATA/dw/datafile/users.259.627432977

The disk group name is +DATA, the database name is dw, it’s a datafile for the USERS
tablespace, and the file number/incarnation pair 259.627432977 ensures uniqueness if you
decide to create another ASM datafile for the USERS tablespace.

Numeric Names
Numeric names are used only when referencing an existing ASM file. This allows you to refer to
an existing ASM file by only the disk group name and the file number/incarnation pair. The numeric
name for the ASM file in the preceding section is

+DATA.259.627432977

Alias Names
An alias can be used when either referencing an existing object or creating a single ASM file.
Using the ALTER DISKGROUP ADD ALIAS command, a more readable name can be created for
an existing or a new ASM file, and it’s distinguishable from a regular ASM filename because it
does not end in a dotted pair of numbers (the file number/incarnation pair), as shown here:

SQL> alter diskgroup data
 2 add directory '+data/purch';
Diskgroup altered.

SQL> alter diskgroup data
 2 add alias '+data/purch/users.dbf'
 3 for '+data/dw/datafile/users.259.627432977';
Diskgroup altered.

SQL>

Alias with Template Names
An alias with a template can only be used when creating a new ASM file. Templates provide a
shorthand for specifying a file type and a tag when creating a new ASM file. Here’s an example
of an alias using a template for a new tablespace in the +DATA disk group:

SQL> create tablespace users2 datafile '+data(datafile)';
Tablespace created.

04-ch04.indd 101 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

102 Oracle Database 12c DBA Handbook

The template DATAFILE specifies COARSE striping, MIRROR for a normal-redundancy group,
and HIGH for a high-redundancy group; it is the default for a datafile. Because we did not fully
qualify the name, the ASM name for this diskgroup is as follows:

+DATA/dw/datafile/users2.267.627782171

I’ll talk more about ASM templates in the upcoming section “ASM File Types and Templates.”

Incomplete Names
An incomplete filename format can be used either for single-file or multiple-file creation operations.
Only the disk group name is specified, and a default template is used depending on the type of
file, as shown here:

SQL> create tablespace users5 datafile '+data1';
Tablespace created.

Incomplete Names with Template
As with incomplete ASM filenames, an incomplete filename with a template can be used either
for single-file or multiple-file creation operations. Regardless of the actual file type, the template
name determines the characteristics of the file.

Even though we are creating a tablespace in the following example, the striping and mirroring
characteristics of an online log file (fine striping) are used for the new tablespace instead as the
attributes for the datafile (coarse striping):

SQL> create tablespace users6 datafile '+data1(onlinelog)';
Tablespace created.

ASM File Types and Templates
ASM supports all types of files used by the database except for operating system executables.
Table 4-4 contains the complete list of ASM file types; the ASM File Type and Tag columns are
those presented previously for ASM file naming conventions.

The default ASM file templates referenced in the last column of Table 4-4 are presented in
Table 4-5.

When a new disk group is created, a set of ASM file templates copied from the default templates
in Table 4-5 is saved with the disk group; as a result, individual template characteristics can be
changed and apply only to the disk group where they reside. In other words, the DATAFILE system
template in disk group +DATA1 may have the default coarse striping, but the DATAFILE template
in disk group +DATA2 may have fine striping. You can create your own templates in each disk
group as needed.

When an ASM datafile is created with the DATAFILE template, by default the datafile is 100MB
and autoextensible, and the maximum size is 32,767MB (32GB).

Administering ASM Disk Groups
Using ASM disk groups benefits you in a number of ways: I/O performance is improved, availability is
increased, and the ease with which you can add a disk to a disk group or add an entirely new disk
group enables you to manage many more databases in the same amount of time. Understanding the

04-ch04.indd 102 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 103

components of a disk group as well as correctly configuring a disk group are important goals for
a successful DBA.

In this section, I’ll delve more deeply into the details of the structure of a disk group. Also, I’ll
review the different types of administrative tasks related to disk groups and show how disks are
assigned to failure groups; how disk groups are mirrored; and how disk groups are created, dropped,
and altered. At the command line, I’ll give you an introduction to the asmcmd command-line
utility that you can use to browse, copy, and manage ASM objects.

Disk Group Architecture
As defined earlier in this chapter, a disk group is a collection of physical disks managed as a unit.
Every ASM disk, as part of a disk group, has an ASM disk name that is either assigned by the DBA
or automatically assigned when it is assigned to the disk group.

Files in a disk group are striped on the disks using either coarse striping or fine striping. Coarse
striping spreads files in units of 1MB each across all disks. Coarse striping is appropriate for a system
with a high degree of concurrent small I/O requests, such as an OLTP environment. Alternatively, fine
striping spreads files in units of 128KB, is appropriate for traditional data warehouse environments or
OLTP systems with low concurrency, and maximizes response time for individual I/O requests.

Oracle File Type ASM File Type Tag Default Template

Control files controlfile cf (control file) or bcf
(backup control file)

CONTROLFILE

Data files datafile tablespace name.file# DATAFILE

Online logs online_log log_thread# ONLINELOG

Archive logs archive_log parameter ARCHIVELOG

Temp files temp tablespace name.file# TEMPFILE

RMAN datafile backup
piece

backupset Client specified BACKUPSET

RMAN incremental
backup piece

backupset Client specified BACKUPSET

RMAN archive log
backup piece

backupset Client specified BACKUPSET

RMAN datafile copy datafile tablespace name.file# DATAFILE

Initialization parameters init spfile PARAMETERFILE

Broker config drc drc DATAGUARDCONFIG

Flashback logs rlog thread#_log# FLASHBACK

Change tracking bitmap ctb bitmap CHANGETRACKING

Auto backup autobackup Client specified AUTOBACKUP

Data Pump dumpset dumpset dump DUMPSET

Cross-platform data files XTRANSPORT

TABLE 4-4. ASM File Types

04-ch04.indd 103 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

104 Oracle Database 12c DBA Handbook

Disk Group Mirroring and Failure Groups
Before defining the type of mirroring within a disk group, you must group disks into failure groups.
A failure group is one or more disks within a disk group that share a common resource, such as a
disk controller, whose failure would cause the entire set of disks to be unavailable to the group. In
most cases, an ASM instance does not know the hardware and software dependencies for a given
disk. Therefore, unless you specifically assign a disk to a failure group, each disk in a disk group
is assigned to its own failure group.

Once the failure groups have been defined, you can define the mirroring for the disk group;
the number of failure groups available within a disk group can restrict the type of mirroring available
for the disk group. There are three types of mirroring available: external redundancy, normal
redundancy, and high redundancy.

System Template
External
Redundancy

Normal
Redundancy High Redundancy Striping

CONTROLFILE Unprotected Two-way
mirroring

Three-way
mirroring

Fine

DATAFILE Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

ONLINELOG Unprotected Two-way
mirroring

Three-way
mirroring

Fine

ARCHIVELOG Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

TEMPFILE Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

BACKUPSET Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

XTRANSPORT Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

PARAMETERFILE Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

DATAGUARDCONFIG Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

FLASHBACK Unprotected Two-way
mirroring

Three-way
mirroring

Fine

CHANGETRACKING Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

AUTOBACKUP Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

DUMPSET Unprotected Two-way
mirroring

Three-way
mirroring

Coarse

TABLE 4-5. ASM File Template Defaults

04-ch04.indd 104 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 105

External Redundancy External redundancy requires only one disk location and assumes that
the disk is not critical to the ongoing operation of the database or that the disk is managed externally
with high-availability hardware such as a RAID controller.

Normal Redundancy Normal redundancy provides two-way mirroring and requires at least two
failure groups within a disk group. Failure of one of the disks in a failure group does not cause
any downtime for the disk group or any data loss other than a slight performance hit for queries
against objects in the disk group; when all disks in the failure group are online, read performance
is typically improved because the requested data is available on more than one disk.

High Redundancy High redundancy provides three-way mirroring and requires at least three
failure groups within a disk group. The failure of disks in two out of the three failure groups is for
the most part transparent to the database users, as in normal redundancy mirroring.

Mirroring is managed at a very low level. Extents, not disks, are mirrored. In addition, each
disk will have a mixture of both primary and mirrored (secondary and tertiary) extents on each
disk. Although a slight amount of overhead is incurred for managing mirroring at the extent level,
it provides the advantage of spreading out the load from the failed disk to all other disks instead of
a single disk.

Disk Group Dynamic Rebalancing
Whenever you change the configuration of a disk group—whether you are adding or removing a
failure group or a disk within a failure group—dynamic rebalancing occurs automatically to
proportionally reallocate data from other members of the disk group to the new member of the
disk group. This rebalance occurs while the database is online and available to users; any impact
to ongoing database I/O can be controlled by adjusting the value of the initialization parameter
ASM_POWER_LIMIT to a lower value.

Not only does dynamic rebalancing free you from the tedious and often error-prone task of
identifying hot spots in a disk group, it also provides an automatic way to migrate an entire
database from a set of slower disks to a set of faster disks while the entire database remains
online. Faster disks are added as a new failure group in the existing disk group with the slower
disks and the automatic rebalance occurs. After the rebalance operations complete, the failure
groups containing the slower disks are dropped, leaving a disk group with only fast disks. To make
this operation even faster, both the ADD and DROP operations can be initiated within the same
ALTER DISKGROUP command.

As an example, suppose you want to create a new disk group with high redundancy to hold
tablespaces for a new credit card authorization. Using the view V$ASM_DISK, you can view all
disks discovered using the initialization parameter ASM_DISKSTRING, along with the status of
the disk (in other words, whether it is assigned to an existing disk group or is unassigned). Here
is the command:

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 0 0 /dev/sdj1
 0 1 /dev/sdk1
 0 2 /dev/sdl1

04-ch04.indd 105 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

106 Oracle Database 12c DBA Handbook

 0 3 /dev/sdm1
 2 1 RECOV_0001 RECOV_0001 08-JUL-13 /dev/sdg1
 2 0 RECOV_0000 RECOV_0000 08-JUL-13 /dev/sdh1
 1 1 DATA_0001 DATA_0001 08-JUL-13 /dev/sdd1
 1 0 DATA_0000 DATA_0000 08-JUL-13 /dev/sde1

8 rows selected.

SQL>

Out of the eight disks available for ASM, only four of them are assigned to two disk groups,
DATA and RECOV, each in its own failure group. The disk group name can be obtained from the
view V$ASM_DISKGROUP:

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 24568 20798
 2 RECOV NORMAL 24568 24090

SQL>

Note that if you had a number of ASM disks and disk groups, you could have joined the two
views on the GROUP_NUMBER column and filtered the query result by GROUP_NUMBER. Also,
you see from V$ASM_DISKGROUP that both of the disk groups are NORMAL REDUNDANCY
groups consisting of two disks each.

Your first step is to create the disk group:

SQL> create diskgroup data2 high redundancy
 2 failgroup fg1 disk '/dev/sdj1' name d2a
 3 failgroup fg2 disk '/dev/sdk1' name d2b
 4 failgroup fg3 disk '/dev/sdl1' name d2c
 5 failgroup fg4 disk '/dev/sdm1' name d2d;

Diskgroup created.

SQL>

Looking at the dynamic performance views, you see the new disk group available in V$ASM_
DISKGROUP and the failure groups in V$ASM_DISK:

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 24568 20798
 2 RECOV NORMAL 24568 24090
 3 DATA2 HIGH 16376 16221

04-ch04.indd 106 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 107

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 3 3 D2D FG4 13-JUL-13 /dev/sdj1
 3 2 D2C FG3 13-JUL-13 /dev/sdk1
 3 1 D2B FG2 13-JUL-13 /dev/sdl1
 3 0 D2A FG1 13-JUL-13 /dev/sdm1
 2 1 RECOV_0001 RECOV_0001 08-JUL-13 /dev/sdg1
 2 0 RECOV_0000 RECOV_0000 08-JUL-13 /dev/sdh1
 1 1 DATA_0001 DATA_0001 08-JUL-13 /dev/sdd1
 1 0 DATA_0000 DATA_0000 08-JUL-13 /dev/sde1

8 rows selected.

SQL>

However, if disk space is tight, you don’t need four members; for a high-redundancy disk
group, only three failure groups are necessary, so you drop the disk group and re-create it with
only three members:

SQL> drop diskgroup data2;

Diskgroup dropped.

If the disk group has any database objects other than disk group metadata, you have to specify
the INCLUDING CONTENTS clause in the DROP DISKGROUP command. This is an extra
safeguard to make sure that disk groups with database objects are not accidentally dropped.
Here is the command:

SQL> create diskgroup data2 high redundancy
 2 failgroup fg1 disk '/dev/raw/raw5' name d2a
 3 failgroup fg2 disk '/dev/raw/raw6' name d2b
 4 failgroup fg3 disk '/dev/raw/raw7' name d2c;

Diskgroup created.

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 0 3 13-JUL-13 /dev/sdj1
 3 2 D2C FG3 13-JUL-13 /dev/sdk1
 3 1 D2B FG2 13-JUL-13 /dev/sdl1
 3 0 D2A FG1 13-JUL-13 /dev/sdm1
 2 1 RECOV_0001 RECOV_0001 08-JUL-13 /dev/sdg1
 2 0 RECOV_0000 RECOV_0000 08-JUL-13 /dev/sdh1

04-ch04.indd 107 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

108 Oracle Database 12c DBA Handbook

 1 1 DATA_0001 DATA_0001 08-JUL-13 /dev/sdd1
 1 0 DATA_0000 DATA_0000 08-JUL-13 /dev/sde1

8 rows selected.
SQL>

Now that the configuration of the new disk group has been completed, you can create a
tablespace in the new disk group from the database instance:

SQL> create tablespace users3 datafile '+DATA2';
Tablespace created.

Because ASM files are OMF, you don’t need to specify any other characteristics when you
create the tablespace.

Disk Group Fast Mirror Resync
Mirroring the files in your disk groups improves performance and availability; when a failed disk
in a disk group is repaired and brought back online, however, the re-mirroring of the entire new
disk can be time consuming. There are occasions when a disk in a disk group needs to be brought
offline because of a disk controller failure; the entire disk does not need remirroring, and only the
data changed during the failed disk’s downtime needs to be resynced. As a result, you can use the
ASM fast mirror resync feature introduced in Oracle Database 11g.

To implement fast mirror resync, you set the time window within which ASM will not
automatically drop the disk in the disk group when a transient planned or unplanned failure occurs.
During the transient failure, ASM keeps track of all changed data blocks so that when the unavailable
disk is brought back online, only the changed blocks need to be remirrored instead of the entire disk.

To set a time window for the DATA disk group, you must first set the compatibility level of the
disk group to 11.1 or higher for both the RDBMS instance and the ASM instance (this only needs
to be done once for the disk group):

SQL> alter diskgroup data set attribute
 2 'compatible.asm' = '12.1.0.0.0';

Diskgroup altered.

SQL> alter diskgroup data set attribute
 2 'compatible.rdbms' = '12.1.0.0.0';

Diskgroup altered.

SQL>

The only side effect to using a higher compatibility level for the RDBMS and ASM instance is
that only other instances with a version number 12.1.0.0.0 or higher can access this disk group.
Next, set the disk group attribute DISK_REPAIR_TIME as in this example:

SQL> alter diskgroup data set attribute
 2 'disk_repair_time' = '2.5h';

Diskgroup altered.

SQL>

04-ch04.indd 108 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 109

The default disk repair time is 3.6 hours, which should be more than adequate for most planned
and unplanned (transient) outages. Once the disk is back online, run this command to notify the
ASM instance that the disk DATA_0001 is back online:

SQL> alter diskgroup data online disk data_0001;

Diskgroup altered.

SQL>

This command starts the background procedure to copy all changed extents on the remaining
disks in the disk group to the disk DATA_0001 that is now back online.

Altering Disk Groups
Disks can be added and dropped from a disk group; also, most characteristics of a disk group can
be altered without re-creating the disk group or impacting user transactions on objects in the disk
group.

When a disk is added to a disk group, a rebalance operation is performed in the background
after the new disk is formatted for use in the disk group. As mentioned earlier in this chapter, the
speed of the rebalance is controlled by the initialization parameter ASM_POWER_LIMIT.

Continuing with our example in the preceding section, suppose you decide to improve the
I/O characteristics of the disk group DATA by adding the last available disk to the disk group,
as follows:

SQL> alter diskgroup data
 2 add failgroup d1fg3 disk '/dev/sdj1' name d1c;

Diskgroup altered.

The command returns immediately and the formatting and rebalancing continue in the
background. You then check the status of the rebalance operation by checking the view V$ASM_
OPERATION:

SQL> select group_number, operation, state, power, actual,
 2 sofar, est_work, est_rate, est_minutes from v$asm_operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST_WORK EST_RATE EST_MINUTES
------------ ----- ---- ----- ----- ----- -------- -------- -----------
 1 REBAL RUN 1 1 3 964 60 16

Because the estimate for completing the rebalance operation is 16 minutes, you decide to
allocate more resources to the rebalance operation and change the power limit for this particular
rebalance operation:

SQL> alter diskgroup data rebalance power 700;
Diskgroup altered.

04-ch04.indd 109 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

110 Oracle Database 12c DBA Handbook

Checking the status of the rebalance operation confirms that the estimated time to completion
has been reduced to 2 minutes instead of 16:

SQL> select group_number, operation, state, power, actual,
 2 sofar, est_work, est_rate, est_minutes from v$asm_operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST_WORK EST_RATE EST_MINUTES
------------ ----- ---- ----- ----- ----- -------- -------- -----------
 1 REBAL RUN 700 8 16 605 118 2

About four minutes later, you check the status once more:

SQL> /
no rows selected

Finally, you can confirm the new disk configuration from the V$ASM_DISK and V$ASM_
DISKGROUP views:

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 1 2 D1C D1FG3 13-JUL-13 /dev/sdj1
 3 2 D2C FG3 13-JUL-13 /dev/sdk1
 3 1 D2B FG2 13-JUL-13 /dev/sdl1
 3 0 D2A FG1 13-JUL-13 /dev/sdm1
 2 1 RECOV_0001 RECOV_0001 08-JUL-13 /dev/sdg1
 2 0 RECOV_0000 RECOV_0000 08-JUL-13 /dev/sdh1
 1 1 DATA_0001 DATA_0001 08-JUL-13 /dev/sdd1
 1 0 DATA_0000 DATA_0000 08-JUL-13 /dev/sde1

8 rows selected.

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 28662 24814
 2 RECOV NORMAL 24568 24090
 3 DATA2 HIGH 12282 11820

SQL>

Note that the disk group DATA is still normal redundancy, even though it has three failure
groups. The I/O performance of SELECT statements against objects in the DATA disk group will
not necessarily be improved due to additional copies of extents available in the disk group, but

04-ch04.indd 110 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 111

the availability of the disk group will be higher since it can tolerate the loss of one disk and still
maintain normal redundancy.

Other disk group ALTER commands are listed in Table 4-6.

Using the asmcmd Command
The asmcmd utility, added in Oracle 10g Release 2, is a command-line utility that provides you
an easy way to browse and maintain objects within ASM disk groups by using a command set
similar to Linux shell commands such as ls and mkdir. The hierarchical nature of objects
maintained by the ASM instance lends itself to a command set similar to what you would use to
browse and maintain files in a Linux file system.

Before you can use asmcmd, you must ensure that the environment variables ORACLE_BASE,
ORACLE_HOME, and ORACLE_SID are set to point to the ASM instance; for the ASM instance
used in this chapter, these variables are set as follows:

ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/12.1.0/grid
ORACLE_SID=+ASM

In addition, you must be logged into the operating system as a user in the dba group, since
the asmcmd utility connects to the database with SYSDBA privileges. The operating system user is
usually oracle but can be any other user in the dba group.

You can use asmcmd one command at a time by using the format asmcmd command, or you
can start asmcmd interactively by typing just asmcmd at the Linux shell prompt. To get a list of
available commands, use help from the ASMCMD> for more details. Table 4-7 lists the asmcmd
commands and a brief description of their purpose; the asmcmd commands available only in
Oracle Database 11g and 12c are noted in the middle column.

When you start asmcmd, you start out at the root node of the ASM instance’s file system;
unlike in a Linux file system, the root node is designated by a plus sign (+) instead of a leading
forward slash (/), although subsequent directory levels use a forward slash. In this example, you

ALTER DISKGROUP Command Description

alter diskgroup ... drop disk Removes a disk from a failure group within a disk group
and performs an automatic rebalance

alter diskgroup ... drop ... add Drops a disk from a failure group and adds another disk,
all in the same command

alter diskgroup ... mount Makes a disk group available to all instances

alter diskgroup ... dismount Makes a disk group unavailable to all instances

alter diskgroup ... check all Verifies the internal consistency of the disk group

TABLE 4-6. Disk Group ALTER Commands

04-ch04.indd 111 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

112 Oracle Database 12c DBA Handbook

start asmcmd and query the existing disk groups, along with the total disk space used within all
disk groups:

[oracle@dw ~]$ asmcmd
ASMCMD> ls –l
State Type Rebal Unbal Name
MOUNTED NORMAL N N DATA/
MOUNTED HIGH N N DATA2/
MOUNTED NORMAL N N RECOV/
ASMCMD> du
Used_MB Mirror_used_MB
 2143 4399
ASMCMD> pwd
+
ASMCMD>

asmcmd
Command 11g, 12c Only Description

cd Change the directory to the specified directory.

cp Y Copy files between ASM disk groups, both in the same instance
and in remote instances.

du Recursively displays total disk space usage for the current directory
and all subdirectories.

exit Terminate asmcmd and return to the operating system shell prompt.

find Find all occurrences of the name (using wildcards as well), starting
with the specified directory.

help List the asmcmd commands.

ls List the contents of the current directory.

lsct List information about current ASM client databases.

lsdg List all disk groups and their attributes.

lsdsk Y List all disks visible to this ASM instance.

md_backup Y Create metadata backup script for specified disk groups.

md_restore Y Restore disk groups from a backup.

mkalias Create an alias for system-generated ASM filenames.

mkdir Create an ASM directory.

pwd Display the current ASM directory.

remap Y Repair a range of corrupted or damaged physical blocks on a disk.

rm Remove ASM files or directories.

rmalias Remove an ASM alias, but not the target of the alias.

TABLE 4-7. asmcmd Command Summary

04-ch04.indd 112 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 4: Physical Database Layouts and Storage Management 113

As with the Linux shell ls command, you can append –l to get a more detailed listing of the
objects retrieved by the command. The ls command shows the three disk groups in the ASM
instance used throughout this chapter, +DATA, +DATA2, and +RECOV.

Note also that the du command only shows the used disk space and total disk space used
across mirrored disk groups; to get the amount of free space in each disk group, use the lsdg
command instead.

In this example, you want to find all files that have the string user in the filename:

ASMCMD> pwd
+
ASMCMD> find . user*
+DATA/DW/DATAFILE/USERS.259.627432977
+DATA/DW/DATAFILE/USERS2.267.627782171
+DATA/purch/users.dbf
+DATA2/DW/DATAFILE/USERS3.256.627786775
ASMCMD> ls -l +DATA/purch/users.dbf
Type Redund Striped Time Sys Name
 N users.dbf =>
 +DATA/DW/DATAFILE/USERS.259.627432977
ASMCMD>

Note the line with +DATA/purch/users.dbf: the find command finds all ASM objects; in this case,
it finds an alias as well as datafiles that match the pattern.

Finally, you can perform file backups to external file systems or even other ASM instances.
This example uses the cp command to back up the database’s SPFILE to the /tmp directory on the
host’s file system:

ASMCMD> pwd
+data/DW
ASMCMD> ls
CONTROLFILE/
DATAFILE/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/
spfiledw.ora
ASMCMD> cp spfiledw.ora /tmp/BACKUPspfiledw.ora
source +data/DW/spfiledw.ora
target /tmp/BACKUPspfiledw.ora
copying file(s)...
file, /tmp/BACKUPspfiledw.ora, copy committed.
ASMCMD> exit
[oracle@dw ~]$ ls -l /tmp/BACKUP*
-rw-r----- 1 oracle oinstall 2560 Jul 13 09:47 /tmp/BACKUPspfiledw.ora
[oracle@dw ~]$

This example also shows how all database files for the database dw are stored within the ASM
file system. It looks like they are stored on a traditional host file system, but instead are managed
by ASM, providing built-in performance and redundancy features (optimized for use with Oracle
Database 12c), making the DBA’s life a bit easier when it comes to datafile management.

04-ch04.indd 113 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

114 Oracle Database 12c DBA Handbook

Summary
Oracle Database provides you with a wealth of tools to easily manage your tablespaces and datafiles.
If you are creating smallfile tablespaces, you can manage tablespace size at the datafile level; if you
create your tablespaces as bigfile tablespaces you can manage disk space and other attributes at the
tablespace level. There are very few reasons why you wouldn’t want to create all new tablespaces
as bigfile tablespaces.

Using ASM for your disk storage provides both ease of use and performance benefits. The setup
of an ASM instance only takes a few steps and once it’s set up you may never have to change any
parameters of the ASM instance. When you have to add or drop disks from an ASM disk group,
Oracle automatically relocates database objects across all disks to maintain performance; no manual
rebalancing operation is required. It’s automatic! If you must really dig deep into the internal ASM
disk structure, Oracle provides an OS command called asmcmd which gives you Linux-like access
to the directory structure within the ASM disk groups.

04-ch04.indd 114 13/05/15 9:55 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 /
Blind folio 115

PART
II

Database Management

05-ch05.indd 115 09/04/15 12:36 PM

This page intentionally left blank

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 117

CHAPTER
5

Developing and
Implementing Applications

05-ch05.indd 117 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

118 Oracle Database 12c DBA Handbook

Managing application development can be a difficult process. From a DBA’s perspective,
the best way to manage the development process is to become an integral part of teams
involved in the process. In this chapter, you will learn the guidelines for migrating

applications into databases and the technical details needed for implementation, including the
sizing of database objects.

This chapter focuses on the design and creation of applications that use the database. These
activities should be integrated with the database-planning activities described in Chapter 3 and
Chapter 4. The following chapters in this part of the book address the monitoring and tuning
activities that follow the database creation.

Implementing an application in a database by merely running a series of CREATE TABLE
commands fails to integrate the creation process with the other major areas (planning, monitoring,
and tuning). The DBA must be involved in the application development process in order to correctly
design the database that will support the end product. The methods described in this chapter will
also provide important information for structuring the database monitoring and tuning efforts.

The first section of this chapter addresses overall design and implementation considerations
that directly impact performance. The following sections focus on implementation details such as
resource management, sizing tables and indexes, quiescing the database for maintenance
activities, and managing packaged applications.

Tuning by Design: Best Practices
At least 50 percent of the time—conservatively—performance problems are designed into an
application. During the design of the application and the related database structures, the application
architects may not know all the ways in which the business will use the application data over
time. As a result, there may be some components whose performance is poor during the initial
release, whereas other problems will appear later as the business usage of the application changes
and increases.

In some cases, the fix will be relatively straightforward: changing an initialization parameter,
adding an index, or rescheduling large operations to off-hours. In other cases, the problem cannot
be fixed without altering the application’s architecture. For example, an application may be
designed to heavily reuse functions for all data access so that functions call other functions,
which call additional functions, even to perform the simplest database actions. As a result, a single
database call may result in tens of thousands of function calls and database accesses. Such an
application will usually not scale well; as more users are added to the system, the CPU burden of
the number of executions per user will slow the performance for the individual users. Tuning the
individual SQL statements executed as part of that application may yield little performance benefit;
the statements themselves may be well-tuned already. Rather, it is the sheer number of executions
that leads to the performance problem.

The following best practices may seem overly simplistic, but they are violated over and over
in database applications, and those violations directly result in performance problems. There are
always exceptions to the rules. The next change to your software or environment may allow you
to violate the rules without affecting your performance. In general, though, following these rules
will allow you to meet performance requirements as the application usage increases.

05-ch05.indd 118 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 119

Do As Little As Possible
End users do not care, in general, if the underlying database structures are fully normalized to
Fifth Normal Form or if they are laid out in compliance with object-oriented standards. Users
want to perform a business process, and the database application should be a tool that helps that
business process complete as quickly as possible. The focus of your design should not be the
achievement of theoretical design perfection; it should always be on the end user’s ability to do
his or her job. Therefore, you should simplify the processes involved at every step in the application.

This can be a difficult point to negotiate with application development teams. If application
development teams or enterprise architects insist on perfectly normalized data models, DBAs
should point out the number of database steps involved in even the simplest transaction. For
example, INSERTs for a complex transaction (such as a line item for an invoice) may involve many
code table lookups as well as multiple INSERTs. For a single user this may not present a problem,
but with many concurrent users this design may lead to performance issues or locking issues.
From a performance-planning perspective, INSERTs should involve as few tables as possible, and
queries should retrieve data that is already stored in a format that is as close as possible to the final
format requested by the users. Fully normalized databases and object-oriented designs tend to
require a high number of joins during complex queries. Although you should strive to maintain a
manageable data model, the first emphasis should be on the functionality of the application and
its ability to meet the business’s performance needs.

In Your Application Design, Strive to Eliminate Logical Reads
In the past, there was a heavy focus on eliminating physical reads. Although this is still a good idea,
no physical reads occur unless logical reads require them.

Let’s take a simple example. Select the current time from DUAL using the SYSDATE function.
If you need the time to an accuracy of one second, the value will change 86,400 times per day.
Yet there are application designers who repeatedly perform this query, executing it millions of
times per day. Such a query likely performs few physical reads throughout the day. Therefore, if
you are focused solely on tuning the physical I/O, you would likely disregard it. However, it can
significantly impact the performance of the application. How? By using the CPU resources available.
Each execution of the query will force Oracle to perform work, using processing power to find
and return the correct data. As more and more users execute the command repeatedly, you may
find that the number of logical reads used by the query exceeds all other queries. In some cases,
multiple processors on the server are dedicated to servicing repeated small queries of this sort. If
multiple users need to read the same data, you should store it in a table or in a package variable.

NOTE
Even though the DUAL table has been an internal (memory-based)
table since Oracle Database 10g, accessing it will not generate
consistent gets as long as you don’t use * as the column list in a query
referencing DUAL.

Consider the following real-world example. A programmer wanted to implement a pause
in a program, forcing it to wait 30 seconds between two steps. Because the performance of the

05-ch05.indd 119 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

120 Oracle Database 12c DBA Handbook

environment would not be consistent over time, the programmer coded the routine in the following
format (shown in pseudo-code):

perform Step 1
select SysDate from DUAL into a StartTime variable
begin loop
 select SysDate from DUAL in a CurrentTime variable;
 Compare CurrentTime with the StartTime variable value.
 If 30 seconds have passed, exit the loop;
 Otherwise repeat the loop, calculating SysDate again.
end loop
Perform Step 2.

Is this a reasonable approach? Absolutely not! It will do what the developer wanted, but at
a significant cost to the application. What’s more, there is nothing a DBA can do to improve its
performance. In this case, the cost will not be due to I/O activity, as the DUAL table will stay in
the instance’s memory area, but rather due to CPU activity. Every time this program is run, by
every user, the database will spend 30 seconds consuming as many CPU resources as the system
can support. In this particular case the SELECT SYSDATE FROM DUAL query accounts for over
40 percent of all the CPU time used by the application. All of that CPU time is wasted. Tuning the
database initialization parameters will not solve the problem. Tuning the individual SQL statement
will not help; the application design must be revised to eliminate the needless execution of
commands. For instance, in this case the developer could have used a SLEEP command at the
operating system level or within a PL/SQL program using the DBMS_LOCK.SLEEP procedure to
enforce the same behavior without the database accesses.

For those who still favor tuning based on the buffer cache hit ratio (wait-based tuning is
preferable in 11g and 12c), this database has a hit ratio of almost 100 percent due to the high
number of completely unnecessary logical reads without related physical reads. The buffer cache
hit ratio compares the number of logical reads to the number of physical reads; if 10 percent of
the logical reads require physical reads, the buffer cache hit ratio is 90 percent. Low hit ratios
identify databases that perform a high number of physical reads; extremely high hit ratios such as
found in this example may identify databases that perform an excessive number of logical reads.
You must look beyond the buffer cache hit ratio to the commands that are generating the logical
reads and the physical reads.

In Your Application Design, Strive to Avoid Trips to the Database
Remember that you are tuning an application, not a query. When tuning database operations, you
may need to combine multiple queries into a single procedure so that the database can be visited
once rather than multiple times for each screen. This bundled-query approach is particularly
relevant for “thin-client” applications that rely on multiple application tiers. Look for queries that
are interrelated based on the values they return, and see if there are opportunities to transform
them into single blocks of code. The goal is not to make a monolithic query that will never complete;
the goal is to avoid doing work that does not need to be done. In this case, the constant back-and-
forth communication between the database server, the application server, and the end user’s
computer is targeted for tuning.

This problem is commonly seen on complex data-entry forms in which each field displayed
on the screen is populated via a separate query. Each of those queries is a separate trip to the
database. As with the example in the previous section, the database is forced to execute large

05-ch05.indd 120 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 121

numbers of related queries. Even if each of those queries is tuned, the burden from the number of
commands multiplied by the number of users will consume a large percentage of the CPU
resources available on the server. Such a design may also impact the network usage, but the
network is seldom the problem: the issue is the number of times the instance is accessed.

Within your packages and procedures, you should strive to eliminate unnecessary database
accesses. Store commonly needed values in local variables instead of repeatedly querying the
database. If you don’t need to make a trip to the database for information, don’t make it. That sounds
simple, but you would be amazed at how often application developers fail to consider this advice.

There is no initialization parameter that can make this change take effect. It is a design issue
and requires the active involvement of developers, designers, DBAs, and application users in the
application performance planning and tuning process.

For Reporting Systems, Store the Data the Way the Users Will Query It
If you know which queries will be executed, such as via parameterized reports, you should strive
to store the data so that Oracle will do as little work as possible to transform the format of the
data in your tables into the format presented to the user. This may require the creation and
maintenance of materialized views or reporting tables. That maintenance is, of course, extra work
for the database and DBA to perform—but it is performed in batch mode and does not directly
affect the end user. The end user, on the other hand, benefits from the ability to perform the query
faster. The database as a whole will perform fewer logical and physical reads because the accesses
to the base tables to populate and refresh the materialized views are performed infrequently when
compared to the end-user queries against the views.

Avoid Repeated Connections to the Database
Opening a database connection may take more time than the commands you execute within that
connection. If you need to connect to the database, keep the connection open and reuse the
connection. See Chapter 17 for more information on Oracle Net and optimizing database
connections.

One application designer took normalization to the extreme, moving all code tables into their
own database. As a result, most operations in the order-processing system repeatedly opened
database links to access the code tables, thus severely hampering the performance of the
application. Again, tuning the database initialization parameters is not going to lead to the greatest
performance benefit; the application is slow by design.

Use the Right Indexes
In an effort to eliminate physical reads, some application developers create numerous indexes on
every table. Aside from their impact on data load times, many of the indexes may never be
needed to support queries. In OLTP applications, you should not use bitmap indexes; if a column
has few distinct values, you should consider leaving it unindexed. The optimizer supports “skip-
scan” index accesses, so it may choose an index on a set of columns even if the leading column
of the index is not a limiting condition for the query. For platforms such as Oracle Exadata, you
may need very few if any indexes at all to run a query as fast as possible with the added bonus of
not needing to maintain those indexes during DML operations.

Do It As Simply As Possible
Once you have eliminated the performance costs of unnecessary logical reads, unneeded database
trips, unmanaged connections, and inappropriate indexes, take a look at the commands that remain.

05-ch05.indd 121 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

122 Oracle Database 12c DBA Handbook

Go Atomic
You can use SQL to combine many steps into one large query. In some cases, this may benefit
your application: you can create stored procedures and reuse the code and thus reduce the
number of database trips performed. However, you can take this too far, creating large queries
that fail to complete quickly enough. These queries commonly include multiple sets of grouping
operations, inline views, and complex multi-row calculations against millions of rows.

If you are performing batch operations, you may be able to break such a query into its atomic
components, creating temporary tables to store the data from each step. If you have an operation
that takes hours to complete, you almost always can find a way to break it into smaller
component parts. Divide and conquer the performance problem.

For example, a batch operation may combine data from multiple tables, perform joins and
sorts, and then insert the result into a table. On a small scale, this may perform satisfactorily. On a
large scale, you may have to divide this operation into multiple steps:

1. Create a work table (possibly as an Oracle global temporary table). Insert rows into it
from one of the source tables for the query, selecting only those rows and columns that
you care about later in the process.

2. Create a second work table for the columns and rows from the second table.

3. Create any needed indexes on the work tables. Note that all the steps to this point can be
parallelized: the inserts, the queries of the source tables, and the creation of the indexes.

4. Perform the join, again parallelized. The join output may go into another work table.

5. Perform any sorts needed. Sort as little data as possible.

6. Insert the data into the target table.

Why go through all these steps? Because you can tune them individually, you may be able
to tune them to complete much faster individually than Oracle can complete them as a single
command. For batch operations, you should consider making the steps as simple as possible.
You will need to manage the space allocated for the work tables, but this approach can generate
significant benefits to your batch-processing performance.

Eliminate Unnecessary Sorts
As part of the example in the preceding section, the sort operation was performed last. In general,
sort operations are inappropriate for OLTP applications. Sort operations do not return any rows to
the user until the entire set of rows is sorted. Row operations, on the other hand, return rows to the
user as soon as those rows are available.

Consider the following simple test: Perform a full table scan of a large table. As soon as the
query starts to execute, the first rows are displayed. Now, perform the same full table scan but add
an ORDER BY clause on an unindexed column. No rows will be displayed until all the rows have
been sorted. Why does this happen? Because for the second query Oracle performs a SORT
ORDER BY operation on the results of the full table scan. Because it is a set operation, the set
must be completed before the next operation is performed.

Now, imagine an application in which there are many queries executed within a procedure.
Each of the queries has an ORDER BY clause. This turns into a series of nested sorts: no operation
can start until the one before it completes.

05-ch05.indd 122 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 123

Note that UNION operations perform sorts. If it is appropriate for the business logic, use a
UNION ALL operation in place of a UNION, because a UNION ALL does not perform a sort.

NOTE
A UNION ALL operation does not eliminate duplicate rows from the
result set, so it may generate more rows and therefore different results
than a UNION.

Eliminate the Need to Use Undo
When performing a query, Oracle will need to maintain a read-consistent image of the rows
queried. If a row is modified by another user, the database will need to query the undo segment
to see the row as it existed at the time your query began. Application designs that call for queries
to frequently access data that others may be changing at the same time force the database to do
more work: it has to look in multiple locations for one piece of data. Again, this is a design issue.
DBAs may be able to configure the undo segment areas to reduce the possibility of queries
encountering “Snapshot too old” errors, but correcting the fundamental problem requires
a change to the application design.

Tell the Database What It Needs to Know
Oracle’s optimizer relies on statistics when it evaluates the thousands of possible paths to take during
the execution of a query. How you manage those statistics can significantly impact the performance
of your queries.

Keep Your Statistics Updated
How often should you gather statistics? With each major change to the data in your tables, you
should collect statistics on those tables. If you have partitioned the tables, you can analyze them
on a partition-by-partition basis. As of Oracle Database 10g, you can use the Automatic Statistics
Gathering feature to automate the collection of statistics. By default, that process gathers statistics
during a maintenance window from 10 p.m. to 6 a.m. each night and all day on weekends. Of
course, manual statistics gathering is still available when you have volatile tables that are being
dropped or deleted during the day, or when bulk-loaded tables increase in size by more than 10
percent. For partitioned tables on Oracle Database 11g or 12c, incremental statistics keep global
statistics up to date when partition-level statistics are created or updated. Oracle Database 12c
takes statistics gathering to a new level by allowing concurrent statistics collection on tables in a
schema or partitions within a table. In addition, a new hybrid histogram type in Oracle Database
12c combines a height-based histogram with a frequency histogram.

Because the analysis job is usually a batch operation performed after hours, you can tune it
by improving sort and full table scan performance at the session level. If you are performing the
analysis manually, increase the settings for the DB_FILE_MULTIBLOCK_READ_COUNT parameter
at the session level or the PGA_AGGREGATE_TARGET parameter at the system level to gathering
the statistics. If you are not using PGA_AGGREGATE_TARGET or do not want to modify a system-
wide setting, increase SORT_AREA_SIZE (which is modifiable at the session level) instead. The
result will be enhanced performance for the sorts and full table scans the analysis performs.

05-ch05.indd 123 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

124 Oracle Database 12c DBA Handbook

CAUTION
Increasing the DB_FILE_MULTIBLOCK_READ_COUNT parameter in
a RAC database environment can cause performance problems when
too many blocks are shipped across the interconnect. This value is
platform-dependent but is 1MB on most platforms.

Hint Where Needed
In most cases, the cost-based optimizer (CBO) selects the most efficient execution path for queries.
However, you may have information about a better path. You may give Oracle a hint to influence
the join operations, the overall query goal, the specific indexes used, or the parallelism of the query.

Maximize the Throughput in the Environment
In an ideal environment, there is never a need to query information outside the buffer cache; all
of the data stays in memory all of the time. Unless you are working with a very small database,
however, this is not a realistic approach. In this section, you will see guidelines for maximizing
the throughput of the environment.

Use the Appropriate Database Block Size
You should use an 8KB block size for all tablespaces unless otherwise recommended by Oracle
support or if you have rows with a very large average row length greater than 8KB. All Oracle
development and testing, especially for database appliances such as Exadata, uses 8KB block sizes.

Design to Throughput, Not Disk Space
If you take an application that is running on eight 256GB disks and move it to a single 2TB disk,
will the application run faster or slower? In general, it will run slower because the throughput of
the single disk is unlikely to be equal to the combined throughput of the eight separate disks.
Rather than designing your disk layout based on the space available (a common method), design
it based on the throughput of the disks available. You may decide to use only part of each disk. The
remaining space on the disk will not be used by the production application unless the throughput
available for that disk improves.

Avoid the Use of the Temporary Segments
Whenever possible, perform all sorts in memory. Any operation that writes to the temporary
segments is potentially wasting resources. Oracle uses temporary segments when the
SORT_AREA_SIZE parameter (or PGA_AGGREGATE_TARGET, if it is used) does not allocate
enough memory to support the sorting requirements of operations. Sorting operations include
index creations, ORDER BY clauses, statistics gathering, GROUP BY operations, and some joins.
As noted earlier in this chapter, you should strive to sort as few rows as possible. When performing
the sorts that remain, perform them in memory.

Divide and Conquer Your Data
If you cannot avoid performing expensive operations on your database, you can attempt to split
the work into more manageable chunks. Often you can severely limit the number of rows acted
on by your operations, substantially improving performance.

05-ch05.indd 124 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 125

Use Partitions
Partitions can benefit end users, DBAs, and application support personnel. For end users, there are
two potential benefits: improved query performance and improved availability for the database.
Query performance may improve because of partition elimination. The optimizer knows which
partitions may contain the data requested by a query. As a result, the partitions that will not
participate are eliminated from the query process. Because fewer logical and physical reads are
needed, the query should complete faster.

NOTE
The Partitioning Option is an extra-cost option for the Enterprise
Edition of the database software.

The availability improves because of the benefits partitions generate for DBAs and application
support personnel. Many administrative functions can be performed on single partitions, allowing
the rest of the table to be unaffected. For example, you can truncate a single partition of a table.
You can split a partition, move it to a different tablespace, or switch it with an existing table (so
that the previously independent table is then considered a partition). You can gather statistics on
one partition at a time. All these capabilities narrow the scope of administrative functions, reducing
their impact on the availability of the database as a whole.

Use Materialized Views
You can use materialized views to divide the types of operations users perform against your tables.
When you create a materialized view, you can direct users to query the materialized view directly
or you can rely on Oracle’s query rewrite capability to redirect queries to the materialized view.
As a result, you will have two copies of the data—one that services the input of new transactional
data, and a second (the materialized view) that services queries. As a result, you can take one of
them offline for maintenance without affecting the availability of the other. Also, the materialized
view can pre-join tables and pre-generate aggregations so that user queries perform as little work
as possible.

Use Parallelism
Almost every major operation can be parallelized, including queries, inserts, object creations,
and data loads. The parallelism options allow you to involve multiple processors and I/O channels
in the execution of a single command, effectively dividing the command into multiple smaller
coordinated commands. As a result, the command may perform better. You can specify a degree
of parallelism at the object level and can override it via hints in your queries.

Test Correctly
In most development methodologies, application testing has multiple phases, including module
testing, full system testing, and performance stress testing. Many times, the full system test and
performance stress test are not performed adequately due to time constraints as the application
nears its delivery deadline. The result is that applications are released into production without any
way to guarantee that the functionality and performance of the application as a whole will meet
the needs of the users. This is a serious and significant flaw and should not be tolerated by any user
of the application. Users do not need just one component of the application to function properly;
they need the entire application to work properly in support of a business process. If they cannot
do a day’s worth of business in a day, the application fails.

05-ch05.indd 125 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

126 Oracle Database 12c DBA Handbook

This is a key tenet regarding identifying the need for tuning: If the application slows the speed
of the business process, it should be tuned. The tests you perform must be able to determine if the
application will hinder the speed of the business process under the expected production load.

Test with Large Volumes of Data
As described earlier in this chapter, objects within the database function differently after they have
been used for some time. For example, a table’s PCTUSED setting may make it likely that blocks
will be only half-used or rows will be chained. Each of these scenarios causes performance problems
that will only be seen after the application has been used for some time.

A further problem with data volume concerns indexes. As a B-tree index grows in size, it may
split internally—in other words, an additional level is added to the index. As a result, you can
picture the new level as being an index within the index. The additional level in the index increases
the negative effect of the index on data load rates. You will not see this impact until after the index
is split. Applications that work acceptably for the first week or two in production only to suddenly
falter after the data volume reaches critical levels do not support the business needs. In testing,
there is no substitute for production data loaded at production rates while the tables already
contain a substantial amount of data. When leaf blocks are split and index maintenance occurs,
Oracle has to lock all branch blocks above the leaf, including the root block. During this
maintenance operation, contention will occur from other sessions that need to access the index.

Test with Many Concurrent Users
Testing with a single user does not reflect the expected production usage of most database
applications. You must be able to determine if concurrent users will encounter deadlocks, data
consistency issues, or performance problems. For example, suppose an application module uses a
work table during its processing. Rows are inserted into the table, manipulated, and then queried.
A separate application module does similar processing and uses the same table. When executed
at the same time, the two processes attempt to use each other’s data. Unless you are testing with
multiple users executing multiple application functions simultaneously, you may not discover this
problem and the business data errors it will generate.

Testing with many concurrent users will also help to identify areas in the application where
users frequently use undo segments to complete their queries, thus impacting performance.

Test the Impact of Indexes on Your Load Times
Every INSERT, UPDATE, or DELETE of an indexed column may be slower than the same transaction
against an unindexed table. There are some exceptions—sorted data has much less of an impact,
for example—but the rule is generally true. The impact is dependent on your operating environment,
the data structures involved, and the degree to which the data is sorted.

How many rows per second can you insert in your environment? Perform a series of simple
tests. Create a table with no indexes and insert a large number of rows into it. Repeat the tests to
reduce the impact of physical reads on the timing results. Calculate the number of rows inserted
per second. In most environments you can insert tens of thousands of rows per second into the
database. Perform the same test in your other database environments so you can identify any that
are significantly different from the others.

Now consider your application. Are you able to insert rows into your tables via your application
at anywhere near the rate you just calculated? Many applications run at less than 5 percent of the
rate the environment will support. They are bogged down by unneeded indexes or the type of
code design issues described earlier in this chapter. If your application’s load rate decreases, say,
from 40 rows per second to 20 rows per second, your tuning focus should not be solely on how

05-ch05.indd 126 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 127

that decrease occurred but also on how the application managed to get only 40 rows per second
inserted in an environment that supports thousands of rows inserted per second. Adding another
index is easy to do but will add three times the amount of overhead during DML operations
(INSERT, DELETE, UPDATE, MERGE).

Make All Tests Repeatable
Most regulated industries have standards for tests. Their standards are so reasonable that all testing
efforts should follow them. Among the standards is that all tests must be repeatable. To be
compliant with the standards, you must be able to re-create the data set used, the exact action
performed, the exact result expected, and the exact result seen and recorded. Pre-production tests
for validation of the application must be performed on the production hardware. Moving the
application to different hardware requires retesting the application. The tester and the business
users must sign off on all tests.

Most people, on hearing those restrictions, would agree that they are good steps to take in any
testing process. Indeed, your business users may be expecting that the people developing the
application are following such standards, even if they are not required by the industry. But are
they followed? And if not, then why not? The two commonly cited reasons for not following such
standards are time and cost. Such tests require planning, personnel resources, business user
involvement, and time for execution and documentation. Testing on production-caliber hardware
may require the purchase of additional servers. Those are the most evident costs, but what is the
business cost of failing to perform such tests? The testing requirements for validated systems in
some healthcare industries were implemented because those systems directly impact the integrity
of critical products such as the safety of the blood supply. If your business has critical components
served by your application (and if it does not, then why are you building the application?), you must
consider the costs of insufficient, rushed testing and communicate those potential costs to the
business users. The evaluation of the risks of incorrect data or unacceptably slow performance must
involve the business users. In turn, that may lead to an extended deadline to support proper testing.

In many cases, the rushed testing cycle occurs because a testing standard was not in place at
the start of the project. If there is a consistent, thorough, and well-documented testing standard in
place at the enterprise level when the project starts, the testing cycle will be shorter when it is
finally executed. Testers will have known long in advance that repeatable data sets will be needed.
Templates for tests will be available. If there is an issue with any test result, or if the application
needs to be retested following a change, the test can be repeated. Also, the application users
will know that the testing is robust enough to simulate the production usage of the application.
In addition, the testing environment must support automation of tasks that will be automated
in production, especially if the developers used many manual processes in the development
environment. If the system fails the tests for performance reasons, the problem may be a design
issue (as described in the previous sections) or a problem with an individual query.

Standard Deliverables
How do you know if an application is ready to be migrated to a production environment? The
application development methodology must clearly define, both in format and in level of detail,
the required deliverables for each stage of the life cycle. These should include specifications for
each of the following items:

 ■ Entity relationship diagram

 ■ Physical database diagram

05-ch05.indd 127 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

128 Oracle Database 12c DBA Handbook

 ■ Space requirements

 ■ Tuning goals for queries and transaction processing

 ■ Security requirements

 ■ Data requirements

 ■ Query execution plans

 ■ Acceptance test procedures

In the following sections, you will see descriptions of each of these items.

Entity Relationship Diagram
The entity relationship (E-R) diagram illustrates the relationships that have been identified among
the entities that make up the application. E-R diagrams are critical for providing an understanding
of the goals of the system. They also help to identify interface points with other applications and
to ensure consistency in definitions across the enterprise.

Physical Database Diagram
A physical database diagram shows the physical tables generated from the entities and the columns
generated from the defined attributes in the logical model; most, if not all, data modeling tools
support the automatic translation of a logical database diagram to the physical database design.
A physical database diagramming tool is usually capable of generating the DDL necessary to
create the application’s objects.

You can use the physical database diagram to identify tables that are most likely to be involved
in transactions. You should also be able to identify which tables are commonly used together
during a data entry or query operation. You can use this information to effectively plan the distribution
of these tables (and their indexes) across the available physical devices (or among ASM disk groups)
to reduce the amount of I/O contention encountered.

In data warehousing applications, the physical database diagram should show the aggregations
and materialized views accessed by user queries. Although they contain derived data, they are
critical components of the data access path and must be documented.

Space Requirements
The space requirements deliverable should show the initial space requirements for each database
table and index. The recommendations for the proper size of tables, clusters, and indexes are shown
in the “Sizing Database Objects” section later in this chapter.

Tuning Goals for Queries and Transaction Processing
Changes to the application design may have significant impact on the application’s performance.
Application design choices may also directly affect your ability to tune the application. Because
application design has such a great effect on the DBA’s ability to tune its performance, the DBA
must be involved in the design process.

You must identify the performance goals of a system before it goes into production. The role
of expectation in perception cannot be overemphasized. If the users have an expectation that the
system will be at least as fast as an existing system, anything less will be unacceptable. The estimated
response time for each of the most-used components of the application must be defined and approved.

It is important during this process to establish two sets of goals: reasonable goals and “stretch”
goals. Stretch goals represent the results of concentrated efforts to go beyond the hardware and

05-ch05.indd 128 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 129

software constraints that limit the system’s performance. Maintaining two sets of performance
goals helps to focus efforts on those goals that are truly mission-critical versus those that are
beyond the scope of the core system deliverables. In terms of the goals, you should establish
control boundaries for query and transaction performance; the application performance will be
judged to be “out of control” if the control boundaries are crossed.

Security Requirements
The development team must specify the account structure the application will use, including the
ownership of all objects in the application and the manner in which privileges will be granted.
All roles and privileges must be clearly defined. The deliverables from this section will be used to
generate the account and privilege structure of the production application (see Chapter 10 for a
full review of Oracle’s security capabilities).

Depending on the application, you may need to specify the account usage for batch accounts
separately from that of online accounts. For example, the batch accounts may use the database’s
automatic login features, whereas the online users have to manually sign in. Your security plans
for the application must support both types of users.

Like the space requirements deliverable, security planning is an area in which the DBA’s
involvement is critical. The DBA should be able to design an implementation that meets the
application’s needs while fitting in with the enterprise database security plan.

Data Requirements
The methods for data entry and retrieval must be clearly defined. Data-entry methods must be
tested and verified while the application is in the test environment. Any special data-archiving
requirements of the application must also be documented because they will be application specific.

You must also describe the backup and recovery requirements for the application. These
requirements can then be compared to the enterprise database backup plans (see Chapter 13 for
guidelines). Any database recovery requirements that go beyond the site’s standard will require
modifying the site’s backup standard or adding a module to accommodate the application’s needs.

Query Execution Plans
Execution plans are the steps that the database will go through while executing queries. They are
generated via the EXPLAIN PLAN or SET AUTOTRACE commands or the SQL Monitoring tool, as
described in Chapter 8. Recording the execution plans for the most important queries against the
database will aid in planning the index usage and tuning goals for the application. Generating
them prior to production implementation will simplify tuning efforts and identify potential
performance problems before the application is released. Generating the explain plans for your
most important queries will also facilitate the process of performing code reviews of the application.

If you are implementing a third-party application, you may not have visibility to all the SQL
commands the application is generating. As described in Chapter 8, you can use Oracle’s automated
tuning and monitoring utilities to identify the most resource-intensive queries performed between
two points in time; many of the new automated tuning features introduced in Oracle Database
12c, such as improved accuracy of automatic degree of parallelism (DOP) and adaptive SQL plan
management, can help you fix issues with queries that are not easily visible or accessible.

Acceptance Test Procedures
Developers and users should very clearly define what functionality and performance goals must be
achieved before the application can be migrated to production. These goals will form the foundation
of the test procedures that will be executed against the application while it is in the test environment.

05-ch05.indd 129 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

130 Oracle Database 12c DBA Handbook

The procedures should also describe how to deal with unmet goals. The procedures should
very clearly list the functional goals that must be met before the system can move forward. A
second list of noncritical functional goals should also be provided. This separation of functional
capabilities will aid in both resolving scheduling conflicts and structuring appropriate tests.

NOTE
As part of acceptance testing, all interfaces to the application should
be tested and their input and output verified.

Resource Management
You can use the Database Resource Manager to control the allocation of system resources among
database users. The Database Resource Manager gives DBAs more control over the allocation of
system resources than is possible with operating system controls alone.

Implementing the Database Resource Manager
You can use the Database Resource Manager to allocate percentages of system resources to
classes of users and jobs. For example, you could allocate 75 percent of the available CPU
resources to your online users, leaving 25 percent to your batch users. To use the Database
Resource Manager, you will need to create resource plans, resource consumer groups, and
resource plan directives.

Prior to using the Database Resource Manager commands, you must create a “pending area”
for your work. To create a pending area, use the CREATE_PENDING_AREA procedure of the
DBMS_RESOURCE_MANAGER package. When you have completed your changes, use the
VALIDATE_PENDING_AREA procedure to check the validity of the new set of plans, subplans,
and directives. You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear
the changes (via CLEAR_PENDING_AREA). The procedures that manage the pending area do not
have any input variables, so a sample creation of a pending area uses the following syntax:

execute dbms_resource_manager.create_pending_area();

If the pending area is not created, you will receive an error message when you try to create a
resource plan.

To create a resource plan, use the CREATE_PLAN procedure of the DBMS_RESOURCE_
MANAGER package. The syntax for the CREATE_PLAN procedure is shown in the following listing:

CREATE_PLAN
 (plan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'EMPHASIS',
 active_sess_pool_mth IN VARCHAR2 DEFAULT
'ACTIVE_SESS_POOL_ABSOLUTE',
 parallel_degree_limit_mth IN VARCHAR2 DEFAULT
 'PARALLEL_DEGREE_LIMIT_ABSOLUTE',
 queueing_mth IN VARCHAR2 DEFAULT 'FIFO_TIMEOUT')

05-ch05.indd 130 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 131

When you create a plan, give the plan a name (in the plan variable) and a comment. By
default, the CPU allocation method will use the “emphasis” method, allocating CPU resources
based on percentage. The following example shows the creation of a plan called DEVELOPERS:

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN -
 (Plan => 'DEVELOPERS', -
 Comment => 'Developers, in Development database');

NOTE
The hyphen (-) character is a continuation character in SQL*Plus,
allowing a single command to span multiple lines.

In order to create and manage resource plans and resource consumer groups, you must have
the ADMINISTER_RESOURCE_MANAGER system privilege enabled for your session. DBAs have
this privilege with the WITH ADMIN OPTION. To grant this privilege to non-DBAs, you must
execute the GRANT_SYSTEM_PRIVILEGE procedure of the DBMS_RESOURCE_MANAGER_
PRIVS package. The following example grants the user LYNDAG the ability to manage the
Database Resource Manager:

execute DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE -
 (grantee_name => 'LYNDAG', -
 privilege_name => 'ADMINISTER_RESOURCE_MANAGER', -
 admin_option => TRUE);

You can revoke LYNDAG’s privileges via the REVOKE_SYSTEM_PRIVILEGE procedure of the
DBMS_RESOURCE_MANAGER package.

With the ADMINISTER_RESOURCE_MANAGER privilege enabled, you can create a resource
consumer group using the CREATE_CONSUMER_GROUP procedure within DBMS_RESOURCE_
MANAGER. The syntax for the CREATE_CONSUMER_GROUP procedure is shown in the
following listing:

CREATE_CONSUMER_GROUP
 (consumer_group IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN')

You will be assigning users to resource consumer groups, so give the groups names that are
based on the logical divisions of your users. The following example creates two groups—one for
online developers and a second for batch developers:

execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP -
 (Consumer_Group => 'Online_developers', -
 Comment => 'Online developers');

execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP -
 (Consumer_Group => 'Batch_developers', -
 Comment => 'Batch developers');

Once the plan and resource consumer groups are established, you need to create resource
plan directives and assign users to the resource consumer groups. To assign directives to a plan,

05-ch05.indd 131 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

132 Oracle Database 12c DBA Handbook

use the CREATE_PLAN_DIRECTIVE procedure of the DBMS_RESOURCE_MANAGER package.
The syntax for the CREATE_PLAN_DIRECTIVE procedure is shown in the following listing:

CREATE_PLAN_DIRECTIVE
 (plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_p1 IN NUMBER DEFAULT NULL,
 cpu_p2 IN NUMBER DEFAULT NULL,
 cpu_p3 IN NUMBER DEFAULT NULL,
 cpu_p4 IN NUMBER DEFAULT NULL,
 cpu_p5 IN NUMBER DEFAULT NULL,
 cpu_p6 IN NUMBER DEFAULT NULL,
 cpu_p7 IN NUMBER DEFAULT NULL,
 cpu_p8 IN NUMBER DEFAULT NULL,
 active_sess_pool_p1 IN NUMBER DEFAULT UNLIMITED,
 queueing_p1 IN NUMBER DEFAULT UNLIMITED,
 parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 switch_group IN VARCHAR2 DEFAULT NULL,
 switch_time IN NUMBER DEFAULT UNLIMITED,
 switch_estimate IN BOOLEAN DEFAULT FALSE,
 max_est_exec_time IN NUMBER DEFAULT UNLIMITED,
 undo_pool IN NUMBER DEFAULT UNLIMITED,
 max_idle_time IN NUMBER DEFAULT NULL,
 max_idle_time_blocker IN NUMBER DEFAULT NULL,
 switch_time_in_call IN NUMBER DEFAULT NULL);

The multiple CPU variables in the CREATE_PLAN_DIRECTIVE procedure support the creation
of multiple levels of CPU allocation. For example, you could allocate 75 percent of all your CPU
resources (level 1) to your online users. Of the remaining CPU resources (level 2), you could
allocate 50 percent to a second set of users. You could split the remaining 50 percent of resources
available at level 2 to multiple groups at a third level. The CREATE_PLAN_DIRECTIVE procedure
supports up to eight levels of CPU allocations.

The following example shows the creation of the plan directives for the ONLINE_DEVELOPERS
and BATCH_DEVELOPERS resource consumer groups within the DEVELOPERS resource plan:

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE -
 (Plan => 'DEVELOPERS', -
 Group_or_subplan => 'ONLINE_DEVELOPERS', -
 Comment => 'online developers', -
 Cpu_p1 => 75, -
 Cpu_p2=> 0, -
 Parallel_degree_limit_p1 => 12);

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE -
 (Plan => 'DEVELOPERS', -
 Group_or_subplan => 'BATCH_DEVELOPERS', -
 Comment => 'Batch developers', -
 Cpu_p1 => 25, -
 Cpu_p2 => 0, -
 Parallel_degree_limit_p1 => 6);

05-ch05.indd 132 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 133

In addition to allocating CPU resources, the plan directives restrict the parallelism of operations
performed by members of the resource consumer group. In the preceding example, batch developers
are limited to a degree of parallelism of 6, reducing their ability to consume system resources.
Online developers are limited to a degree of parallelism of 12.

NOTE
Oracle Database 12c includes runaway query management to
proactively prevent queries that have hit their limit in one consumer
group to affect other consumer groups where that same query may
appear.

To assign a user to a resource consumer group, use the SET_INITIAL_CONSUMER_GROUP
procedure of the DBMS_RESOURCE_MANAGER package. The syntax for the SET_INITIAL_
CONSUMER_GROUP procedure is shown in the following listing:

SET_INITIAL_CONSUMER_GROUP
 (user IN VARCHAR2,
 consumer_group IN VARCHAR2)

If a user has never had an initial consumer group set via the SET_INITIAL_CONSUMER_GROUP
procedure, the user is automatically enrolled in the resource consumer group named DEFAULT_
CONSUMER_GROUP.

To enable the Resource Manager within your database, set the RESOURCE_MANAGER_PLAN
database initialization parameter to the name of the resource plan for the instance. Resource
plans can have subplans, so you can create tiers of resource allocations within the instance. If you
do not set a value for the RESOURCE_MANAGER_PLAN parameter, resource management is not
performed in the instance.

You can dynamically alter the instance to use a different resource allocation plan using the
RESOURCE_MANAGER_PLAN initialization parameter; for example, you could create a resource
plan for your daytime users (DAYTIME_USERS) and a second for your batch users (BATCH_USERS).
You could create a job that each day executes this command at 6:00 a.m.:

alter system set resource_manager_plan = 'DAYTIME_USERS';

Then at a set time in the evening, you could change consumer groups to benefit the batch users:

alter system set resource_manager_plan = 'BATCH_USERS';

The resource allocation plan for the instance will thus be altered without needing to shut down
and restart the instance.

When using multiple resource allocation plans in this fashion, you need to make sure you
don’t accidentally use the wrong plan at the wrong time. For example, if the database is down
during a scheduled plan change, your job that changes the plan allocation may not execute. How
will that affect your users? If you use multiple resource allocation plans, you need to consider the
impact of using the wrong plan at the wrong time. To avoid such problems, you should try to
minimize the number of resource allocation plans in use.

05-ch05.indd 133 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

134 Oracle Database 12c DBA Handbook

In addition to the examples and commands shown in this section, you can update existing
resource plans (via the UPDATE_PLAN procedure), delete resource plans (via DELETE_PLAN),
and cascade the deletion of a resource plan plus all its subplans and related resource consumer
groups (DELETE_PLAN_CASCADE). You can update and delete resource consumer groups via
the UPDATE_CONSUMER_GROUP and DELETE_CONSUMER_GROUP procedures, respectively.
Resource plan directives may be updated via UPDATE_PLAN_DIRECTIVE and deleted via
DELETE_PLAN_DIRECTIVE.

When you are modifying resource plans, resource consumer groups, and resource plan
directives, you should test the changes prior to implementing them. To test your changes, create a
pending area for your work. To create a pending area, use the CREATE_PENDING_AREA procedure
of the DBMS_RESOURCE_MANAGER package. When you have completed your changes, use the
VALIDATE_PENDING_AREA procedure to check the validity of the new set of plans, subplans,
and directives. You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear
the changes (via CLEAR_PENDING_AREA). The procedures that manage the pending area do not
have any input variables, so a sample validation and submission of a pending area uses the
following syntax:

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE(
 plan => 'DEVELOPERS', -
 GROUP_OR_SUBPLAN => 'SYS_GROUP', -
 COMMENT => 'System USER SESSIONS AT LEVEL 1', -
 MGMT_P1 => 90, -
 PARALLEL_DEGREE_LIMIT_P1 => 16);
execute DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
execute DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

Switching Consumer Groups
Three of the parameters in the CREATE_PLAN_DIRECTIVE procedure allow sessions to switch
consumer groups when resource limits are met. As shown in the previous section, the parameters
for CREATE_PLAN_DIRECTIVE include SWITCH_GROUP, SWITCH_TIME, and SWITCH_ESTIMATE.

The SWITCH_TIME value is the length of time, in seconds, a job can run before it is switched to
another consumer group. The default SWITCH_TIME value is NULL (unlimited). You should set
the SWITCH_GROUP parameter value to the group the session will be switched to once the
SWITCH_TIME limit is reached. By default, SWITCH_GROUP is NULL. If you set SWITCH_GROUP
to the value CANCEL_SQL, the current call will be canceled when the switch criteria is met. If the
SWITCH_GROUP value is KILL_SESSION, the session will be killed when the switch criteria is met.

You can use the third parameter, SWITCH_ESTIMATE, to tell the database to switch the consumer
group for a database call before the operation even begins to execute. If you set SWITCH_ESTIMATE
to TRUE, Oracle will use its execution time estimate to automatically switch the consumer group for
the operation instead of waiting for it to reach the SWITCH_TIME value.

You can use the group-switching features to minimize the impact of long-running jobs within
the database. You can configure consumer groups with different levels of access to the system
resources and customize them to support fast jobs as well as long-running jobs. The ones that reach
the SWITCH_TIME limit will be redirected to the appropriate groups before they even execute.

Using SQL Profiles
As of Oracle 10g, you can use SQL profiles to further refine the SQL execution plans chosen by
the optimizer. SQL profiles are particularly useful when you are attempting to tune code that you

05-ch05.indd 134 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 135

do not have direct access to (for example, within a packaged application). The SQL profile consists
of statistics that are specific to the statement, allowing the optimizer to know more about the exact
selectivity and cost of the steps in the execution plan.

SQL profiling is part of the automatic tuning capability presented in Chapter 8. Once you
accept a SQL profile recommendation, it is stored in the data dictionary. To control a SQL profile’s
usage you can use a category attribute. See Chapter 8 for further details on the use of the
automatic tools for detection and diagnosis of SQL performance issues.

Sizing Database Objects
Choosing the proper space allocation for database objects is critical. Developers should begin
estimating space requirements before the first database objects are created. Afterward, the space
requirements can be refined based on the actual usage statistics. In the following sections, you
will see the space estimation methods for tables, indexes, and clusters. You’ll also see methods for
determining the proper settings for PCTFREE and PCTUSED.

NOTE
You can enable Automatic Segment Space Management (ASSM) when
you create a tablespace; you cannot enable this feature for existing
tablespaces. If you are using ASSM, Oracle ignores the PCTUSED,
FREELISTS, and FREELIST GROUPS parameters. All new tablespaces
should use ASSM and be locally managed.

Why Size Objects?
You should size your database objects for three reasons:

 ■ To preallocate space in the database, thereby minimizing the amount of future work
required to manage objects’ space requirements

 ■ To reduce the amount of space wasted due to overallocation of space

 ■ To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all these goals by following the sizing methodology shown in the following
sections. This methodology is based on Oracle’s internal methods for allocating space to database
objects. Rather than rely on detailed calculations, the methodology relies on approximations that
will dramatically simplify the sizing process while simplifying the long-term maintainability of the
database.

The Golden Rule for Space Calculations
Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

In the following section, you’ll see how to simplify the space-estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the DEFAULT STORAGE values for a dictionary managed tablespace or the extent
sizes for locally managed tablespaces.

05-ch05.indd 135 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

136 Oracle Database 12c DBA Handbook

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

 ■ Oracle only allocates whole blocks, not parts of blocks.

 ■ Oracle allocates sets of blocks rather than individual blocks.

 ■ Oracle may allocate larger or smaller sets of blocks, depending on the available free
space in the tablespace.

Your goal should be to work with Oracle’s space-allocation methods instead of against them.
If you use consistent extent sizes, you can largely delegate the space allocation to Oracle.

The Impact of Extent Size on Performance
There is no direct performance benefit gained by reducing the number of extents in a table. In
some situations (such as for parallel queries), having multiple extents in a table can significantly
reduce I/O contention and enhance your performance. Regardless of the number of extents in
your tables, they need to be properly sized; as of Oracle Database 10g, you should rely on
automatic (system-managed) extent allocation if the objects in the tablespace are of varying sizes.
Unless you know the precise amount of space you need for each object and the number and size
of extents, use AUTOALLOCATE when you create a tablespace, as in this example:

create tablespace users12
 datafile '+DATA' size 100m
 extent management local autoallocate;

The EXTENT MANAGEMENT LOCAL clause is the default for CREATE TABLESPACE;
AUTOALLOCATE is the default for tablespaces with local extent management.

Oracle reads data from tables in two ways: by ROWID (usually immediately following an
index access) and via full table scans. If the data is read via ROWID, the number of extents in the
table is not a factor in the read performance. Oracle will read each row from its physical location
(as specified in the ROWID) and retrieve the data.

If the data is read via a full table scan, the size of your extents can impact performance to a
very small degree. When reading data via a full table scan, Oracle will read multiple blocks at a
time. The number of blocks read at a time is set via the DB_FILE_MULTIBLOCK_READ_COUNT
database initialization parameter and is limited by the operating system’s I/O buffer size. For
example, if your database block size is 8KB and your operating system’s I/O buffer size is 128KB,
you can read up to 16 blocks per read during a full table scan. In that case, setting DB_FILE_
MULTIBLOCK_READ_COUNT to a value higher than 16 will not affect the performance of the
full table scans. Ideally, the product of DB_FILE_MULTIBLOCK_READ_COUNT * BLOCK_SIZE
should therefore be 1MB.

Estimating Space Requirements for Tables
You use the CREATE_TABLE_COST procedure of the DBMS_SPACE package to estimate the space
required by a table. The procedure determines the space required for a table based on attributes
such as the tablespace storage parameters, the tablespace block size, the number of rows, and the
average row length. The procedure is valid for both dictionary-managed and locally managed
tablespaces.

05-ch05.indd 136 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 137

TIP
When you create a new table using Oracle Cloud Control 12c (or
Oracle Enterprise Manager DB Control in previous versions), you can
click the Estimate Table Size button to estimate table size for a given
estimated row count.

There are two versions of the CREATE_TABLE_COST procedure (it is overloaded so you can
use the same procedure both ways). The first version has four input variables: TABLESPACE_NAME,
AVG_ROW_SIZE, ROW_COUNT, and PCT_FREE. Its output variables are USED_BYTES and
ALLOC_BYTES. The second version’s input variables are TABLESPACE_NAME, COLINFOS, ROW_
COUNT, and PCT_FREE; its output variables are USED_BYTES and ALLOC_BYTES. Descriptions
of the variables are provided in the following table:

Parameter Description

TABLESPACE_NAME The tablespace in which the object will be created.

AVG_ROW_SIZE The average length of a row in the table.

COLINFOS The description of the columns.

ROW_COUNT The anticipated number of rows in the table.

PCT_FREE The pctfree setting for the table.

USED_BYTES The space used by the table’s data. This value includes the
overhead due to the pctfree setting and other block features.

ALLOC_BYTES The space allocated to the table’s data, based on the tablespace
characteristics. This value takes the tablespace extent size settings
into account.

For example, if you have an existing tablespace named USERS, you can estimate the space
required for a new table in that tablespace. In the following example, the CREATE_TABLE_COST
procedure is executed with values passed for the average row size, the row count, and the
PCTFREE setting. The USED_BYTES and ALLOC_BYTES variables are defined and are displayed
via the DBMS_OUTPUT.PUT_LINE procedure:

declare
 calc_used_bytes NUMBER;
 calc_alloc_bytes NUMBER;
begin
 DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name => 'USERS',
 avg_row_size => 100,
 row_count => 5000,
 pct_free => 10,
 used_bytes => calc_used_bytes,
 alloc_bytes => calc_alloc_bytes
);
 DBMS_OUTPUT.PUT_LINE('Used bytes: '||calc_used_bytes);
 DBMS_OUTPUT.PUT_LINE('Allocated bytes: '||calc_alloc_bytes);
end;
/

05-ch05.indd 137 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

138 Oracle Database 12c DBA Handbook

The output of this PL/SQL block will display the used and allocated bytes calculated for these
variable settings. You can easily calculate the expected space usage for multiple combinations of
space settings prior to creating the table. Here is the output from the preceding example:

Used bytes: 66589824
Allocated bytes: 66589824

PL/SQL procedure successfully completed.

NOTE
You must use the SET SERVEROUTPUT ON command to enable the
script’s output to be displayed within a SQL*Plus session.

Estimating Space Requirements for Indexes
Similarly, you can use the CREATE_INDEX_COST procedure of the DBMS_SPACE package to
estimate the space required by an index. The procedure determines the space required for a table
based on attributes such as the tablespace storage parameters, the tablespace block size, the
number of rows, and the average row length. The procedure is valid for both dictionary-managed
and locally managed tablespaces.

For index space estimations, the input variables include the DDL commands executed to
create the index and the name of the local plan table (if one exists). The index space estimates
rely on the statistics for the related table. You should be sure those statistics are correct before
starting the space-estimation process; otherwise, the results will be skewed.

The variables for the CREATE_INDEX_COST procedure are described in the following table:

Parameter Description

DDL The CREATE INDEX command

USED_BYTES The number of bytes used by the index’s data

ALLOC_BYTES The number of bytes allocated for the index’s extents

PLAN_TABLE The plan table to use (the default is NULL)

Because the CREATE_INDEX_COST procedure bases its results on the table’s statistics, you
cannot use this procedure until the table has been created, loaded, and analyzed. The following
example estimates the space required for a new index on the BOOKSHELF table. The tablespace
designation is part of the CREATE INDEX command passed to the CREATE_INDEX_COST
procedure as part of the DDL variable value.

declare
 calc_used_bytes NUMBER;
 calc_alloc_bytes NUMBER;
begin
 DBMS_SPACE.CREATE_INDEX_COST (
 ddl => 'create index EMP_FN on EMPLOYEES '||
 '(FIRST_NAME) tablespace USERS',
 used_bytes => calc_used_bytes,
 alloc_bytes => calc_alloc_bytes
);

05-ch05.indd 138 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 139

 DBMS_OUTPUT.PUT_LINE('Used bytes = '||calc_used_bytes);
 DBMS_OUTPUT.PUT_LINE('Allocated bytes = '||calc_alloc_bytes);
end;
/

The output of the script will show the used and allocated bytes values for the proposed index
for the employee’s first name:

Used bytes = 749
Allocated bytes = 65536

PL/SQL procedure successfully completed.

Estimating the Proper Value for PCTFREE
The PCTFREE value represents the percentage of each data block that is reserved as free space. This
space is used when a row that has already been stored in that data block grows in length, either by
updates of previously NULL fields or by updates of existing values to longer values. The size of a
row can increase (and therefore move the row within a block) during an update when a NUMBER
column increases its precision or a VARCHAR2 column increases in length.

There is no single value for PCTFREE that will be adequate for all tables in all databases.
To simplify space management, choose a consistent set of PCTFREE values:

 ■ For indexes whose key values are rarely changed: 2

 ■ For tables whose rows seldom change: 2

 ■ For tables whose rows frequently change: 10 to 30

Why maintain free space in a table or index even if the rows seldom change? Oracle needs
space within blocks to perform block maintenance functions. If there is not enough free space
available (for example, to support a large number of transaction headers during concurrent inserts),
Oracle will allocate part of the block’s PCTFREE area. You should choose a PCTFREE value that
supports this allocation of space. To reserve space for transaction headers in INSERT-intensive tables,
set the INITRANS parameter to a non-default value (the minimum is 2). In general, your PCTFREE
area should be large enough to hold several rows of data.

NOTE
Oracle automatically allows up to 255 concurrent update transactions
for any data block, depending on the available space in the block; the
space occupied by the transaction entries will take up no more than
half of the block.

Because PCTFREE is tied to the way in which updates occur in an application, determining
the adequacy of its setting is a straightforward process. The PCTFREE setting controls the number
of rows that are stored in a block in a table. To see if PCTFREE has been set correctly, first determine
the number of rows in a block. You can use the DBMS_STATS package to gather statistics. If the
PCTFREE setting is too low, the number of migrated rows will steadily increase due to total row
length increase. You can monitor the database’s V$SYSSTAT view (or the Automatic Workload
Repository) for increasing values of the “table fetch continued row” action; these indicate the need
for the database to access multiple blocks for a single row.

05-ch05.indd 139 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

140 Oracle Database 12c DBA Handbook

Chained rows occur when the entire row will not fit in an empty block or the number of
columns in a row is greater than 255. As a result, part of the row is stored in the first block and
the rest of the row in one or more successive blocks.

NOTE
When rows are moved due to inadequate space in the PCTFREE area,
the move is called a row migration. Row migration will impact the
performance of your transactions.

The DBMS_STATS procedure, while powerful, does not collect statistics on chained rows.
You can still use the ANALYZE command, which is otherwise deprecated in favor of DBMS_STATS,
to reveal chained rows, as in this example:

analyze table employees list chained rows;

NOTE
For indexes that will support a large number of INSERTs, PCTFREE
may need to be as high as 50 percent if the INSERTs are always in the
middle of the index, but otherwise 10 percent is usually adequate for
indexes on increasing values of a numeric column.

Reverse Key Indexes
In a reverse key index, the values are stored backwards (in reverse order). For example, a value of
2201 is stored as 1022. If you use a standard index, consecutive values are stored near each other.
In a reverse key index, consecutive values are not stored near each other. If your queries do not
commonly perform range scans and you are concerned about I/O contention (in a RAC database
environment) or concurrency contention (buffer busy waits statistic in Automatic Database
Diagnostic Monitor) in your indexes, reverse key indexes may be a tuning solution to consider.
When sizing a reverse key index, follow the same method used to size a standard index, as
shown in the prior sections of this chapter.

There is a downside to reverse key indexes, however: they need a high value for PCTFREE to
allow for frequent INSERTs, and must be rebuilt often, more often than a standard B-tree index.

Sizing Bitmap Indexes
If you create a bitmap index, Oracle will dynamically compress the bitmaps generated. The
compression of the bitmap may result in substantial storage savings. To estimate the size of a bitmap
index, estimate the size of a standard (B-tree) index on the same columns using the methods
provided in the preceding sections of this chapter. After calculating the space requirements for the
B-tree index, divide that size by 10 to determine the most likely maximum size of a bitmap index
for those columns. In general, bitmap indexes will be between 2 and 10 percent of the size of a
comparable B-tree index for a bitmap index with low cardinality. The size of the bitmap index
will depend on the variability and number of distinct values in the indexed columns; if a bitmap
index is created on a high-cardinality column, the space occupied by a bitmap index may exceed
the size of a B-tree index on the same column!

05-ch05.indd 140 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 141

NOTE
Bitmap indexes are only available in Oracle Enterprise Edition and
Standard Edition One.

Sizing Index-Organized Tables
An index-organized table is stored sorted by its primary key. The space requirements of an index-
organized table closely mirror those of an index on all of the table’s columns. The difference in
space estimation comes in calculating the space used per row, because an index-organized table
does not have RowIDs.

The following listing gives the calculation for the space requirement per row for an index-
organized table (note that this storage estimate is for the entire row, including its out-of-line
storage):

Row length for sizing = Average row length
 + number of columns
 + number of LOB columns
 + 2 header bytes

Enter this value as the row length when using the CREATE_TABLE_COST procedure for the index-
organized table.

Sizing Tables That Contain Large Objects (LOBs)
LOB data (in BLOB or CLOB datatypes) is usually stored apart from the main table. You can use
the LOB clause of the CREATE TABLE command to specify the storage attributes for the LOB data,
such as a different tablespace. In the main table, Oracle stores a LOB locator value that points to
the LOB data. When the LOB data is stored out of line, between 36 and 86 bytes of control data
(the LOB locator) remain inline in the row piece.

Oracle does not always store the LOB data apart from the main table. In general, the LOB
data is not stored apart from the main table until the LOB data and the LOB locator value total
more than 4000 bytes. Therefore, if you will be storing short LOB values, you need to consider
their impact on the storage of your main table. If your LOB values are less than 32,768 characters,
you may be able to use VARCHAR2 datatypes instead of LOB datatypes in Oracle Database 12c for
the data storage, but those VARCHAR2 columns will still be stored out of line as a SecureFile LOB.

NOTE
You can define VARCHAR2 columns up to 32,767 characters in length
in Oracle Database 12c if you set the initialization parameter MAX_
STRING_SIZE=EXTENDED.

To explicitly specify where the LOB will reside if its size is 4000 bytes or less, use the DISABLE
STORAGE IN ROW or ENABLE STORAGE IN ROW clause in the LOB storage clause of the CREATE
TABLE statement. If a LOB is stored inline, and its value starts out with a size less than 4000 bytes,
it will migrate to out of line. If an out-of-line LOB’s size becomes less than 4000 bytes, it stays out
of line.

Sizing Partitions
You can create multiple partitions of a table. In a partitioned table, multiple separate physical
partitions constitute the table. For example, a SALES table may have four partitions: SALES_NORTH,

05-ch05.indd 141 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

142 Oracle Database 12c DBA Handbook

SALES_SOUTH, SALES_EAST, and SALES_WEST. You should size each of those partitions using the
table-sizing methods described earlier in this chapter. You should size the partition indexes using
the index-sizing methods shown earlier in this chapter.

Using Global Temporary Tables
You can create global temporary tables (GTTs) to hold temporary data during your application
processing. The table’s data can be specific to a transaction or maintained throughout a user’s session.
When the transaction or session completes, the data is truncated from the table.

To create a GTT, use the CREATE GLOBAL TEMPORARY TABLE command. To automatically
delete the rows at the end of the transaction, specify ON COMMIT DELETE ROWS, as shown here:

create global temporary table my_temp_table
(name varchar2(25),
 street varchar2(25),
 city varchar2(25))
on commit delete rows;

You can then insert rows into MY_TEMP_TABLE during your application processing. When you
commit, Oracle will truncate MY_TEMP_TABLE. To keep the rows for the duration of your session,
specify ON COMMIT PRESERVE ROWS instead.

From the DBA perspective, you need to know if your application developers are using this
feature. If they are, you need to account for the space required by their temporary tables during
their processing. Temporary tables are commonly used to improve processing speeds of complex
transactions, so you may need to balance the performance benefit against the space costs. You
can create indexes on temporary tables to further improve processing performance, again at the
cost of increased space usage.

NOTE
GTTs and their indexes do not allocate any space until the first INSERT
into them occurs. When they are no longer in use, their space is
deallocated. In addition, if you are using PGA_AGGREGATE TARGET,
Oracle will try to create the tables in memory and will only write them
to a temporary tablespace if necessary.

Supporting Tables Based on Abstract Datatypes
User-defined datatypes, also known as abstract datatypes, are a critical part of object-relational
database applications. Every abstract datatype has related constructor methods used by developers
to manipulate data in tables. Abstract datatypes define the structure of data: for example, an
ADDRESS_TY datatype may contain attributes for address data, along with methods for manipulating
that data. When you create the ADDRESS_TY datatype, Oracle will automatically create a
constructor method called ADDRESS_TY. The ADDRESS_TY constructor method contains parameters
that match the datatype’s attributes, facilitating inserts of new values into the datatype’s format.
In the following sections, you will see how to create tables that use abstract datatypes, along
with information on the sizing and security issues associated with that implementation.

05-ch05.indd 142 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 143

You can create tables that use abstract datatypes for their column definitions. For example,
you could create an abstract datatype for addresses, as shown here:

create type address_ty as object
(street varchar2(50),
city varchar2(25),
state char(2),
zip number);

Once the ADDRESS_TY datatype has been created, you can use it as a datatype when creating
your tables, as shown in the following listing:

create table customer
(name varchar2(25),
 address address_ty);

When you create an abstract datatype, Oracle creates a constructor method for use during
inserts. The constructor method has the same name as the datatype, and its parameters are the
attributes of the datatype. When you insert records into the CUSTOMER table, you need to use
the ADDRESS_TY datatype’s constructor method to insert address values, as shown here:

insert into customer values
 ('Joe',address_ty('My Street', 'Some City', 'NY', 10001));

In this example, the INSERT command calls the ADDRESS_TY constructor method in order to
insert values into the attributes of the ADDRESS_TY datatype.

The use of abstract datatypes increases the space requirements of your tables by 8 bytes for
each datatype used. If a datatype contains another datatype, you should add 8 bytes for each of
the datatypes.

Using Object Views
The use of abstract datatypes may increase the complexity of your development environment. When
you query the attributes of an abstract datatype, you must use a syntax different from the syntax you
use against tables that do not contain abstract datatypes. If you do not implement abstract datatypes
in all your tables, you will need to use one syntax for some of your tables and a separate syntax for
other tables and you will need to know ahead of time which queries use abstract datatypes.

For example, the CUSTOMER table uses the ADDRESS_TY datatype described in the previous
section:

create table customer
(name varchar2(25),
 address address_ty);

The ADDRESS_TY datatype, in turn, has four attributes: STREET, CITY, STATE, and ZIP. If you
want to select the STREET attribute value from the ADDRESS column of the CUSTOMER table,
you may write the following query:

select address.street from customer;

05-ch05.indd 143 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

144 Oracle Database 12c DBA Handbook

However, this query will not work. When you query the attributes of abstract datatypes, you
must use correlation variables for the table names. Otherwise, there may be an ambiguity regarding
the object being selected. To query the STREET attribute, use a correlation variable (in this case, “C”)
for the CUSTOMER table, as shown in the following example:

select c.address.street from customer c;

As shown in this example, you need to use correlation variables for queries of abstract datatype
attributes even if the query only accesses one table. There are therefore two features of queries
against abstract datatype attributes: the notation used to access the attributes and the correlation
variables requirement. In order to implement abstract datatypes consistently, you may need to alter
your SQL standards to support 100-percent usage of correlation variables. Even if you use correlation
variables consistently, the notation required to access attribute values may cause problems as
well, because you cannot use a similar notation on tables that do not use abstract datatypes.

Object views provide an effective compromise solution to this inconsistency. The CUSTOMER
table created in the previous examples assumes that an ADDRESS_TY datatype already exists.
But what if your tables already exist? What if you had previously created a relational database
application and are trying to implement object-relational concepts in your application without
rebuilding and re-creating the entire application? What you would need is the ability to overlay
object-oriented (OO) structures such as abstract datatypes on existing relational tables. Oracle
provides object views as a means for defining objects used by existing relational tables.

If the CUSTOMER table already exists, you could create the ADDRESS_TY datatype and use
object views to relate it to the CUSTOMER table. In the following listing, the CUSTOMER table is
created as a relational table, using only the normally provided datatypes:

create table customer
(name varchar2(25) primary key,
 street varchar2(50),
 city varchar2(25),
 state char(2),
 zip varchar2(10));

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY datatype. However, for consistency, that
datatype should be applied to the CUSTOMER table as well. The following examples will use the
ADDRESS_TY datatype created in the preceding section.

To create an object view, use the CREATE VIEW command. Within the CREATE VIEW command,
specify the query that will form the basis of the view. The code for creating the CUSTOMER_OV
object view on the CUSTOMER table is shown in the following listing:

create view customer_ov (name, address) as
select name, address_ty(street, city, state, zip)
from customer;

The CUSTOMER_OV view will have two columns: NAME and ADDRESS (the latter is defined
by the ADDRESS_TY datatype). Note that you cannot specify OBJECT as an option within the
CREATE VIEW command.

Several important syntax issues are presented in this example. When a table is built on existing
abstract datatypes, you select column values from the table by referring to the names of the columns

05-ch05.indd 144 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 145

(such as NAME) instead of their constructor methods. When creating the object view, however,
you refer to the names of the constructor methods (such as ADDRESS_TY) instead. Also, you can
use WHERE clauses in the query that forms the basis of the object view. You can therefore limit
the rows that are accessible via the object view.

If you use object views, you as the DBA will administer relational tables the same way as you
did before. You will still need to manage the privileges for the datatypes (see the following section
of this chapter for information on security management of abstract datatypes), but the table and
index structures will be the same as they were before the creation of the abstract datatypes. Using
the relational structures will simplify your administration tasks while allowing developers to access
objects via the object views of the tables.

You can also use object views to simulate the references used by row objects. Row objects are
rows within an object table. To create an object view that supports row objects, you need to first
create a datatype that has the same structure as the table, as shown here:

create or replace type customer_ty as object
(name varchar2(25),
 street varchar2(50),
 city varchar2(25),
 state char(2),
 zip varchar2(10));

Next, create an object view based on the CUSTOMER_TY type while assigning object identifier,
or OID, values to the rows in CUSTOMER:

create view customer_ov of customer_ty
with object identifier (name) as
select name, street, city, state, zip
from customer;

The first part of this CREATE VIEW command gives the view its name (CUSTOMER_OV) and tells
Oracle that the view’s structure is based on the CUSTOMER_TY datatype. An OID identifies the
row object. In this object view, the NAME column will be used as the OID.

If you have a second table that references CUSTOMER via a foreign key or primary key
relationship, you can set up an object view that contains references to CUSTOMER_OV. For example,
the CUSTOMER_CALL table contains a foreign key to the CUSTOMER table, as shown here:

create table customer_call
(name varchar2(25),
 call_number number,
 call_date date,
 constraint customer_call_pk
 primary key (name, call_number),
 constraint customer_call_fk foreign key (name)
 references customer(name));

The NAME column of CUSTOMER_CALL references the same column in the CUSTOMER
table. Because you have simulated OIDs (called pkOIDs) based on the primary key of CUSTOMER,
you need to create references to those OIDs. Oracle provides an operator called MAKE_REF that

05-ch05.indd 145 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

146 Oracle Database 12c DBA Handbook

creates the references (called pkREFs). In the following listing, the MAKE_REF operator is used to
create references from the object view of CUSTOMER_CALL to the object view of CUSTOMER:

create view customer_call_ov as
select make_ref(customer_ov, name) name,
 call_number,
 call_date
from customer_call;

Within the CUSTOMER_CALL_OV view, you tell Oracle the name of the view to reference
and the columns that constitute the pkREF. You could now query CUSTOMER_OV data from
within CUSTOMER_CALL_OV by using the DEREF operator on the CUSTOMER_ID column:

select deref(ccov.name)
from customer_call_ov ccov
where call_date = trunc(sysdate);

You can thus return CUSTOMER data from your query without directly querying the CUSTOMER
table. In this example, the CALL_DATE column is used as a limiting condition for the rows
returned by the query.

Whether you use row objects or column objects, you can use object views to shield your
tables from the object relationships. The tables are not modified; you administer them the way
you always did. The difference is that the users can now access the rows of CUSTOMER as if they
are row objects.

From a DBA perspective, object views allow you to continue creating and supporting standard
tables and indexes while the application developers implement the advanced object-relational
features as a layer above those tables.

Security for Abstract Datatypes
The examples in the previous sections assumed that the same user owned the ADDRESS_TY
datatype and the CUSTOMER table. What if the owner of the datatype is not the table owner?
What if another user wants to create a datatype based on a datatype you have created? In the
development environment, you should establish guidelines for the ownership and use of abstract
datatypes just as you would for tables and indexes.

For example, what if the account named ORANGE_GROVE owns the ADDRESS_TY datatype,
and the user of the account named CON_K tries to create a PERSON_TY datatype? I’ll show you
the problem with type ownership, and then show you an easy solution later in this section. For
example, CON_K executes the following command:

create type person_ty as object
(name varchar2(25),
 address address_ty);

If CON_K does not own the ADDRESS_TY abstract datatype, Oracle will respond to this
CREATE TYPE command with the following message:

Warning: Type created with compilation errors.

05-ch05.indd 146 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 147

The compilation errors are caused by problems creating the constructor method when the
datatype is created. Oracle cannot resolve the reference to the ADDRESS_TY datatype because
CON_K does not own a datatype with that name.

CON_K will not be able to create the PERSON_TY datatype (which includes the ADDRESS_
TY datatype) unless ORANGE_GROVE first grants her EXECUTE privilege on the type. The
following listing shows this GRANT command in action:

grant execute on address_ty to con_k;

NOTE
You must also grant EXECUTE privilege on the type to any user who
will perform DML operations on the table.

Now that the proper GRANTs are in place, CON_K can create a datatype that is based on
ORANGE_GROVE’s ADDRESS_TY datatype:

create or replace type person_ty as object
(name varchar2(25),
 address orange_grove.address_ty);

CON_K’s PERSON_TY datatype will now be successfully created. However, using datatypes
based on another user’s datatypes is not trivial. For example, during INSERT operations, you must
fully specify the name of the owner of each type. CON_K can create a table based on her
PERSON_TY datatype (which includes ORANGE_GROVE’s ADDRESS_TY datatype), as shown
in the following listing:

create table con_k_customers
(customer_id number,
 person person_ty);

If CON_K owned the PERSON_TY and ADDRESS_TY datatypes, an INSERT into the
CUSTOMER table would use the following format:

insert into con_k_customers values
(1,person_ty('John Smith',
 address_ty('522 Main Street','Half Moon Bay','CA','94019-1922')));

This command will not work. During the INSERT, the ADDRESS_TY constructor method is
used, and ORANGE_GROVE owns it. Therefore, the INSERT command must be modified to specify
ORANGE_GROVE as the owner of ADDRESS_TY. The following example shows the corrected
INSERT statement, with the reference to ORANGE_GROVE shown in bold:

insert into con_k_customers values
(1,person_ty('John Smith',
 orange_grove.address_ty('522 Main Street','Half Moon Bay','CA','94019-1922')));

05-ch05.indd 147 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

148 Oracle Database 12c DBA Handbook

Solving this problem is easy: you can create and use a public synonym for a datatype. Continuing
with the previous examples, ORANGE_GROVE can create a public synonym like so and grant
EXECUTE privileges on the type:

create public synonym pub_address_ty for address_ty;
grant execute on address_ty to public;

As a result, any user, including CON_K, can now reference the type using the synonym for
creating new tables or types:

create or replace type person_ty as object
 (name varchar2(25),
 address pub_address_ty);

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on procedural
objects, such as procedures and packages. Within the object-relational implementation of Oracle,
the EXECUTE privilege is extended to cover abstract datatypes as well, as you can see in the example
earlier in this section. The EXECUTE privilege is used because abstract datatypes can include
methods—in other words, PL/SQL functions and procedures that operate on the datatypes. If you
grant someone the privilege to use your datatype, you are granting the user the privilege to execute
the methods you have defined on the datatype. Although ORANGE_GROVE did not yet define
any methods on the ADDRESS_TY datatype, Oracle automatically creates constructor methods that
are used to access the data. Any object (such as PERSON_TY) that uses the ADDRESS_TY datatype
uses the constructor method associated with ADDRESS_TY.

You cannot create public types, but as you saw earlier in this section, you can create public
synonyms for your types to ease datatype management; one solution would be to create all types
using a single schema name and create the appropriate synonyms. The users who reference the
type do not have to know the owner of the types to use them effectively.

Indexing Abstract Datatype Attributes
In the preceding example, the CON_K_CUSTOMERS table was created based on a PERSON_TY
datatype and an ADDRESS_TY datatype. As shown in the following listing, the CON_K_CUSTOMERS
table contains a scalar (non-object-oriented) column CUSTOMER_ID and a PERSON column that
is defined by the PERSON_TY abstract datatype:

create table george_customers
(customer_id number,
 person person_ty);

From the datatype definitions shown in the previous section of this chapter, you can see that
PERSON_TY has one column, NAME, followed by an ADDRESS column defined by the
ADDRESS_TY datatype.

When referencing columns within the abstract datatypes during queries, updates, and deletes,
specify the full path to the datatype attributes. For example, the following query returns the
CUSTOMER_ID column along with the NAME column. The NAME column is an attribute of the
datatype that defines the PERSON column, so you refer to the attribute as PERSON.NAME,
as shown here:

select c.customer_id, c.person.name
 from con_k_customers c;

05-ch05.indd 148 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 149

You can refer to attributes within the ADDRESS_TY datatype by specifying the full path through
the related columns. For example, the STREET column is referred to as PERSON.ADDRESS.STREET,
which fully describes its location within the structure of the table. In the following example,
the CITY column is referenced twice, once in the list of columns to select and once within the
WHERE clause:

select c.person.name,
 c.person.address.city
 from con_k_customers c
 where c.person.address.city like 'C%';

Because the CITY column is used with a range search in the WHERE clause, the optimizer may be
able to use an index when resolving the query. If an index is available on the CITY column,
Oracle can quickly find all the rows that have CITY values starting with the letter C, specified in
the predicate.

To create an index on a column that is part of an abstract datatype, you need to specify the
full path to the column as part of the CREATE INDEX command. To create an index on the CITY
column (which is part of the ADDRESS column), you can execute the following command:

create index i_con_k_customers_city
on con_k_customers(person.address.city);

This command will create an index named I_CON_K_CUSTOMER_CITY on the PERSON
.ADDRESS.CITY column. Whenever the CITY column is accessed, the optimizer will evaluate the
SQL used to access the data and determine if the new index can be useful to improve the performance
of the access.

When creating tables based on abstract datatypes, you should consider how the columns
within the abstract datatypes will be accessed. If, like the CITY column in the previous example,
certain columns will commonly be used as part of limiting conditions in queries, they should be
indexed. In this regard, the representation of multiple columns in a single abstract datatype may
hinder your application performance, because it may obscure the need to index specific columns
within the datatype.

When you use abstract datatypes, you become accustomed to treating a group of columns as
a single entity, such as the ADDRESS columns or the PERSON columns. It is important to remember
that the optimizer, when evaluating query access paths, will consider the columns individually.
You therefore need to address the indexing requirements for the columns even when you are
using abstract datatypes. In addition, remember that indexing the CITY column in one table that
uses the ADDRESS_TY datatype does not affect the CITY column in a second table that uses the
ADDRESS_TY datatype. If there is a second table named BRANCH that uses the ADDRESS_TY
datatype, then its CITY column will not be indexed unless you explicitly create an index for it.
Also keep in mind that extra indexes on abstract datatypes adds three times the overhead for each
additional index, much like an index on non-abstract datatypes.

Quiescing and Suspending the Database
You can temporarily quiesce or suspend the database during your maintenance operations.
Using these options allows you to keep the database open during application maintenance,
avoiding the time or availability impact associated with database shutdowns.

05-ch05.indd 149 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

150 Oracle Database 12c DBA Handbook

While the database is quiesced, no new transactions will be permitted by any accounts other
than SYS and SYSTEM. New queries or attempted logins will appear to hang until you unquiesce
the database. The quiesce feature is useful when performing table maintenance or complicated
data maintenance. To use the quiesce feature, you must first enable the Database Resource
Manager, as described earlier in this chapter. In addition, the RESOURCE_MANAGER_PLAN
initialization parameter must have been set to a valid plan when the database was started, and it
must not have been disabled following database startup.

While logged in as SYS or SYSTEM (other SYSDBA privileged accounts cannot execute these
commands), quiesce the database as follows:

alter system quiesce restricted;

Any non-DBA sessions logged into the database will continue until their current command
completes, at which point they will become inactive. Currently inactive sessions will stay
quiesced. In Real Application Clusters configurations, all running instances will be quiesced.

To see if the database is in quiesced state, log in as SYS or SYSTEM and execute the following
query:

select active_state from v$instance;

The ACTIVE_STATE column value will be either NORMAL (unquiesced), QUIESCING (active non-
DBA sessions are still running), or QUIESCED.

To unquiesce the database, use the following command:

alter system unquiesce;

Instead of quiescing the database, you can suspend it. A suspended database performs no I/O
to its datafiles and control files, allowing the database to be backed up without I/O interference.
To suspend the database, use the following command:

alter system suspend;

NOTE
Do not use the ALTER SYSTEM SUSPEND command unless you have
put the database in hot backup mode.

Although the ALTER SYSTEM SUSPEND command can be executed from any SYSDBA
privileged account, you can only resume normal database operations from the SYS and SYSTEM
accounts. Use SYS and SYSTEM to avoid potential errors while resuming the database operations.
In Real Application Clusters configurations, all instances will be suspended. To see the current
status of the instance, use the following command:

select database_status from v$instance;

The database will be either SUSPENDED or ACTIVE. To resume the database, log in as SYS or
SYSTEM and execute the following command:

alter system resume;

05-ch05.indd 150 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 151

Supporting Iterative Development
Iterative development methodologies typically consist of a series of rapidly developed prototypes.
These prototypes are used to define the system requirements as the system is being developed.
These methodologies are attractive because of their ability to show the customers something
tangible as development is taking place. However, there are a few common pitfalls that occur
during iterative development that undermine its effectiveness.

First, effective versioning is not always used. Creating multiple versions of an application
allows certain features to be “frozen” while others are changed. It also allows different sections of
the application to be in development while others are in test. Too often, one version of the
application is used for every iteration of every feature, resulting in an end product that is not
adequately flexible to handle changing needs (which was the alleged purpose of the iterative
development).

Second, the prototypes are not always thrown away. Prototypes are developed to give the
customer an idea of what the final product will look like; they should not be intended as the
foundation of a finished product. Using them as a foundation will not yield the most stable and
flexible system possible. When performing iterative development, treat the prototypes as temporary
legacy systems.

Third, the divisions between development, test, and production environments are clouded.
The methodology for iterative development must very clearly define the conditions that have to be
met before an application version can be moved to the next stage. It may be best to keep the
prototype development completely separate from the development of the full application.

Finally, unrealistic timelines are often set. The same deliverables that applied to the structured
methodology apply to the iterative methodology. The fact that the application is being developed
at an accelerated pace does not imply that the deliverables will be any quicker to generate.

Iterative Column Definitions
During the development process, your column definitions may change frequently. You can drop
columns from existing tables. You can drop a column immediately, or you can mark it as UNUSED
to be dropped at a later time. If the column is dropped immediately, the action may impact
performance. If the column is marked as UNUSED, there will be no impact on performance.
The column can actually be dropped at a later time when the database is less heavily used.

To drop a column, use either the SET UNUSED clause or the DROP clause of the ALTER TABLE
command. You cannot drop a pseudo-column, a column of a nested table, or a partition key column.

In the following example, column COL2 is dropped from a table named TABLE1:

alter table table1 drop column col2;

You can mark a column as UNUSED, as shown here:

alter table table1 set unused column col3;

NOTE
As of Oracle Database 12c, you can use SET UNUSED COLUMN . . .
ONLINE to prevent blocking locks on the table and therefore enhance
availability.

05-ch05.indd 151 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

152 Oracle Database 12c DBA Handbook

Marking a column as UNUSED does not release the space previously used by the column.
You can also drop any unused columns:

alter table table1 drop unused columns;

You can query USER_UNUSED_COL_TABS, DBA_UNUSED_COL, and ALL_UNUSED_COL_TABS
to see all tables with columns marked as UNUSED.

NOTE
Once you have marked a column as UNUSED, you cannot access
that column. If you export the table after designating a column as
UNUSED, the column will not be exported.

You can drop multiple columns in a single command, as shown in the following example:

alter table table1 drop (col4, col5);

NOTE
When dropping multiple columns, you should not use the COLUMN
keyword of the ALTER TABLE command. The multiple column names
must be enclosed in parentheses, as shown in the preceding example.

If the dropped columns are part of primary keys or unique constraints, you will also need to
use the CASCADE CONSTRAINTS clause as part of your ALTER TABLE command. If you drop a
column that belongs to a primary key, Oracle will drop both the column and the primary key index.

If you cannot immediately arrange for a maintenance period during which you can drop the
columns, mark them as UNUSED. During a later maintenance period, you can complete the
maintenance from the SYS or SYSTEM account.

Forcing Cursor Sharing
Ideally, application developers should use bind variables in their programs to maximize the reuse
of their previously parsed commands in the shared SQL area. If bind variables are not in use, you
may see many very similar statements in the library cache: queries that differ only in the literal
value in the WHERE clause.

Statements that are identical except for their literal value components are called similar
statements. Similar statements can reuse previously parsed commands in the shared SQL area if
the CURSOR_SHARING initialization parameter is set to FORCE. Use EXACT (the default) if the
SQL statements must match exactly including all literals.

NOTE
As of Oracle Database 12c, a value of SIMILAR for CURSOR_
SHARING has been deprecated and FORCE should be used instead.

05-ch05.indd 152 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 153

Managing Package Development
Imagine a development environment with the following characteristics:

 ■ None of your standards are enforced.

 ■ Objects are created under the SYS or SYSTEM account.

 ■ Proper distribution and sizing of tables and indexes is only lightly considered.

 ■ Every application is designed as if it were the only application you intend to run in your
database.

As undesirable as these conditions are, they are occasionally encountered during the
implementation of purchased packaged applications. Properly managing the implementation of
packages involves many of the same issues that were described for the application development
processes in the previous sections. This section will provide an overview of how packages should
be treated so they will best fit with your development environment.

Generating Diagrams
Most CASE tools have the ability to reverse-engineer packages into a physical database diagram.
Reverse engineering consists of analyzing the table structures and generating a physical database
diagram that is consistent with those structures, usually by analyzing column names, constraints,
and indexes to identify key columns. However, normally there is no one-to-one correlation
between the physical database diagram and the entity relationship diagram. Entity relationship
diagrams for packages can usually be obtained from the package vendor; they are helpful in
planning interfaces to the package database.

Space Requirements
Most Oracle-based packages provide fairly accurate estimates of their database resource usage
during production usage. However, they usually fail to take into account their usage requirements
during data loads and software upgrades. You should carefully monitor the package’s undo
requirements during large data loads. A spare DATA tablespace may be needed as well if the
package creates copies of all its tables during upgrade operations.

Tuning Goals
Just as custom applications have tuning goals, packages must be held to tuning goals as well.
Establishing and tracking these control values will help to identify areas of the package in need of
tuning (see Chapter 8).

Security Requirements
Unfortunately, many packages that use Oracle databases fall into one of two categories: either
they were migrated to Oracle from another database system, or they assume they will have full
DBA privileges for their object owner accounts.

If the packages were first created on a different database system, their Oracle port very likely
does not take full advantage of Oracle’s functional capabilities, such as sequences, triggers, and
methods. Tuning such a package to meet your needs may require modifying the source code.

05-ch05.indd 153 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

154 Oracle Database 12c DBA Handbook

If the package assumes that it has full DBA authority, it must not be stored in the same
database as any other critical database application. Most packages that require DBA authority do
so in order to add new users to the database. You should determine exactly which system-level
privileges the package administrator account actually requires (such as CREATE SESSION and
CREATE USER, for example). You can create a specialized system-level role to provide this limited
set of system privileges to the package administrator.

Packages that were first developed on non-Oracle databases may require the use of the same
account as another Oracle-ported package. For example, ownership of a database account called
SYSADM may be required by multiple applications. The only way to resolve this conflict with full
confidence is to create the two packages in separate databases.

Data Requirements
Any processing requirements that the packages have, particularly on the data-entry side, must be
clearly defined. These requirements are usually well documented in package documentation.

Version Requirements
Applications you support may have dependencies on specific versions and features of Oracle. If
you use packaged applications, you will need to base your kernel version upgrade plans on the
vendor’s support for the different Oracle versions. Furthermore, the vendor may switch the optimizer
features it supports. For example, it may require that your COMPATIBLE parameter be set to a
specific value. Your database environment will need to be as flexible as possible in order to support
these changes.

Because of these restrictions outside of your control, you should attempt to isolate the
packaged application to its own instance. If you frequently query data across applications, the
isolation of the application to its own instance will increase your reliance on database links. You
need to evaluate the maintenance costs of supporting multiple instances against the maintenance
costs of supporting multiple applications in a single instance.

Execution Plans
Generating execution plans requires accessing the SQL statements that are run against the
database. The shared SQL area in the SGA maintains the SQL statements that are executed against
the database (accessible via the V$SQL_PLAN view). Matching the SQL statements against
specific parts of the application is a time-consuming process. You should attempt to identify
specific areas whose functionality and performance are critical to the application’s success and
work with the package’s support team to resolve performance issues. You can use the Automated
Workload Repository (see Chapter 8) to gather all the commands generated during testing periods
and then determine the explain plans for the most resource-intensive queries in that set. If the
commands are still in the shared SQL area, you can see the statistics via V$SQL and the explain
plan via V$SQL_PLAN and see both of them using Cloud Control 12c.

Acceptance Test Procedures
Purchased packages should be held to the same functional requirements that custom applications
must meet. The acceptance test procedures should be developed before the package has been
selected; they can be generated from the package-selection criteria. By testing in this manner,

05-ch05.indd 154 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 5: Developing and Implementing Applications 155

you will be testing for the functionality you need rather than what the package developers
thought you wanted.

Be sure to specify what your options are in the event the package fails its acceptance test for
functional or performance reasons. Critical success factors for the application should not be
overlooked just because it is a purchased application.

The Testing Environment
When establishing a testing environment, follow these guidelines:

 ■ It should be larger than your production environment. You need to be able to forecast
future performance and test scalability.

 ■ It must contain known data sets, explain plans, performance results, and data result sets.

 ■ It must be used for each release of the database and tools, as well as for new features.

 ■ It must support the generation of multiple test conditions to enable the evaluation of the
features’ business costs. You do not want to have to rely on point analysis of results; ideally,
you can determine the cost/benefit curves of a feature as the database grows in size.

 ■ It must be flexible enough to allow you to evaluate different licensing cost options.

 ■ It must be actively used as a part of your technology implementation methodology.

When testing transaction performance, be sure to track the incremental load rate over time.
In general, the indexes on a table will slow the performance of loads when they reach a second
internal level. See Chapter 8 for details on indexes and load performance.

When testing, your sample queries should represent each of the following groups:

 ■ Queries that perform joins, including merge joins, nested loops, outer joins, and hash joins

 ■ Queries that use database links

 ■ DML statements that use database links

 ■ Each type of DML statement (INSERT, UPDATE, and DELETE statements)

 ■ Each major type of DDL statement, including table creations, index rebuilds, and grants

 ■ Queries that use parallelism (if that option is in use in your environment)

The sample set should not be fabricated; it should represent your operations, and it must be
repeatable. Generating the sample set should involve reviewing your major groups of operations
as well as the OLTP operations executed by your users. The result will not reflect every action
within the database, but will allow you to be aware of the implications of upgrades and thus allow
you to mitigate your risk and make better decisions about implementing new options.

Summary
Creating an effective Oracle database is much more than the CREATE DATABASE command.
There are many prerequisites to consider such as the overall architecture of the application:
what are the service level agreements with the eventual users of the system? Has the data model
been completed and verified to contain the data elements that end users require?

05-ch05.indd 155 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

156 Oracle Database 12c DBA Handbook

From a development point of view you must decide which Oracle features are best suited for
the application and its growth pattern. Using Oracle features such as partitioning, materialized views,
and parallelism will ensure adequate response times and efficient use of the database server itself.

Once the database is up and running, your job as a DBA is not over—you must monitor the
database to ensure that the SLAs are being met and predict when a hardware upgrade is necessary
along with the required disk space needed to ensure that the system will be available when users
need it.

05-ch05.indd 156 09/04/15 12:36 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 157

CHAPTER
6

Monitoring Space Usage

06-ch06.indd 157 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

158 Oracle Database 12c DBA Handbook

A good DBA has a toolset in place to monitor the database, both proactively monitoring
various aspects of the database, such as transaction load, security enforcement, space
 management, and performance monitoring, and effectively reacting to any potentially

disastrous system problems. Transaction management, performance tuning, memory management,
and database security and auditing are covered in Chapters 7 through 10. In this chapter, we’ll
address how a DBA can effectively and efficiently manage the disk space used by database objects
in the different types of tablespaces: the SYSTEM tablespace, the SYSAUX tablespace, temporary
tablespaces, undo tablespaces, and tablespaces of different sizes.

To reduce the amount of time it takes to manage disk space, it is important for the DBA not
only to understand how the applications will be using the database, but also to provide guidance
during the design of the database application. Designing and implementing the database application,
including tablespace layouts and expected growth of the database, have been covered in Chapters 3,
4, and 5.

In this chapter, I’ll also provide some scripts that need not much more than SQL*Plus and the
knowledge to interpret the results. These scripts are good for a quick look at the database’s health at
a given point in time—for example, to see if there is enough disk space to handle a big SQL*Loader
job that evening or to diagnose some response-time issues for queries that normally run quickly.

Oracle provides a number of built-in packages to help the busy DBA manage space and
diagnose problems. For example, Oracle Segment Advisor, introduced in Oracle Database 10g,
helps to determine if a database object has space available for reuse, given how much fragmentation
exists in the object. Other features of Oracle, such as Resumable Space Allocation, allow a long-
running operation that runs out of disk space to be suspended until the DBA can intervene and
allocate enough additional disk space to complete the operation. As a result, the long-running job
will not have to be restarted from the beginning.

We’ll also cover some of the key data dictionary and dynamic performance views that give us
a close look at the structure of the database and a way to optimize space usage. Many of the scripts
provided in this chapter use these views.

At the end of this chapter, we’ll cover two different methods for automating some of the scripts
and Oracle tools: using the DBMS_SCHEDULER built-in package as well as using the Oracle
Enterprise Manager (OEM) infrastructure.

Space usage for tablespaces will be the primary focus in this chapter, along with the objects
contained within the tablespaces. Other database files, such as control files and redo log files, take up
disk space, but as a percentage of the total space used by a database they are small. We will, however,
briefly consider how archived log files are managed, because the number of archived log files will
increase indefinitely at a pace proportional to how much DML activity occurs in the database.
Therefore, a good plan for managing archived log files will help keep disk space usage under control.

Common Space Management Problems
Space management problems generally fall into one of three categories: running out of space in a
regular tablespace, not having enough undo space for long-running queries that need a consistent
“before” image of the tables, and insufficient space for temporary segments. Although we may still
have some fragmentation issues within a database object such as a table or index, locally managed
tablespaces solve the problem of tablespace fragmentation.

Each of these three problem areas are addressed by using the techniques described in the
following sections.

06-ch06.indd 158 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 159

Running Out of Free Space in a Tablespace
If a tablespace is not defined with the AUTOEXTEND attribute, then the total amount of space in
all the datafiles that compose the tablespace limits the amount of data that can be stored in the
tablespace. If the AUTOEXTEND attribute is defined, then one or more of the datafiles that compose
the tablespace will grow to accommodate the requests for new segments or the growth of existing
segments. Even with the AUTOEXTEND attribute, the amount of space in the tablespace is ultimately
limited by the amount of disk space on the physical disk drive or storage group. If you have created
a bigfile tablespace, you have only one datafile, but that single datafile has the same constraints as
a datafile in a smallfile tablespace.

The AUTOEXTEND attribute is the default if you don’t specify the SIZE parameter in the CREATE
TABLESPACE command and you are using Oracle Managed Files (OMF), so you’ll actually have
to go out of your way to prevent a datafile from autoextending. In Oracle Database 11g or 12c,
with the initialization parameter DB_CREATE_FILE_DEST set to an ASM or file system location,
you can run a CREATE TABLESPACE command like this:

create tablespace bi_02;

In this case, the tablespace BI_02 is created with the default initial extent size of 100MB in a
single datafile, AUTOEXTEND is on, and the next extent is 100MB when the first datafile fills up.
In addition, extent management is set to LOCAL, space allocation is AUTOALLOCATE, and segment
space management is set to AUTO.

The conclusion to be reached here is that we want to monitor the free and used space within
a tablespace to detect trends in space usage over time, and as a result be proactive in making sure
that enough space is available for future space requests. You can use the DBMS_SERVER_ALERT
package (with a PL/SQL call or via Cloud Control 12c) to automatically notify you when a tablespace
reaches a warning or critical space threshold level, either at a percent used, space remaining,
or both.

Insufficient Space for Temporary Segments
A temporary segment stores intermediate results for database operations such as sorts, index builds,
DISTINCT queries, UNION queries, or any other operation that necessitates a sort/merge
operation that cannot be performed in memory. Temporary segments should be allocated in
a temporary tablespace, which was introduced in Chapter 1. Under no circumstances should the
SYSTEM tablespace be used for temporary segments; when the database is created, a non-SYSTEM
tablespace should be specified as a default temporary tablespace for users who are not otherwise
assigned a temporary tablespace. If the SYSTEM tablespace is locally managed (which is preferred
and the default since Oracle Database 10g), a default temporary tablespace must be defined when
the database is created.

When there is not enough space available in the user’s default temporary tablespace, and either
the tablespace cannot be autoextended or the tablespace’s AUTOEXTEND attribute is disabled, the
user’s query or DML statement fails.

Too Much or Too Little Undo Space Allocated
Undo tablespaces have simplified the management of rollback information by managing undo
information automatically within the tablespace. The DBA does not have to define the number and
size of the rollback segments for the kinds of activity occurring in the database; as of Oracle 10g,
manual rollback management has been deprecated.

06-ch06.indd 159 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

160 Oracle Database 12c DBA Handbook

Not only does an undo segment allow a rollback of an uncommitted transaction, it provides
for read consistency of long-running queries that begin before INSERTs, UPDATEs, and DELETEs
occur on a table. The amount of undo space available for providing read consistency is under the
control of the DBA and is specified as the number of seconds that Oracle will attempt to guarantee
that “before” image data is available for long-running queries.

As with temporary tablespaces, we want to make sure we have enough space allocated in an
undo tablespace for peak demands without allocating more than is needed. As with any tablespace,
we can use the AUTOEXTEND option when creating the tablespace to allow for unexpected growth
of the tablespace without reserving too much disk space up front.

Undo segment management is discussed in detail in Chapter 7, whereas the tools to help size
the undo tablespaces are discussed later in this chapter.

Fragmented Tablespaces and Segments
A tablespace that is locally managed uses bitmaps to keep track of free space, which, in addition to
eliminating the contention on the data dictionary, eliminates wasted space because all extents are
either the same size (with uniform extent allocation) or are multiples of the smallest size (with
autoallocation). For migrating from a dictionary-managed tablespace, we will review an example
that converts a dictionary-managed tablespace to a locally managed tablespace. In a default
installation of Oracle Database 10g or later using the Database Configuration Assistant (DBCA),
all tablespaces, including the SYSTEM and SYSAUX tablespaces, are created as locally managed
tablespaces.

By default, starting with Oracle Database 11g, you don’t need to specify many options in the
CREATE TABLESPACE statement to get a locally managed tablespace with Automatic Segment
Space Management (ASSM):

create tablespace users4
 datafile '+DATA'
 size 250m autoextend on next 250m maxsize 2g
 uniform size 8m;
tablespace USERS4 created.

select tablespace_name, initial_extent, next_extent,
 extent_management, allocation_type, segment_space_management
from dba_tablespaces
where tablespace_name='USERS4';

TABLESPACE_NAME INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATIO SEGMEN
--------------- -------------- ----------- ---------- --------- ------
USERS4 8388608 8388608 LOCAL UNIFORM AUTO

Only the UNIFORM clause is required if you want fixed extent sizes; otherwise, the default is
AUTOALLOCATE and therefore Oracle manages the extent sizes.

This tablespace will be created with an initial size of 250MB, and it can grow as large as
2000MB (2GB); extents will be locally managed with a bitmap, and every extent in this tablespace
will be exactly 8MB in size. Space within each segment (table or index) will be managed
automatically with a bitmap instead of freelists.

Even with efficient extent allocation, table and index segments may eventually contain a lot of free
space due to UPDATE and DELETE statements. As a result, a lot of unused space can be reclaimed by
using some of the scripts provided later in this chapter, as well as by using Oracle Segment Advisor.

06-ch06.indd 160 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 161

Oracle Segments, Extents, and Blocks
Chapter 1 provided an overview of tablespaces and the logical structures contained within them.
Also briefly presented were datafiles, allocated at the operating system level, as the building blocks
for tablespaces. Being able to effectively manage disk space in the database requires an in-depth
knowledge of tablespaces and datafiles, as well as the components of the segments stored within
the tablespaces, such as tables and indexes. At the lowest level, a tablespace segment consists
of one or more extents, each extent comprising one or more data blocks. Figure 6-1 shows the
relationship between segments, extents, and blocks in an Oracle database.

In the following sections are the details of data blocks, extents, and segments with the focus
on space management.

Data Blocks
A data block is the smallest unit of storage in the database. Ideally, an Oracle block is a multiple
of the operating system block to ensure efficient I/O operations. The default block size for the
database is specified with the DB_BLOCK_SIZE initialization parameter; this block size is used for
the SYSTEM, TEMP, and SYSAUX tablespaces at database creation and cannot be changed without
re-creating the database.

The format for a data block is presented in Figure 6-2.

FIGURE 6-1. Oracle segments, extents, and blocks

06-ch06.indd 161 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

162 Oracle Database 12c DBA Handbook

Every data block contains a header that specifies what kind of data is in the block: table rows
or index entries. The table directory section has information about the table with rows in the block;
a block can have rows from only one table or entries from only one index, unless the table is a
clustered table, in which case the table directory identifies all the tables with rows in this block.
The row directory provides details of the specific rows of the table or index entries in the block.

The space for the header, table directory, and row directory is a very small percentage of the
space allocated for a block; our focus, then, is on the free space and row data within the block.

Within a newly allocated block, free space is available for new rows and updates to existing
rows; the updates may increase or decrease the space allocated for the row if there are varying-
length columns in the row or a non-NULL value is changed to a NULL value, or vice versa. Space
is available within a block for new inserts until there is less than a certain percentage of space
available in the block defined by the PCTFREE parameter, specified when the segment is created.
Once there is less than PCTFREE space in the block, no inserts are allowed. If freelists are used to
manage space within the blocks of a segment, then new inserts are allowed on the table when
used space within the block falls below PCTUSED.

FIGURE 6-2. Contents of an Oracle data block

06-ch06.indd 162 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 163

A row may span more than one block if the row size is greater than the block size or an
updated row no longer fits into the original block. In the first case, a row that is too big for a block
is stored in a chain of blocks; this may be unavoidable if a row contains columns that exceed
even the largest block size allowed, which in Oracle 11g is 32KB.

In the second case, an update to a row in a block may no longer fit in the original block, and
as a result Oracle will migrate the data for the entire row to a new block and leave a pointer in
the first block to point to the location in the second block where the updated row is stored. As
you may infer, a segment with many migrated rows may cause I/O performance problems because
the number of blocks required to satisfy a query can double. In some cases, adjusting the value of
PCTFREE or rebuilding the table may result in better space utilization and I/O performance. More
tips on how to improve I/O performance can be found in Chapter 8.

Starting with Oracle9i Release 2, you can use Automatic Segment Space Management (ASSM)
to manage free space within blocks; you enable ASSM in locally managed tablespaces by using
the SEGMENT SPACE MANAGEMENT AUTO keywords in the CREATE TABLESPACE command
(although this is the default for locally managed tablespaces).

Using ASSM reduces segment header contention and improves simultaneous insert concurrency;
this is because the free space map in a segment is spread out into a bitmap block within each
extent of the segment. As a result, you dramatically reduce waits because each process performing
INSERT, UPDATE, or DELETE operations will likely be accessing different blocks instead of one
freelist or one of a few freelist groups. In addition, each extent’s bitmap block lists each block
within the extent along with a four-bit “fullness” indicator defined as follows (with room for future
expansion from values 6–15):

 ■ 0000 Unformatted block

 ■ 0001 Block full

 ■ 0010 Less than 25 percent free space available

 ■ 0011 25 percent to 50 percent free space

 ■ 0100 50 percent to 75 percent free space

 ■ 0101 Greater than 75 percent free space

In a RAC database environment, using ASSM segments means you no longer need to create
multiple freelist groups. In addition, you no longer need to specify PCTUSED, FREELISTS, or
FREELIST GROUPS parameters when you create a table; if you specify any of these parameters,
they are ignored.

Extents
An extent is the next level of logical space allocation in a database; it is a specific number of
blocks allocated for a specific type of object, such as a table or index. An extent is the minimum
number of blocks allocated at one time; when the space in an extent is full, another extent is
allocated.

When a table is created, an initial extent is allocated. Once the space is used in the initial
extent, incremental extents are allocated. In a locally managed tablespace, these subsequent extents
can either be the same size (using the UNIFORM keyword when the tablespace is created) or
optimally sized by Oracle (AUTOALLOCATE). For extents that are optimally sized, Oracle starts with
a minimum extent size of 64KB and increases the size of subsequent extents as multiples of the initial
extent as the segment grows. In this way, fragmentation of the tablespace is virtually eliminated.

06-ch06.indd 163 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

164 Oracle Database 12c DBA Handbook

When the extents are sized automatically by Oracle, the storage parameters INITIAL, NEXT,
and MINEXTENTS are used as a guideline, along with Oracle’s internal algorithm, to determine
the best extent sizes. In the following example, a table created in the USERS tablespace (during
installation of a new database, the USERS tablespace is created with AUTOALLOCATE enabled)
does not use the storage parameters specified in the CREATE TABLE statement:

SQL> create table t_autoalloc (c1 char(2000))
 2 storage (initial 1m next 2m)
 3 tablespace users;

Table created.

SQL> begin
 2 for i in 1..3000 loop
 3 insert into t_autoalloc values ('a');
 4 end loop;
 5 end;
 6 /

PL/SQL procedure successfully completed.

SQL> select segment_name, extent_id, bytes, blocks
 2 from user_extents where segment_name = 'T_AUTOALLOC';

SEGMENT_NAME EXTENT_ID BYTES BLOCKS
------------ ---------- ---------- ----------
T_AUTOALLOC 0 65536 8
T_AUTOALLOC 1 65536 8
. . .
T_AUTOALLOC 15 65536 8
T_AUTOALLOC 16 1048576 128
. . .
T_AUTOALLOC 22 1048576 128

23 rows selected.

Unless a table is truncated or the table is dropped, any blocks allocated to an extent remain
allocated for the table, even if all rows have been deleted from the table. The maximum number
of blocks ever allocated for a table is known as the high-water mark (HWM).

Segments
Groups of extents are allocated for a single segment. A segment must be wholly contained within
one and only one tablespace. Every segment represents one and only one type of database object,
such as a table, a partition of a partitioned table, an index, or a temporary segment. For partitioned
tables, every partition resides in its own segment; however, a cluster (with two or more tables) resides
within a single segment. Similarly, a partitioned index consists of one segment for each index partition.

Temporary segments are allocated in a number of scenarios. When a sort operation cannot fit
in memory, such as a SELECT statement that needs to sort the data to perform a DISTINCT,
GROUP BY, or UNION operation, a temporary segment is allocated to hold the intermediate

06-ch06.indd 164 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 165

results of the sort. Index creation also typically requires the creation of a temporary segment.
Because allocation and deallocation of temporary segments occur often, it is highly desirable
to create a tablespace specifically to hold temporary segments. This helps to distribute the I/O
required for a given operation, and it reduces the possibility that fragmentation may occur in
other tablespaces due to the allocation and deallocation of temporary segments. When the
database is created, a default temporary tablespace can be created for any new users who do not
have a specific temporary tablespace assigned; if the SYSTEM tablespace is locally managed (which
it should be for any new database), a separate temporary tablespace must be created to hold
temporary segments.

How space is managed within a segment depends on how the tablespace containing the
block is created. If the tablespace is locally managed (the default and recommended), space in
segments can be managed with either freelists or bitmaps. Oracle strongly recommends that all
new tablespaces be created as locally managed and that free space within segments be managed
automatically with bitmaps. Automatic Segment Space Management allows more concurrent
access to the bitmap lists in a segment compared to freelists; in addition, tables that have widely
varying row sizes make more efficient use of space in segments that are automatically managed.

As mentioned earlier, in the section titled “Data Blocks,” if a segment is created with Automatic
Segment Space Management, bitmaps are used to manage the space within the segment. As a result,
the PCTUSED, FREELIST, and FREELIST GROUPS keywords within a CREATE TABLE or CREATE
INDEX statement are ignored. The three-level bitmap structure within the segment indicates whether
blocks below the HWM are full (less than PCTFREE), 0 to 25 percent free, 25 to 50 percent free,
50 to 75 percent free, 75 to 100 percent free, or unformatted.

Data Dictionary Views and
Dynamic Performance Views
A number of data dictionary views and dynamic performance views are critical in understanding
how disk space is being used in your database. The data dictionary views that begin with DBA_ are
of a more static nature, whereas the V$ views, as expected, are of a more dynamic nature and give
you up-to-date statistics on how space is being used in the database.

In the next few sections, I’ll highlight the space management views and provide some quick
examples; later in this chapter, you’ll see how these views form the basis of Oracle’s space
management tools.

DBA_TABLESPACES
The view DBA_TABLESPACES contains one row for each tablespace, whether native or currently
plugged in from another database. It contains default extent parameters for objects created in the
tablespace that don’t specify INITIAL and NEXT values. The EXTENT_MANAGEMENT column
indicates whether the tablespace is locally managed or dictionary managed. As of Oracle 10g,
the column BIGFILE indicates whether the tablespace is a smallfile or a bigfile tablespace.
Bigfile tablespaces are discussed later in this chapter.

In the following query we retrieve the tablespace type and the extent management type for all
tablespaces within the database:

SQL> select tablespace_name, block_size,
 2 contents, extent_management from dba_tablespaces;

06-ch06.indd 165 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

166 Oracle Database 12c DBA Handbook

TABLESPACE_NAME BLOCK_SIZE CONTENTS EXTENT_MAN
------------------------------ ---------- --------- ----------
SYSTEM 8192 PERMANENT LOCAL
SYSAUX 8192 PERMANENT LOCAL
UNDOTBS1 8192 UNDO LOCAL
TEMP 8192 TEMPORARY LOCAL
USERS 8192 PERMANENT LOCAL
EXAMPLE 8192 PERMANENT LOCAL
DMARTS 16384 PERMANENT LOCAL
XPORT 8192 PERMANENT LOCAL
USERS2 8192 PERMANENT LOCAL
USERS3 8192 PERMANENT LOCAL
USERS4 8192 PERMANENT LOCAL

11 rows selected.

In this example, all the tablespaces are locally managed; in addition, the DMARTS tablespace
has a larger block size to improve response time for data mart tables that are typically accessed
hundreds or thousands of rows at a time.

DBA_SEGMENTS
The data dictionary view DBA_SEGMENTS has one row for each segment in the database. This
view is not only good for retrieving the size of the segment, in blocks or bytes, but also for identifying
the owner of the object and the tablespace where an object resides:

SQL> select tablespace_name, count(*) NUM_OBJECTS,
 2 sum(bytes), sum(blocks), sum(extents) from dba_segments
 3 group by rollup (tablespace_name);

TABLESPACE_NAME NUM_OBJECTS SUM(BYTES) SUM(BLOCKS) SUM(EXTENTS)
---------------- ----------- ---------- ----------- ------------
DMARTS 2 67108864 4096 92
EXAMPLE 418 81068032 9896 877
SYSAUX 5657 759103488 92664 8189
SYSTEM 1423 732233728 89384 2799
UNDOTBS1 10 29622272 3616 47
USERS 44 11665408 1424 73
XPORT 1 134217728 16384 87
 7555 1815019520 217464 12164

DBA_EXTENTS
The DBA_EXTENTS view is similar to DBA_SEGMENTS, except that DBA_EXTENTS drills down
further into each database object. There is one row in DBA_EXTENTS for each extent of each
segment in the database, along with the FILE_ID and BLOCK_ID of the datafile containing the extent:

SQL> select owner, segment_name, tablespace_name,
 2 extent_id, file_id, block_id, bytes from dba_extents
 3 where segment_name = 'AUD$';

06-ch06.indd 166 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 167

OWNER SEGMENT_NAM TABLESPACE EXTENT_ID FILE_ID BLOCK_ID BYTES
----- -------------- ---------- ---------- ---------- ---------- ---------
SYS AUD$ SYSTEM 3 1 32407 196608
SYS AUD$ SYSTEM 4 1 42169 262144
SYS AUD$ SYSTEM 5 2 289 393216
SYS AUD$ SYSTEM 2 1 31455 131072
SYS AUD$ SYSTEM 1 1 30303 65536
SYS AUD$ SYSTEM 0 1 261 16384

In this example, the table AUD$ owned by SYS has extents in two different datafiles that
compose the SYSTEM tablespace.

DBA_FREE_SPACE
The view DBA_FREE_SPACE is broken down by datafile number within the tablespace. You can
easily compute the amount of free space in each tablespace by using the following query:

SQL> select tablespace_name, sum(bytes) from dba_free_space
 2 group by tablespace_name;

TABLESPACE_NAME SUM(BYTES)
---------------- ----------
DMARTS 194969600
XPORT 180289536
SYSAUX 44105728
UNDOTBS1 75169792
USERS3 104792064
USERS4 260046848
USERS 1376256
USERS2 104792064
SYSTEM 75104256
EXAMPLE 23724032

10 rows selected.

Note that the free space does not take into account the space that would be available if and
when the datafiles in a tablespace are autoextended. Also, any space allocated to a table for rows
that are later deleted will be available for future inserts into the table, but it is not counted in the
preceding query results as space available for other database objects. When a table is truncated,
however, the space is made available for other database objects.

DBA_LMT_FREE_SPACE
The view DBA_LMT_FREE_SPACE provides the amount of free space, in blocks, for all tablespaces
that are locally managed, and it must be joined with DBA_DATA_FILES to get the tablespace names.

DBA_THRESHOLDS
Introduced in Oracle Database 10g, DBA_THRESHOLDS contains the currently active list of the
different metrics that gauge the database’s health and specify a condition under which an alert
will be issued if the metric threshold reaches or exceeds a specified value.

06-ch06.indd 167 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

168 Oracle Database 12c DBA Handbook

The values in this view are typically maintained via the OEM interface; in addition, the DBMS_
SERVER_ALERT built-in PL/SQL package can set and get the threshold values with the SET_
THRESHOLD and GET_THRESHOLD procedures, respectively. To read alert messages in the alert
queue, you can use the DBMS_AQ and DBMS_AQADM packages, or OEM can be configured to
send a pager or e-mail message when the thresholds have been exceeded.

For a default installation of Oracle Database 12c, a number of thresholds are configured,
including the following:

 ■ At least one user session is blocked every minute for three consecutive minutes.

 ■ Any segments are not able to extend for any reason.

 ■ The total number of concurrent processes comes within 80 percent of the PROCESSES
initialization parameter value.

 ■ More than two invalid objects exist for any individual database user.

 ■ The total number of concurrent user sessions comes within 80 percent of the SESSIONS
initialization parameter value.

 ■ There are more than 1200 concurrent open cursors.

 ■ There are more than 100 logons per second.

 ■ A tablespace is more than 85 percent full (warning) or more than 97 percent full (critical).

 ■ User logon time is greater than 1000 milliseconds (1 second).

DBA_OUTSTANDING_ALERTS
The data dictionary view DBA_OUTSTANDING_ALERTS contains one row for each active alert in
the database, until the alert is cleared or reset. One of the fields in this view, SUGGESTED_
ACTION, contains a recommendation for addressing the alert condition.

DBA_OBJECT_USAGE
If an index is not being used, it not only takes up space that could be used by other objects, but
the overhead of maintaining the index whenever an INSERT, UPDATE, or DELETE occurs is
wasted. By using the ALTER INDEX . . . MONITORING USAGE command, the data dictionary
view DBA_OBJECT_USAGE will be updated when the index has been accessed indirectly
because of a SELECT statement.

NOTE
V$OBJECT_USAGE is deprecated as of Oracle Database 12c and is
retained for backward compatibility; use DBA_OBJECT_USAGE or
USER_OBJECT_USAGE instead.

DBA_ALERT_HISTORY
After an alert in DBA_OUTSTANDING_ALERTS has been addressed and cleared, a record of the
cleared alert is available in the view DBA_ALERT_HISTORY.

06-ch06.indd 168 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 169

V$ALERT_TYPES
The dynamic performance view V$ALERT_TYPES contains the 175 alert conditions (as of Oracle
12c, Release 1) that can be monitored. The GROUP_NAME column categorizes the alert
conditions by type. For example, for space management issues, we would use alerts with a
GROUP_NAME of “Space”:

SQL> select reason_id, object_type, scope, internal_metric_category,
 2 internal_metric_name from v$alert_types
 3 where group_name = 'Space';

 REASON_ID OBJECT_TYPE SCOPE INTERNAL_METRIC_CATE INTERNAL_METRIC_NA
---------- ------------------ -------- -------------------- ------------------
 123 RECOVERY AREA Database Recovery_Area Free_Space
 1 SYSTEM Instance
 0 SYSTEM Instance
 133 TABLESPACE Database problemTbsp bytesFree
 9 TABLESPACE Database problemTbsp pctUsed
 12 TABLESPACE Database Suspended_Session Tablespace
 10 TABLESPACE Database Snap_Shot_Too_Old Tablespace
 13 ROLLBACK SEGMENT Database Suspended_Session Rollback_Segment
 11 ROLLBACK SEGMENT Database Snap_Shot_Too_Old Rollback_Segment
 14 DATA OBJECT Database Suspended_Session Data_Object
 15 QUOTA Database Suspended_Session Quota

11 rows selected.

Using the alert with REASON_ID=123 as an example, an alert can be initiated when the free
space in the database recovery area falls below a specified percentage.

V$UNDOSTAT
Having too much undo space and having not enough undo space are both problems. Although
an alert can be set up to notify the DBA when the undo space is not sufficient to provide enough
transaction history to satisfy Flashback queries or enough “before” image data to prevent
“Snapshot Too Old” errors, a DBA can be proactive by monitoring the dynamic performance
view V$UNDOSTAT during heavy database usage periods.

V$UNDOSTAT displays historical information about the consumption of undo space for ten-
minute intervals. By analyzing the results from this table, a DBA can make informed decisions
when adjusting the size of the undo tablespace or changing the value of the UNDO_RETENTION
initialization parameter.

V$SORT_SEGMENT
The view V$SORT_SEGMENT can be used to view the allocation and deallocation of space in a
temporary tablespace’s sort segment. The column CURRENT_USERS indicates how many distinct
users are actively using a given segment. V$SORT_SEGMENT is only populated for temporary
tablespaces.

06-ch06.indd 169 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

170 Oracle Database 12c DBA Handbook

V$TEMPSEG_USAGE
From the perspective of users requesting temporary segments, the view V$TEMPSEG_USAGE
identifies the locations, types, and sizes of the temporary segments currently being requested.
Unlike V$SORT_SEGMENT, V$TEMPSEG_USAGE will contain information about temporary
segments in both temporary and permanent tablespaces. Later in this chapter, I’ll introduce the
improved and simplified temporary tablespace management tools available since Oracle Database 11g.

Space Management Methodologies
In the following sections, we will consider various features of Oracle 12c to facilitate the efficient
use of disk space in the database. Locally managed tablespaces offer a variety of advantages to the
DBA, improving the performance of the objects within the tablespace, as well as easing administration
of the tablespace. Fragmentation of a tablespace is a thing of the past. Another feature, Oracle
Managed Files, eases datafile maintenance by automatically removing files at the operating system
level when a tablespace or other database object is dropped. Bigfile tablespaces, introduced in
Oracle 10g, simplify datafile management because one (and only one) datafile is associated
with a bigfile tablespace. This moves the maintenance point up one level from the datafile to the
tablespace. We’ll also review a couple other features introduced in earlier releases: undo tablespaces
and multiple block sizes.

Locally Managed Tablespaces
Prior to Oracle8i, there was only one way to manage free space within a tablespace: by using
data dictionary tables in the SYSTEM tablespace. If a lot of INSERT, DELETE, and UPDATE activity
occurred anywhere in the database, there was the potential for a “hot spot” to occur in the
SYSTEM tablespace where the space management occurred. Oracle removed this potential
bottleneck by introducing locally managed tablespaces (LMTs). A locally managed tablespace
tracks free space in the tablespace with bitmaps, as discussed in Chapter 1. These bitmaps can be
managed very efficiently because they are very compact compared to a freelist of available
blocks. Because they are stored within the tablespace itself, instead of in the data dictionary
tables, contention in the SYSTEM tablespace is reduced.

Since Oracle Database 10g, by default, all tablespaces are created as locally managed
tablespaces, including the SYSTEM and SYSAUX tablespaces. When the SYSTEM tablespace is
locally managed, you can no longer create any dictionary-managed tablespaces in the database
that are read/write. A dictionary-managed tablespace may still be plugged into the database from
an earlier version of Oracle, but it is read-only.

An LMT can have objects with one of two types of extents: automatically sized or all of a
uniform size. If extent allocation is set to UNIFORM when the LMT is created, all extents, as
expected, are the same size. Because all extents are the same size, there can be no fragmentation.
Gone is the classic example of a 51MB segment that can’t be allocated in a tablespace with two
free 50MB extents because the two 50MB extents are not adjacent.

On the other hand, automatic segment extent management within a locally managed tablespace
allocates space based on the size of the object. Initial extents are small, and if the object stays
small, very little space is wasted. If the table grows past the initial extent allocated for the segment,
subsequent extents to the segment are larger. Extents in an autoallocated LMT have sizes of 64KB,
1MB, 8MB, and 64MB, and the extent size increases as the size of the segment increases, up to a
maximum of 64MB. In other words, Oracle is specifying what the values of INITIAL, NEXT, and

06-ch06.indd 170 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 171

PCTINCREASE are automatically, depending on how the object grows. Although it seems like
fragmentation can occur in a tablespace with autoallocation, in practice the fragmentation is
minimal because a new object with a 64KB initial segment size will fit nicely in a 1MB, 4MB,
8MB, or 64MB block preallocated for all other objects with an initial 64KB extent size.

Given an LMT with either automatically managed extents or uniform extents, the free space
within the segment itself can be AUTO or MANUAL. With AUTO segment space management,
a bitmap is used to indicate how much space is used in each block. As mentioned earlier in the
chapter, the parameters PCTUSED, FREELISTS, and FREELIST GROUPS no longer need to be
specified when the segment is created. In addition, the performance of concurrent DML operations
is improved because the segment’s bitmap allows concurrent access. In a freelist-managed
segment, the data block in the segment header that contains the freelist is locked out to all other
writers of the block when a single writer is looking for a free block in the segment. Although
allocating multiple freelists for very active segments does somewhat solve the problem, it is
another structure that the DBA has to manage.

Another advantage of LMTs is that rollback information is reduced or eliminated when any
LMT space-related operation is performed. Because the update of a bitmap in a tablespace is not
recorded in a data dictionary table, no rollback information is generated for this transaction.

Other than third-party applications, such as older versions of SAP that require dictionary-
managed tablespaces, there are no other reasons for creating new dictionary-managed tablespaces
in Oracle 12c. As mentioned earlier, compatibility is provided in part to allow dictionary-managed
tablespaces from previous versions of Oracle to be “plugged into” an Oracle 12c database (as a
transportable tablespace). An Oracle 11g database as a whole can be “plugged into” a container
database (CDB) in a multitenant architecture. But if the SYSTEM tablespace is locally managed,
any dictionary-managed tablespaces must be opened read-only. Later in this chapter, you’ll see
some examples where we can optimize space and performance by moving a tablespace from one
database to another and allocating additional data buffers for tablespaces with different sizes.

Migrating a dictionary-managed tablespace to a locally managed tablespace is very
straightforward using the DBMS_SPACE_ADMIN built-in package:

execute sys.dbms_space_admin.tablespace_migrate_to_local('USERS');

If you’re upgrading your database from Oracle 11g to 12c, you must also convert the SYSTEM
tablespace to an LMT; if so, a number of prerequisites are in order:

 ■ Before starting the migration, shut down the database and perform a cold backup of the
database.

 ■ Any non-SYSTEM tablespaces that are to remain read/write should be converted to LMTs.

 ■ The default temporary tablespace must not be SYSTEM.

 ■ If automatic undo management is being used, the undo tablespace must be online.

 ■ For the duration of the conversion, all tablespaces except for the undo tablespace must
be set to read-only.

 ■ The database must be started in RESTRICTED mode for the duration of the conversion.

If any of these conditions are not met, the TABLESPACE_MIGRATE_TO_LOCAL procedure will
not perform the migration.

06-ch06.indd 171 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

172 Oracle Database 12c DBA Handbook

Using OMF to Manage Space
In a nutshell, Oracle-Managed Files (OMF) simplifies the administration of an Oracle database. At
database creation time, or later by changing a couple parameters in the initialization parameter
file, the DBA can specify a number of default locations for database objects such as datafiles,
redo log files, and control files. Prior to Oracle9i, the DBA had to remember where the existing
datafiles were stored by querying the DBA_DATA_FILES and DBA_TEMP_FILES views. On many
occasions, a DBA would drop a tablespace but would forget to delete the underlying datafiles,
thus wasting space and the time it took to back up files that were no longer used by the database.

Using OMF, Oracle not only automatically creates and deletes the files in the specified
directory location but also ensures that each filename is unique. This avoids corruption and
database downtime in a non-OMF environment due to existing files being overwritten by a DBA
inadvertently creating a new datafile with the same name as an existing datafile, and using the
REUSE clause. OMF fits in nicely with Automatic Storage Management (ASM) to make datafile
creation as simple as specifying +DATA as the destination for the datafile to reside. ASM will
automatically put the datafile into an ASM subdirectory divided by database name and object type:

 [oracle@oel63 ~]$ asmcmd
ASMCMD> pwd
+
ASMCMD> cd data
ASMCMD> ls
ASM/
CDB01/
COMPLREF/
orapwasm
ASMCMD> cd complref
ASMCMD> ls
CONTROLFILE/
DATAFILE/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/
spfilecomplref.ora
ASMCMD> ls -l datafile
Type Redund Striped Time Sys Name
DATAFILE UNPROT COARSE NOV 21 23:00:00 Y EXAMPLE.270.821312609
DATAFILE UNPROT COARSE NOV 21 23:00:00 Y SYSAUX.257.821312437
DATAFILE UNPROT COARSE NOV 21 23:00:00 Y SYSTEM.258.821312493
DATAFILE UNPROT COARSE NOV 21 23:00:00 Y UNDOTBS1.260.821312561
DATAFILE UNPROT COARSE NOV 21 23:00:00 Y USERS.259.821312559
ASMCMD>

If you set the initialization parameter DB_FILE_CREATE_DEST to +DATA, you don’t even have
to specify the disk group +DATA in the CREATE TABLESPACE command.

In a test or development environment, OMF reduces the amount of time the DBA must spend
on file management and lets him or her focus on the applications and other aspects of the test
database. OMF has an added benefit for packaged Oracle applications that need to create
tablespaces: The scripts that create the new tablespaces do not need any modification to include a
datafile name, thus increasing the likelihood of a successful application deployment.

06-ch06.indd 172 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 173

Migrating to OMF from a non-OMF environment is easy, and it can be accomplished over a
longer time period. Non-OMF files and OMF files can coexist indefinitely in the same database.
When the appropriate initialization parameters are set, all new datafiles, control files, and redo
log files can be created as OMF files, while the previously existing files can continue to be managed
manually until they are converted to OMF, if ever.

The OMF-related initialization parameters are detailed in Table 6-1. Note that the operating
system path specified for any of these initialization parameters must already exist; Oracle will not
create the directory. Also, these directories must be writable by the operating system account that
owns the Oracle software (which on most platforms is oracle).

Bigfile Tablespaces
Bigfile tablespaces, introduced in Oracle 10g, take OMF files to the next level. In a bigfile tablespace,
a single datafile is allocated, and it can be up to 8EB (exabytes, a million terabytes) in size.

Bigfile tablespaces can only be locally managed with Automatic Segment Space Management.
If a bigfile tablespace is used for automatic undo or for temporary segments, then segment space
management must be set to MANUAL.

Bigfile tablespaces can save space in the System Global Area (SGA) and the control file
because fewer datafiles need to be tracked; similarly, all ALTER TABLESPACE commands
on bigfile tablespaces need not refer to datafiles because one and only one datafile is associated
with each bigfile tablespace. This moves the maintenance point from the physical (datafile) level
to the logical (tablespace) level, simplifying administration. One downside to bigfile tablespaces
is that a backup of a bigfile tablespace uses a single process; a number of smaller tablespaces,
however, can be backed up using parallel processes and will most likely take less time to back up
than a single bigfile tablespace.

Initialization Parameter Description

DB_CREATE_FILE_DEST The default operating system file directory where datafiles
and tempfiles are created if no pathname is specified in the
CREATE TABLESPACE command. This location is used for
redo log files and control files if DB_CREATE_ONLINE_
LOG_DEST_n is not specified.

DB_CREATE_ONLINE_LOG_DEST_n Specifies the default location to store redo log files and
control files when no pathname is specified for redo log
files or control files at database-creation time. Up to five
destinations can be specified with this parameter, allowing
up to five multiplexed control files and five members of
each redo log group.

DB_RECOVERY_FILE_DEST Defines the default pathname in the server’s file system
where RMAN backups, archived redo logs, and flashback
logs are located. Also used for redo log files and control
files if neither DB_CREATE_FILE_DEST nor DB_CREATE_
ONLINE_LOG_DEST_n is specified.

TABLE 6-1. OMF-Related Initialization Parameters

06-ch06.indd 173 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

174 Oracle Database 12c DBA Handbook

Bigfile tablespaces can be backed up using multiple processes by setting SECTION SIZE when
using RMAN. For example, RMAN level 0 backups that are scripted to include the SECTION SIZE
64G parameter to allow parallel backups of big file tablespaces. Oracle will automatically use a
single process for any file smaller than 64GB.

Creating a bigfile tablespace is as easy as adding the BIGFILE keyword to the CREATE TABLESPACE
command:

SQL> create bigfile tablespace whs01
 2 datafile '/u06/oradata/whs01.dbf' size 10g;
Tablespace created.

If you are using OMF, then the DATAFILE clause can be omitted. To resize a bigfile tablespace,
you can use the RESIZE clause:

SQL> alter tablespace whs01 resize 80g;
Tablespace altered.

In this scenario, even 80GB is not big enough for this tablespace, so we will let it autoextend 20GB
at a time:

SQL> alter tablespace whs01 autoextend on next 20g;
Tablespace altered.

Notice in both cases that we do not need to refer to a datafile; there is only one datafile, and once
the tablespace is created, we no longer need to worry about the details of the underlying datafile
and how it is managed.

Bigfile tablespaces are intended for use with Automatic Storage Management, discussed in the
next section.

Automatic Storage Management
Using Automatic Storage Management (ASM) can significantly reduce the administrative overhead
of managing space in a database because a DBA need only specify an ASM disk group when
allocating space for a tablespace or other database object. Database files are automatically
distributed among all available disks in a disk group, and the distribution is automatically updated
whenever the disk configuration changes. For example, when a new disk volume is added to an
existing disk group in an ASM instance, all datafiles within the disk group are redistributed to use
the new disk volume. ASM was introduced in Chapter 4. In this section, we’ll revisit some other
key ASM concepts from a storage management point of view and provide more examples.

Because ASM automatically places datafiles on multiple disks, performance of queries and
DML statements is improved because the I/O is spread out among several disks. Optionally, the
disks in an ASM group can be mirrored to provide additional redundancy and performance benefits.

Using ASM provides a number of other benefits. In many cases, an ASM instance with a
number of physical disks can be used instead of a third-party volume manager or network-attached
storage (NAS) subsystem. As an added benefit over volume managers, ASM maintenance operations
do not require a shutdown of the database if a disk needs to be added or removed from a disk
group.

In the next few sections, we’ll delve further into how ASM works, with an example of how to
create a database object using ASM.

06-ch06.indd 174 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 175

Disk Group Redundancy
A disk group in ASM is a collection of one or more ASM disks managed as a single entity. Disks
can be added or removed from a disk group without shutting down the database. Whenever a disk
is added or removed, ASM automatically rebalances the datafiles on the disks to maximize
redundancy and I/O performance.

In addition to the advantages of high redundancy, a disk group can be used by more than one
database. This helps to maximize the investment in physical disk drives by easily reallocating disk
space among several databases whose disk space needs may change over the course of a day or
the course of a year.

As explained in Chapter 4, the three types of disk groups are normal redundancy, high
redundancy, and external redundancy. The normal-redundancy and high-redundancy groups
require that ASM provide the redundancy for files stored in the group. The difference between
normal redundancy and high redundancy is in the number of failure groups required: A normal-
redundancy disk group typically has two failure groups, and a high-redundancy disk group will
have at least three failure groups. A failure group in ASM would roughly correspond to a redo log
file group member using traditional Oracle datafile management. External redundancy requires
that the redundancy be provided by a mechanism other than ASM (for example, with a hardware
third-party RAID storage array). Alternatively, a disk group might contain a non-mirrored disk
volume that is used for a read-only tablespace that can easily be re-created if the disk volume fails.

ASM Instance
ASM requires a dedicated Oracle instance, typically on the same node as the database that is
using an ASM disk group. In an Oracle Real Application Clusters (RAC) environment, each node
in a RAC database has an ASM instance. In Oracle Database 12c, an Oracle Flex ASM instance
can reside on a physical server that does not host a database instance.

An ASM instance never mounts a database; it only coordinates the disk volumes for other
database instances. In addition, all database I/O from an instance goes directly to the disks in a
disk group. Disk group maintenance, however, is performed in the ASM instance; as a result, the
memory footprint needed to support an ASM instance can be as low as 275MB but is typically at
least 2GB in a production environment.

For more details on how to configure ASM or Oracle Flex ASM for use with RAC, see Chapter 12.

Background Processes
Several Oracle background processes exist in an ASM instance. The RBAL background process
coordinates the automatic disk group rebalance activity for a disk group. Other ASM background
processes, ARB0 through ARB9 and ARBA, perform the actual rebalance activity in parallel.
When ASM transactions terminate abnormally, the ASM processes ARSn (where n is a number
from 0 to 9) perform the recovery.

Creating Objects Using ASM
Before a database can use an ASM disk group, the group must be created by the ASM instance.
In the following example, a new disk group, LYUP25, is created to manage the Unix disk volumes
/dev/hda1, /dev/hda2, /dev/hda3, /dev/hdb1, /dev/hdc1, and /dev/hdd4:

SQL> create diskgroup LYUP25 normal redundancy
 2 failgroup mir1 disk '/dev/hda1','/dev/hda2','/dev/hda3',
 3 failgroup mir2 disk '/dev/hdb1','/dev/hdc1','/dev/hdd4';

06-ch06.indd 175 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

176 Oracle Database 12c DBA Handbook

When normal redundancy is specified, at least two failure groups must be specified to provide
two-way mirroring for any datafiles created in the disk group.

In the database instance that is using the disk group, OMF is used in conjunction with ASM
to create the datafiles for the logical database structures. In the following example, we set the
initialization parameter DB_CREATE_FILE_DEST using a disk group so that any tablespaces created
using OMF will automatically be named and placed in the disk group LYUP25:

db_create_file_dest = '+LYUP25'

Creating a tablespace in the disk group is straight to the point:

SQL> create tablespace lob_video;

Once an ASM file is created, the automatically generated filenames can be found in V$DATAFILE
and V$LOGFILE, along with manually generated filenames. All typical database files can be created
using ASM, except for administrative files, including trace files, alert logs, backup files, export
files, and core dump files.

OMF is a handy option when you want to let Oracle manage the datafile naming for you, whether
the datafile is on a conventional file system or in an ASM disk group. You can also mix and match:
some of your datafiles can be OMF-named, and others explicitly named.

Undo Management Considerations
Creating an undo tablespace provides a number of benefits for both the DBA and a typical database
user. For the DBA, the management of rollback segments is a thing of the past (the past century!):
all undo segments are managed automatically by Oracle in the undo tablespace. In addition to
providing a read-consistent view of database objects to database readers when a long transaction
against an object is in progress, an undo tablespace can provide a mechanism for a user to recover
rows from a table.

A big enough undo tablespace will minimize the possibility of getting the classic “Snapshot
too old” error message, but how much undo space is enough? If it is undersized, then the availability
window for flashback queries is short; if it is sized too big, disk space is wasted and backup operations
may take longer than necessary.

A number of initialization parameter files control the allocation and use of undo tablespaces.
The UNDO_MANAGEMENT parameter specifies whether AUTOMATIC undo management is used,
and the UNDO_TABLESPACE parameter specifies the undo tablespace itself. To change undo
management from rollback segments to automatic undo management (changing the value of
UNDO_MANAGEMENT from MANUAL to AUTO), the instance must be shut down and restarted
for the change to take effect; you can change the value of UNDO_TABLESPACE while the database
is open. The UNDO_RETENTION parameter specifies, in seconds, the minimum amount of time
that undo information should be retained for Flashback queries. However, with an undersized
undo tablespace and heavy DML usage, some undo information may be overwritten before the
time period specified in UNDO_RETENTION.

Introduced in Oracle Database 10g was the RETENTION GUARANTEE clause of the CREATE
UNDO TABLESPACE command. In essence, an undo tablespace with a RETENTION GUARANTEE
will not overwrite unexpired undo information at the expense of failed DML operations when there
is not enough free undo space in the undo tablespace. More details on using this clause can be
found in Chapter 7.

06-ch06.indd 176 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 177

The following initialization parameters enable automatic undo management with the undo
tablespace UNDO04 using a retention period of at least 24 hours:

undo_management = auto
undo_tablespace = undo04
undo_retention = 86400

The dynamic performance view V$UNDOSTAT can assist in sizing the undo tablespace
correctly for the transaction load during peak processing periods. The rows in V$UNDOSTAT are
inserted at ten-minute intervals and give a snapshot of the undo tablespace usage:

SQL> select to_char(end_time,'yyyy-mm-dd hh24:mi') end_time,
 2 undoblks, ssolderrcnt from v$undostat;

END_TIME UNDOBLKS SSOLDERRCNT
------------------ -------- -----------
2013-07-23 10:28 522 0
2013-07-23 10:21 1770 0
2013-07-23 10:11 857 0
2013-07-23 10:01 1605 0
2013-07-23 09:51 2864 3
2013-07-23 09:41 783 0
2013-07-23 09:31 1543 0
2013-07-23 09:21 1789 0
2013-07-23 09:11 890 0
2013-07-23 09:01 1491 0

In this example, a peak in undo space usage occurred between 9:41 a.m. and 9:51 a.m.,
resulting in a “Snapshot too old” error for three queries. To prevent these errors, the undo tablespace
should be either manually resized or allowed to autoextend.

SYSAUX Monitoring and Usage
The SYSAUX tablespace, introduced in Oracle 10g, is an auxiliary tablespace to the SYSTEM
tablespace, and it houses data for several components of the Oracle database that either required their
own tablespace or used the SYSTEM tablespace in previous releases of Oracle. These components
include the Enterprise Manager Repository, formerly in the tablespace OEM_REPOSITORY, as well as
LogMiner, Oracle Spatial, and Oracle Text, all of which formerly used the SYSTEM tablespace for
storing configuration information. The current occupants of the SYSAUX tablespace can be identified
by querying the V$SYSAUX_OCCUPANTS view:

SQL> select occupant_name, occupant_desc, space_usage_kbytes
 2 from v$sysaux_occupants;

OCCUPANT_NAME OCCUPANT_DESC SPACE_USAGE_KBYTES
------------- ----------------------------------- ------------------
LOGMNR LogMiner 14080
LOGSTDBY Logical Standby 1536
SMON_SCN_TIME Transaction Layer - SCN to TIME map 3328
 ping

06-ch06.indd 177 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

178 Oracle Database 12c DBA Handbook

PL/SCOPE PL/SQL Identifier Collection 1600
STREAMS Oracle Streams 1024
AUDIT_TABLES DB audit tables 0
XDB XDB 192000
AO Analytical Workspace Object Table 39680
XSOQHIST OLAP API History Tables 39680
XSAMD OLAP Catalog 0
SM/AWR Server Manageability - Automatic Wo 716800
 rkload Repository
SM/ADVISOR Server Manageability - Advisor Fram 19264
 ework
SM/OPTSTAT Server Manageability - Optimizer St 164928
 atistics History
SM/OTHER Server Manageability - Other Compon 47040
 ents
STATSPACK Statspack Repository 0
SDO Oracle Spatial 79488
WM Workspace Manager 7296
ORDIM Oracle Multimedia ORDSYS Components 448
ORDIM/ORDDATA Oracle Multimedia ORDDATA Component 16448
ORDIM/ORDPLUG Oracle Multimedia ORDPLUGINS Compon 0
INS ents
ORDIM/SI_INFO Oracle Multimedia SI_INFORMTN_SCHEM 0
RMTN_SCHEMA A Components
EM Enterprise Manager Repository 0
TEXT Oracle Text 3776
ULTRASEARCH Oracle Ultra Search 0
ULTRASEARCH_D Oracle Ultra Search Demo User 0
EMO_USER
EXPRESSION_FI Expression Filter System 0
LTER
EM_MONITORING Enterprise Manager Monitoring User 704
_USER
TSM Oracle Transparent Session Migratio 0
 n User
SQL_MANAGEMEN SQL Management Base Schema 2496
T_BASE
AUTO_TASK Automated Maintenance Tasks 320
JOB_SCHEDULER Unified Job Scheduler 5184

31 rows selected.

If the SYSAUX tablespace is taken offline or otherwise becomes corrupted, only these
components of the Oracle database will be unavailable; the core functionality of the database
will be unaffected. In any case, the SYSAUX tablespace helps to take the load off of the SYSTEM
tablespace during normal operation of the database.

To monitor the usage of the SYSAUX tablespace, you can query the column SPACE_USAGE_
KBYTES on a routine basis, and it can alert the DBA when the space usage grows beyond a
certain level. If the space usage for a particular component requires a dedicated tablespace to be
allocated for the component, such as for the Oracle Text repository, the procedure identified in

06-ch06.indd 178 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 179

the MOVE_PROCEDURE column of the V$SYSAUX_OCCUPANTS view will move the application
to another tablespace:

SQL> select occupant_name, move_procedure from v$sysaux_occupants
 2 where occupant_name = 'TEXT';

OCCUPANT_NAME MOVE_PROCEDURE
--------------- ---
EM DRI_MOVE_CTXSYS

If a component is not being used in the database at all, such as for TSM or Ultra Search,
a negligible amount of space is used in the SYSAUX tablespace.

Archived Redo Log File Management
It is important to consider space management for objects that exist outside of the database, such
as archived redo log files. In ARCHIVELOG mode, an online redo log file is copied to the destination(s)
specified by LOG_ARCHIVE_DEST_n (where n is a number from 1 to 10) or by DB_RECOVERY_
FILE_DEST (the flash recovery area) if none of the LOG_ARCHIVE_DEST_n values are set.

The redo log being copied must be copied successfully to at least one of the destinations
before it can be reused by the database. The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter
defaults to 1 and must be at least 1. If none of the copy operations are successful, the database
will be suspended until at least one of the destinations receives the log file. Running out of disk
space is one possible reason for this type of failure.

If the destination for the archived log files is on a local file system, an operating system shell
script can monitor the space usage of the destination, or it can be scheduled with DBMS_
SCHEDULER or with Oracle Cloud Control 12c.

Built-in Space Management Tools
Oracle 12c provides a number of built-in tools that a DBA can use on demand to determine if
there are any problems with disk space in the database. Most, if not all, of these tools can be
manually configured and run by calling the appropriate built-in package. In this section, we’ll
cover the packages and procedures used to query the database for space problems or advice on
space management. In addition, I’ll show you the new initialization parameter used by the
Automatic Diagnostic Repository to identify the alert and trace file location. Later in this chapter,
you’ll see how some of these tools can be automated to notify the DBA via e-mail or pager when
a problem is imminent; many, if not all, of these tools are available on demand via the Oracle
Cloud Control 12c web interface.

Segment Advisor
Frequent inserts, updates, and deletes on a table may, over time, leave the space within a table
fragmented. Oracle can perform segment shrink on a table or index. Shrinking the segment makes
the free space in the segment available to other segments in the tablespace, with the potential to
improve future DML operations on the segment because fewer blocks may need to be retrieved
for the DML operation after the segment shrink. Segment shrink is very similar to online table
redefinition in that space in a table is reclaimed. However, segment shrink can be performed in
place without the additional space requirements of online table redefinition.

06-ch06.indd 179 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

180 Oracle Database 12c DBA Handbook

To determine which segments will benefit from segment shrink, you can invoke Segment Advisor
to perform growth trend analysis on specified segments. In this section, we’ll invoke Segment Advisor
on some candidate segments that may be vulnerable to fragmentation.

In the example that follows, we’ll set up Segment Advisor to monitor the HR.EMPLOYEES table.
In recent months, there has been high activity on this table; in addition, a new column, WORK_
RECORD, has been added to the table, which HR uses to maintain comments about the employees:

SQL> alter table hr.employees add (work_record varchar2(4000));
Table altered.
SQL> alter table hr.employees enable row movement;
Table altered.

We have enabled ROW MOVEMENT in the table so that shrink operations can be performed on
the table if recommended by Segment Advisor.

After Segment Advisor has been invoked to give recommendations, the findings from Segment
Advisor are available in the DBA_ADVISOR_FINDINGS data dictionary view. To show the potential
benefits of shrinking segments when Segment Advisor recommends a shrink operation, the view
DBA_ADVISOR_RECOMMENDATIONS provides the recommended shrink operation along with
the potential savings, in bytes, for the operation.

To set up Segment Advisor to analyze the HR.EMPLOYEES table, we will use an anonymous
PL/SQL block, as follows:

-- begin Segment Advisor analysis for HR.EMPLOYEES
-- rev. 1.1 RJB 07/30/2013
--
-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task_id number

-- PL/SQL block follows
declare
 name varchar2(100);
 descr varchar2(500);
 obj_id number;
begin
 name := ''; -- unique name generated from create_task
 descr := 'Check HR.EMPLOYEE table';
 dbms_advisor.create_task
 ('Segment Advisor', :task_id, name, descr, NULL);
 dbms_advisor.create_object
 (name, 'TABLE', 'HR', 'EMPLOYEES', NULL, NULL, obj_id);
 dbms_advisor.set_task_parameter(name, 'RECOMMEND_ALL', 'TRUE');
 dbms_advisor.execute_task(name);
end;

PL/SQL procedure successfully completed.

SQL> print task_id

 TASK_ID

 384
SQL>

06-ch06.indd 180 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 181

The procedure DBMS_ADVISOR.CREATE_TASK specifies the type of advisor; in this case, it is
Segment Advisor. The procedure will return a unique task ID and an automatically generated name
to the calling program; we will assign our own description to the task.

Within the task, identified by the uniquely generated name returned from the previous procedure,
we identify the object to be analyzed with DBMS_ADVISOR.CREATE_OBJECT. Depending on the
type of object, the second through the sixth arguments vary. For tables, we only need to specify the
schema name and the table name.

Using DBMS_ADVISOR.SET_TASK_PARAMETER, we tell Segment Advisor to give all possible
recommendations about the table. If we want to turn off recommendations for this task, we would
specify FALSE instead of TRUE for the last parameter.

Finally, we initiate the Segment Advisor task with the DBMS_ADVISOR.EXECUTE_TASK procedure.
Once it is done, we display the identifier for the task so we can query the results in the appropriate data
dictionary views.

Now that we have a task number from invoking Segment Advisor, we can query DBA_ADVISOR_
FINDINGS to see what we can do to improve the space utilization of the HR.EMPLOYEES table:

SQL> select owner, task_id, task_name, type,
 2 message, more_info from dba_advisor_findings
 3 where task_id = 384;

OWNER TASK_ID TASK_NAME TYPE
---------- ------- --------- ------
RJB 6 TASK_00003 INFORMATION

MESSAGE
--
Perform shrink, estimated savings is 107602 bytes.

MORE_INFO

Allocated Space:262144: Used Space:153011: Reclaimable Space :107602:

The results are fairly self-explanatory. We can perform a segment shrink operation on the table
to reclaim space from numerous INSERT, DELETE, and UPDATE operations on the HR.EMPLOYEES
table. Because the WORK_RECORD column was added to the HR.EMPLOYEES table after the table
was already populated, we may have created some chained rows in the table; in addition, since
the WORK_RECORD column can be up to 4000 bytes long, updates or deletes of rows with big
WORK_RECORD columns may create blocks in the table with free space that can be reclaimed.
The view DBA_ADVISOR_RECOMMENDATIONS provides similar information:

SQL> select owner, task_id, task_name, benefit_type
 2 from dba_advisor_recommendations
 3 where task_id = 384;

OWNER TASK_ID TASK_NAME
---------- ------- ----------
RJB 384 TASK_00003

BENEFIT_TYPE
--
Perform shrink, estimated savings is 107602 bytes.

06-ch06.indd 181 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

182 Oracle Database 12c DBA Handbook

In any case, we will shrink the segment HR.EMPLOYEES to reclaim the free space. As an
added time-saving benefit to the DBA, the SQL needed to perform the shrink is provided in the
view DBA_ADVISOR_ACTIONS:

SQL> select owner, task_id, task_name, command, attr1
 2 from dba_advisor_actions where task_id = 384;

OWNER TASK_ID TASK_NAME COMMAND
---------- ------- ---------- -----------------
RJB 6 TASK_00003 SHRINK SPACE

ATTR1

alter table HR.EMPLOYEES shrink space

1 row selected.

SQL> alter table HR.EMPLOYEES shrink space;
Table altered.

As mentioned earlier, the shrink operation does not require extra disk space and does not
prevent access to the table during the operation, except for a very short period of time at the end of
the process to free the unused space. All indexes are maintained on the table during the operation.

In addition to freeing up disk space for other segments, there are other benefits to shrinking a
segment. Cache utilization is improved because fewer blocks need to be in the cache to satisfy
SELECT or other DML statements against the segment. Also, because the data in the segment is
more compact, the performance of full table scans is improved.

There are a couple of caveats and minor restrictions in Oracle Database 12c. First, segment
shrink will not work on SecureFile LOB segments, IOT mapping tables, tables with function-based
indexes, and ROWID-based materialized views. If a table is compressed, only certain compression
types are eligible for shrinking, such as advanced compression using ROW STORE COMPRESS
ADVANCED. You could uncompress the table before shrinking it—but then you’d be better off
using ALTER TABLE . . . MOVE ONLINE and specifying the same compression storage parameters
for the move.

Undo Advisor and the Automatic Workload Repository
Starting with Oracle 10g, Undo Advisor provides tuning information for the undo tablespace,
whether it’s sized too large, it’s too small, or the undo retention (via the initialization parameter
UNDO_RETENTION) is not set optimally for the types of transactions that occur in the database.

Using Undo Advisor is similar to using Segment Advisor in that we will call the DBMS_ADVISOR
procedures and query the DBA_ADVISOR_* data dictionary views to see the results of the analysis.

Undo Advisor, however, relies on another feature introduced in Oracle 10g—the Automatic
Workload Repository (AWR). The Automatic Workload Repository, built into every Oracle database,
contains snapshots of all key statistics and workloads in the database at 60-minute intervals by
default. The statistics in the AWR are kept for seven days, after which the oldest statistics are dropped.
Both the snapshot intervals and the retention period can be adjusted to suit your environment,
however. The AWR maintains the historical record of how the database is being used over time and
helps to diagnose and predict problems long before they can cause a database outage.

06-ch06.indd 182 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 183

To set up Undo Advisor to analyze undo space usage, we will use an anonymous PL/SQL
block similar to what we used for Segment Advisor. Before we can use Segment Advisor, however,
we need to determine the timeframe to analyze. The data dictionary view DBA_HIST_SNAPSHOT
contains the snapshot numbers and date stamps; we will look for the snapshot numbers from 8:00
p.m. Saturday, July 21, 2013 through 9:30 p.m. Saturday, July 21, 2013:

SQL> select snap_id, begin_interval_time, end_interval_time
 2 from DBA_HIST_SNAPSHOT
 3 where begin_interval_time > '21-Jul-13 08.00.00 PM' and
 4 end_interval_time < '21-Jul-13 09.31.00 PM'
 5 order by end_interval_time desc;

 SNAP_ID BEGIN_INTERVAL_TIME END_INTERVAL_TIME
---------- --------------------------- ---------------------------
 8 21-JAN-07 09.00.30.828 PM 21-JAN-07 09.30.14.078 PM
 7 21-JAN-07 08.30.41.296 PM 21-JAN-07 09.00.30.828 PM
 6 21-JAN-07 08.00.56.093 PM 21-JAN-07 08.30.41.296 PM

Given these results, we will use a SNAP_ID range from 6 to 8 when we invoke Undo Advisor.
The PL/SQL anonymous block is as follows:

-- begin Undo Advisor analysis
-- rev. 1.1 RJB 7/16/2013
--
-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task_id number

declare
 task_id number;
 name varchar2(100);
 descr varchar2(500);
 obj_id number;
begin
 name := ''; -- unique name generated from create_task
 descr := 'Check Undo Tablespace';
 dbms_advisor.create_task
 ('Undo Advisor', :task_id, name, descr);
 dbms_advisor.create_object
 (name, 'UNDO_TBS', NULL, NULL, NULL, 'null', obj_id);
 dbms_advisor.set_task_parameter(name, 'TARGET_OBJECTS', obj_id);
 dbms_advisor.set_task_parameter(name, 'START_SNAPSHOT', 6);
 dbms_advisor.set_task_parameter(name, 'END_SNAPSHOT', 8);
 dbms_advisor.set_task_parameter(name, 'INSTANCE', 1);
 dbms_advisor.execute_task(name);
end;

PL/SQL procedure successfully completed.

SQL> print task_id

06-ch06.indd 183 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

184 Oracle Database 12c DBA Handbook

TASK_ID

 527

As with Segment Advisor, we can review the DBA_ADVISOR_FINDINGS view to see the
problem and the recommendations.

SQL> select owner, task_id, task_name, type,
 2 message, more_info from dba_advisor_findings
 3 where task_id = 527;

OWNER TASK_ID TASK_NAME TYPE
---------- ------- ---------- -------------
RJB 527 TASK_00003 PROBLEM

MESSAGE

The undo tablespace is OK.

MORE_INFO
--

In this particular scenario, Undo Advisor indicates that there is enough space allocated in the
undo tablespace to handle the types and volumes of queries run against this database.

Index Usage
Although indexes provide a tremendous benefit by speeding up queries, they can have an impact
on space usage in the database. If an index is not being used at all, the space occupied by an
index can be better used elsewhere; if we don’t need the index, we also can save processing time
for INSERT, UPDATE, and DELETE operations that have an impact on the index. Index usage can
be monitored with the dynamic performance view V$OBJECT_USAGE. In our HR schema, we
suspect that the index on the JOB_ID column of the EMPLOYEES table is not being used. We turn
on monitoring for this index as follows:

SQL> alter index hr.emp_job_ix monitoring usage;
Index altered.

We take a quick look at the V$OBJECT_USAGE view to make sure this index is being
monitored:

SQL> select * from v$object_usage;
INDEX_NAME TABLE_NAME MON USED START_MONITORING
--------------- --------------- --- ---- -------------------
EMP_JOB_IX EMPLOYEES YES NO 07/24/2013 10:04:55

The column USED will tell us if this index is accessed to satisfy a query. After a full day of
typical user activity, we check V$OBJECT_USAGE again and then turn off monitoring:

SQL> alter index hr.emp_job_ix nomonitoring usage;
Index altered.
SQL> select * from v$object_usage;

06-ch06.indd 184 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 185

INDEX_NAME TABLE_NAME MON USED START_MONITORING END_MONITORING
---------- --------------- --- ---- ------------------- -------------------
EMP_JOB_IX EMPLOYEES NO YES 07/24/2013 10:04:55 07/25/2013 11:39:45

Sure enough, the index appears to be used at least once during a typical day.
On the other end of the spectrum, an index may be accessed too frequently. If key values are

inserted, updated, and deleted frequently, an index can become less efficient in terms of space
usage. The following commands can be used as a baseline for an index after it is created, and
then run periodically to see if the space usage becomes inefficient:

SQL> analyze index hr.emp_job_ix validate structure;
Index analyzed.
SQL> select pct_used from index_stats where name = 'EMP_JOB_IX';
 PCT_USED

 78

NOTE
Running ANALYZE INDEX . . . VALIDATE STRUCTURE will temporarily
lock the index in exclusive mode and therefore no DML can occur on
the table while the ANALYZE is running.

The PCT_USED column indicates the percentage of the allocated space for the index in use.
Over time, the EMPLOYEES table is heavily used, due to the high turnover rate of employees at
the company, and this index, among others, is not using its space efficiently, as indicated by the
following ANALYZE command and SELECT query, so we decide that a rebuild is in order:

SQL> analyze index hr.emp_job_ix validate structure;
Index analyzed.
SQL> select pct_used from index_stats where name = 'EMP_JOB_IX';
 PCT_USED

 26
SQL> alter index hr.emp_job_ix rebuild online;
Index altered.

Notice the inclusion of the ONLINE option in the ALTER INDEX . . . REBUILD statement. The
indexed table can remain online with minimal overhead while the index is rebuilding. In rare
circumstances, such as on longer key lengths, you may not be able to use the ONLINE option.

Space Usage Warning Levels
Earlier in this chapter, we reviewed the data dictionary view DBA_THRESHOLDS, which contains
a list of the active metrics to measure a database’s health. In a default installation of Oracle 12c,
use the following SELECT statement to see some of the 22 built-in thresholds:

SQL> select metrics_name, warning_operator warn, warning_value wval,
 2 critical_operator crit, critical_value cval,
 3 consecutive_occurrences consec
 4 from dba_thresholds;

06-ch06.indd 185 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

186 Oracle Database 12c DBA Handbook

METRICS_NAME WARN WVAL CRIT CVAL CONSEC
-------------------------------- ---- ------------- ---- ------------- ------
Average Users Waiting Counts GT 10 NONE 3
. . .
Blocked User Session Count GT 0 NONE 15
Current Open Cursors Count GT 1200 NONE 3
Database Time Spent Waiting (%) GT 30 NONE 3
. . .
Logons Per Sec GE 100 NONE 2
Session Limit % GT 90 GT 97 3
Tablespace Bytes Space Usage LE 0 LE 0 1
Tablespace Space Usage GE 85 GE 97 1

22 rows selected.

In terms of space usage, we see that the warning level for a given tablespace is when the
tablespace is 85 percent full, and the space is at a critical level when it reaches 97 percent full.
In addition, this condition need only occur during one reporting period, which by default is one
minute. For the other conditions in this list, the condition must be true anywhere between 2 and
15 consecutive reporting periods before an alert is issued.

To change the level at which an alert is generated, we can use the DBMS_SERVER_ALERT
.SET_THRESHOLD procedure. In this example, we want to be notified sooner if a tablespace is
running out of space, so we will update the warning threshold for alert notification from 85
percent down to 60 percent:

--
-- PL/SQL anonymous procedure to update the Tablespace Space Usage threshold
--

declare
 /* OUT */
 warning_operator number;
 warning_value varchar2(100);
 critical_operator number;
 critical_value varchar2(100);
 observation_period number;
 consecutive_occurrences number;
 /* IN */
 metrics_id number;
 instance_name varchar2(50);
 object_type number;
 object_name varchar2(50);

 new_warning_value varchar2(100) := '60';
begin
 metrics_id := DBMS_SERVER_ALERT.TABLESPACE_PCT_FULL;
 object_type := DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE;
 instance_name := 'dw';
 object_name := NULL;

06-ch06.indd 186 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 187

-- retrieve the current values with get_threshold
 dbms_server_alert.get_threshold(
 metrics_id, warning_operator, warning_value,
 critical_operator, critical_value,
 observation_period, consecutive_occurrences,
 instance_name, object_type, object_name);

-- update the warning threshold value from 85 to 60
 dbms_server_alert.set_threshold(
 metrics_id, warning_operator, new_warning_value,
 critical_operator, critical_value,
 observation_period, consecutive_occurrences,
 instance_name, object_type, object_name);

end;

PL/SQL procedure successfully completed.

Checking DBA_THRESHOLDS again, we see the warning level has been changed to 60
percent:

SQL> select metrics_name, warning_operator warn, warning_value wval
 2 from dba_thresholds;

METRICS_NAME WARN WVAL
-------------------------------- ---- -------------
Average Users Waiting Counts GT 10
. . .
Blocked User Session Count GT 0
Current Open Cursors Count GT 1200
Database Time Spent Waiting (%) GT 30
. . .
Logons Per Sec GE 100
Session Limit % GT 90
Tablespace Bytes Space Usage LE 0
Tablespace Space Usage GE 60

22 rows selected.

A detailed example of how to use Oracle’s Advanced Queuing to subscribe to queue alert
messages is beyond the scope of this book. Later in this chapter, I will, however, show some
examples of how to use Cloud Control 12c to set up asynchronous notification of alert conditions
using e-mail, a pager, or a PL/SQL procedure.

Resumable Space Allocation
The Oracle database provides a way to suspend long-running operations in the event of space
allocation failures. Once the DBA is notified and the space allocation problem has been corrected,
the long-running operation can complete. The long-running operation does not have to be restarted
from the beginning.

06-ch06.indd 187 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

188 Oracle Database 12c DBA Handbook

Three types of space management problems can be addressed with Resumable Space Allocation:

 ■ Out of space in the tablespace

 ■ Maximum extents reached in the segment

 ■ Space quota exceeded for a user

The DBA can automatically make statements resumable by setting the initialization parameter
RESUMABLE_TIMEOUT to a value other than 0. This value is specified in seconds. At the session
level, a user can enable resumable operations by using the ALTER SESSION ENABLE RESUMABLE
command:

SQL> alter session enable resumable timeout 3600;

In this case, any long-running operation that may run out of space will suspend for up to 3600
seconds (60 minutes) until the space condition is corrected. If it is not corrected within the time
limit, the statement fails.

In the scenario that follows, the HR department is trying to add the employees from the branch
office EMPLOYEES table to an EMPLOYEE_SEARCH table that contains employees throughout the
company. Without Resumable Space Allocation, the HR user receives an error, as follows:

SQL> insert into employee_search
 2 select * from employees;
insert into employee_search
*
ERROR at line 1:
ORA-01653: unable to extend table HR.EMPLOYEE_SEARCH by 128
 in tablespace USERS9

After running into this problem many times, the HR user decides to use Resumable Space
Allocation to prevent a lot of rework whenever there are space problems in the database, and
tries the operation again:

SQL> alter session enable resumable timeout 3600;
Session altered.
SQL> insert into hr.employee_search
 2 select * from hr.employees;

The user does not receive a message, and it is not clear that the operation has been suspended.
However, in the alert log (managed by the Automatic Diagnostic Repository as of Oracle Database
11g), the XML message reads as follows:

<msg time='2013-07-23T22:58:26.749-05:00'
 org_id='oracle' comp_id='rdbms'
 client_id='' type='UNKNOWN' level='16'
 host_id='dw' host_addr='192.168.2.95' module='SQL*Plus' pid='1843'>
<txt> ORA-01653: unable to extend table
 HR.EMPLOYEE_SEARCH by 128 in tablespace USERS9
</txt>
</msg>

06-ch06.indd 188 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 189

The DBA receives a pager alert, set up in OEM, and checks the data dictionary view DBA_
RESUMABLE:

SQL> select user_id, instance_id, status, name, error_msg
 2 from dba_resumable;

 USER_ID INSTANCE_ID STATUS NAME ERROR_MSG
---------- ----------- --------- -------------------- --------------------
 80 1 SUSPENDED User HR(80), Session ORA-01653: unable to
 113, Instance 1 extend table HR.EMP
 LOYEE_SEARCH by 128
 in tablespace USERS9

The DBA notices that the tablespace USERS9 does not allow autoextend, and modifies the
tablespace to allow growth:

SQL> alter tablespace users9
 2 add datafile '+DATA'
 3 size 100m autoextend on;
Tablespace altered.

The user session’s INSERT completes successfully, and the status of the resumable operation is
reflected in the DBA_RESUMABLE view:

 USER_ID INSTANCE_ID STATUS NAME ERROR_MSG
---------- ----------- --------- -------------------- --------------------
 80 1 NORMAL User HR(80), Session
 113, Instance 1

The alert log file also indicates a successful resumption of this operation:

<msg time='2013-07-23T23:06:31.178-05:00'
 org_id='oracle' comp_id='rdbms'
 client_id='' type='UNKNOWN' level='16'
 host_id='dw' host_addr='192.168.2.95' module='SQL*Plus'
 pid='1843'>
<txt>statement in resumable session 'User HR(80),
 Session 113, Instance 1' was resumed </txt>
</msg>

In Figure 6-3, you can see the tablespace USERS9 space alert appear on the instance’s home
page in the Incidents and Problems section, in addition to the previous alert warning you that the
USERS9 tablespace was nearly full about 15 minutes before the HR user temporarily ran out of
space! In Figure 6-4, the Alert History page shows the most recent alerts, which include the
tablespace full condition.

As far as the user is concerned, the operation took longer than expected but still completed
successfully. Another way to provide more information to the user is to set up a special type of
trigger introduced in Oracle9i called a system trigger. A system trigger is like any other trigger,
except it is based on some type of system event rather than on a DML statement against a table.
Here is a template for a system trigger that fires on an AFTER SUSPEND event:

create or replace trigger resumable_notify
 after suspend on database -- fired when resumable space event occurs

06-ch06.indd 189 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

190 Oracle Database 12c DBA Handbook

declare
 -- variables, if required
begin
 -- give DBA 2 hours to resolve
 dbms_resumable.set_timeout(7200);
 -- check DBA_RESUMABLE for user ID, then send e-mail
 utl_mail.send ('lyngrv@rjbdba.com', . . .);
end;

Managing Alert and Trace Files with ADR
New as of Oracle Database 11g, the Automatic Diagnostic Repository (ADR) is a system-managed
repository for storing database alert logs, trace files, and any other diagnostic data previously
controlled by several other initialization parameters.

The initialization parameter DIAGNOSTIC_DEST sets the base location for all diagnostic
directories; in the examples that follow, the database dw has a value of /u01/app/oracle for the

FIGURE 6-3. Incidents and Problems section on the instance home page

06-ch06.indd 190 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 191

parameter DIAGNOSTIC_DEST. Figure 6-5 shows a typical directory structure starting with the
subdirectory /u01/app/oracle/diag.

Notice that there are separate directories for the ASM databases and the database (RDBMS)
instances; within the rdbms directory, you can see the dw directory twice: the first-level directory
is the database dw, and the second dw is the instance dw. If this were a RAC database, you would
see each instance of the dw database under the first-level dw directory. In fact, Oracle strongly
recommends that all instances within a RAC database have the same value for DIAGNOSTIC_DEST.

Because the location of all logging and diagnostic information is controlled by the initialization
parameter DIAGNOSTIC_DEST, the following initialization parameters are ignored:

 ■ BACKGROUND_DUMP_DEST

 ■ USER_DUMP_DEST

 ■ CORE_DUMP_DEST

For backward compatibility, however, you can still use these as read-only parameters to
determine the location of the alert log, trace files, and core dumps:

SQL> show parameter dump_dest

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
background_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/trace

FIGURE 6-4. Alert History page

06-ch06.indd 191 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

192 Oracle Database 12c DBA Handbook

core_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/cdump
user_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/trace

You can still alter the values for these parameters, but they are ignored by ADR. Alternatively,
you can use the view V$DIAG_INFO to find all diagnostic-related directories for the instance:

SQL> select name, value from v$diag_info;

NAME VALUE
------------------------- ---
Diag Enabled TRUE
ADR Base /u01/app/oracle

FIGURE 6-5. ADR directory structure

06-ch06.indd 192 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 193

ADR Home /u01/app/oracle/diag/rdbms/dw/dw
Diag Trace /u01/app/oracle/diag/rdbms/dw/dw/trace
Diag Alert /u01/app/oracle/diag/rdbms/dw/dw/alert
Diag Incident /u01/app/oracle/diag/rdbms/dw/dw/incident
Diag Cdump /u01/app/oracle/diag/rdbms/dw/dw/cdump
Health Monitor /u01/app/oracle/diag/rdbms/dw/dw/hm
Default Trace File /u01/app/oracle/diag/rdbms/dw/dw/trace/dw_ora
 _28810.trc

Active Problem Count 0
Active Incident Count 0

11 rows selected.

OS Space Management
Outside of the Oracle environment, space should be monitored by the system administrator with
a thorough understanding from the DBA as to the parameters in place for autoextending datafiles.
Setting AUTOEXTEND ON with large NEXT values for a tablespace will allow a tablespace to
grow and accommodate more inserts and updates, but this will fail if the server’s disk volumes do
not have the space available. Better yet is to use ASM: The storage administrator will allocate one
or more large blocks of disk space or entire disks from a storage appliance, allowing the Oracle
DBA to manage the space entirely from a database perspective.

Space Management Scripts
In this section, I provide a couple scripts you can run on an as-needed basis, or you can schedule
them to run on a regular basis to proactively monitor the database.

These scripts take the dictionary views and give a more detailed look at a particular structure.
The functionality of some of these scripts might overlap with the results provided by some of the
tools I’ve mentioned earlier in the chapter, but they might be more focused and in some cases
provide more detail about the possible space problems in the database.

Segments That Cannot Allocate Additional Extents
In the following script, we want to identify segments (most likely tables or indexes) that cannot
allocate additional extents:

select s.tablespace_name, s.segment_name,
 s.segment_type, s.owner
from dba_segments s
where s.next_extent >=
 (select max(f.bytes)
 from dba_free_space f
 where f.tablespace_name = s.tablespace_name)
or s.extents = s.max_extents
order by tablespace_name, segment_name;

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE OWNER
------------------ ----------------------- ----------------- ---------------
USERS9 EMPLOYEE_SEARCH TABLE HR

06-ch06.indd 193 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

194 Oracle Database 12c DBA Handbook

In this example, we’re using a correlated subquery to compare the size of the next extent to
the amount of free space left in the tablespace. The other condition we’re checking is whether the
next extent request will fail because the segment is already at the maximum number of extents.

The reason these objects might be having problems is most likely one of two possibilities: The
tablespace does not have room for the next extent for this segment, or the segment has the maximum
number of extents allocated. To solve this problem, the DBA can extend the tablespace by adding
another datafile or by exporting the data in the segment and re-creating it with storage parameters
that more closely match its growth pattern. Since Oracle9i, using locally managed tablespaces
instead of dictionary-managed tablespaces solves this problem when disk space is not the issue,
because the maximum number of extents in an LMT is unlimited.

Used and Free Space by Tablespace and Datafile
The following SQL*Plus script breaks down the space usage of each tablespace, which is further
broken down by datafile within each tablespace. This is a good way to see how space is used and
extended within each datafile of a tablespace, and it may be useful for load balancing when
you’re not using ASM or other high-availability storage.

--
-- Free space within non-temporary datafiles, by tablespace.
--
-- No arguments.
-- 1024*1024*1000 = 1048576000 = 1GB to match Cloud Control
--

column free_space_gb format 9999999.999
column allocated_gb format 9999999.999
column used_gb format 9999999.999
column tablespace format a12
column filename format a20

select ts.name tablespace, trim(substr(df.name,1,100)) filename,
 df.bytes/1048576000 allocated_gb,
 ((df.bytes/1048576000) - nvl(sum(dfs.bytes)/1048576000,0)) used_gb,
 nvl(sum(dfs.bytes)/1048576000,0) free_space_gb
from v$datafile df
 join dba_free_space dfs on df.file# = dfs.file_id
 join v$tablespace ts on df.ts# = ts.ts#
group by ts.name, dfs.file_id, df.name, df.file#, df.bytes
order by filename;

TABLESPACE FILENAME ALLOCATED_GB USED_GB FREE_SPACE_GB
------------ -------------------- ------------ ---------- -------------
DMARTS +DATA/dw/datafile/dm .25 .0640625 .1859375
 arts.269.628621093
EM_REP +DATA/dw/datafile/em .25 .0000625 .2499375
 _rep.270.628640521
EXAMPLE +DATA/dw/datafile/ex .1 .077375 .022625
 ample.265.627433157
SYSAUX +DATA/dw/datafile/sy .7681875 .7145 .0536875
 saux.257.627432973

06-ch06.indd 194 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 195

SYSTEM +DATA/dw/datafile/sy .77 .7000625 .0699375
 stem.256.627432971
UNDOTBS1 +DATA/dw/datafile/un .265 .0155625 .2494375
 dotbs1.258.627432975
USERS +DATA/dw/datafile/us .0125 .0111875 .0013125
 ers.259.627432977
USERS2 +DATA/dw/datafile/us .1 .0000625 .0999375
 ers2.267.627782171
USERS4 +DATA/dw/datafile/us .25 .002 .248
 ers4.268.628561597
USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
 ers9.271.628727991
USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
 ers9.272.628729587
USERS9 +DATA/dw/datafile/us .05 .0000625 .0499375
 ers9.273.628730561
USERS3 +DATA2/dw/datafile/u .1 .0000625 .0999375
 sers3.256.627786775
XPORT /u05/oradata/xport.d .3 .1280625 .1719375
 bf

14 rows selected.

Only the USERS9 tablespace has more than one datafile in this database. To include temporary
tablespaces on this report, you can use a UNION query to combine this query with a similar
query based on V$TEMPFILE.

Automating and Streamlining
the Notification Process
Although any of the scripts and packages presented earlier in this chapter can be executed on
demand, some of them can and should be automated, not only to save time for the DBA but also
to be proactive and catch problems long before they cause a system outage.

Two of the primary methods for automating the scripts and packages are DBMS_SCHEDULER
and Oracle Cloud Control 12c. Each of these methods has its advantages and disadvantages.
DBMS_SCHEDULER can provide more control over how the task is scheduled and can be set up
using only a command-line interface. Oracle Cloud Control, on the other hand, uses a completely
web-based environment that allows a DBA to oversee a database environment from wherever
there is access to a web browser.

Using DBMS_SCHEDULER
The DBMS_SCHEDULER package has been available since Oracle Database 11g. It provides new
features and functionality over the previous job scheduler package, DBMS_JOB. Although
DBMS_JOB is still available in Oracle Database 12c, it is deprecated and no longer supported.

DBMS_SCHEDULER contains many of the procedures you’d expect from a scheduling package:
CREATE_JOB, DROP_JOB, DISABLE, STOP_JOB, and COPY_JOB. In addition, DBMS_SCHEDULER
makes it easy to automatically repeat job executions with CREATE_SCHEDULE and to partition
jobs into categories based on resource usage with the CREATE_JOB_CLASS procedure.

06-ch06.indd 195 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

196 Oracle Database 12c DBA Handbook

Cloud Control and Monitoring
Not only can Oracle Enterprise Manager present most database administration tasks in a graphical,
web-based environment, it can automate some of the routine tasks that a DBA might perform on a
daily basis. In this section, we’ll cover the OEM-equivalent functionality to Segment Advisor and
Undo Advisor, covered previously in this chapter.

Segment Advisor
Figure 6-6 shows the home page for the RPT12C database in Cloud Control. Many of the space
management functions, including Segment Advisor, are available directly from this home page,
especially when there is a pending alert.

FIGURE 6-6. OEM home page

06-ch06.indd 196 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 197

The home page lists general availability information of the instance, including the instance name,
host name, CPU usage, and session information. Links to the advisors are in the drop-down lists
in the upper-left corner.

If there is not an outstanding space-related alert, and you want to run Segment Advisor, go to
the Advisor Central page by choosing Performance | Advisor Central; you will see the page shown
in Figure 6-7. Click the Segment Advisor link, and you will see the page shown in Figure 6-8.
Select the Schema Objects radio button and click Next.

FIGURE 6-7. Advisor Central page

06-ch06.indd 197 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

198 Oracle Database 12c DBA Handbook

In Figure 6-9, the table HR.TEMP_OBJ has been selected for analysis.
When you click Next on the page shown in Figure 6-9, you can change the scheduling for the

analysis job; by default, the job runs immediately, which is what you want to do in this case.
Figure 6-10 shows the scheduling options.

FIGURE 6-8. Segment Advisor Step 1: Selecting the Schema Objects analysis type

06-ch06.indd 198 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 199

When you click Next in Figure 6-10, you see the review page shown in Figure 6-11. You can
click Show SQL if you are curious or if you want to use the SQL statements in your own custom
batch job.

As you might suspect, clicking Submit on the page shown in Figure 6-11 submits the job to be
run either immediately or at the specified time. The next page you see is the Advisors tab, shown
in Figure 6-12. When the job completes you will see the completion status on this page.

FIGURE 6-9. Segment Advisor Step 2: Selected objects

06-ch06.indd 199 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

200 Oracle Database 12c DBA Handbook

FIGURE 6-10. Segment Advisor Step 3: Scheduling options

06-ch06.indd 200 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 201

Click the Segment Advisor link in the Results section shown in Figure 6-12, and you will see the
Recommendations page shown in Figure 6-13.

The Segment Advisor results in Figure 6-13 indicate that the table TEMP_OBJ in the USERS9
tablespace would benefit from a shrink operation, potentially improving access to the table and
freeing up space in the USERS9 tablespace. To implement the recommendation, click the

FIGURE 6-11. Segment Advisor Step 4: Review

06-ch06.indd 201 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

202 Oracle Database 12c DBA Handbook

Recommendation Details link shown in Figure 6-13, and on the page shown in Figure 6-14, you
can click the Shrink button in the Recommendation column to perform the shrink operation on
the TEMP_OBJ table.

FIGURE 6-12. Advisors and Advisor Tasks

06-ch06.indd 202 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 203

Undo Advisor
To start Automatic Undo Management Advisor, start at the page shown previously in Figure 6-7,
and click the Automatic Undo Management link at the top of the page. In Figure 6-15, you see the
current settings for the undo tablespace UNDOTBS1.

FIGURE 6-13. Segment Advisor results

06-ch06.indd 203 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

204 Oracle Database 12c DBA Handbook

Given the recent SQL load in this database, the current size of the undo tablespace (265MB)
is sufficient (with AUTOEXTEND set at 5MB increments) to satisfy the undo data needs for similar
queries in the future. However, you’re expecting to add some data warehouse tables and you may
have long-running queries that may exceed the current 15-minute undo retention window, and
you want to maintain overall system performance by avoiding frequent extensions to the existing

FIGURE 6-14. Implementing Segment Advisor recommendations

06-ch06.indd 204 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 205

undo tablespace. Therefore, you probably need to increase the size of the undo tablespace; in
Figure 6-15, specify 90 minutes in the Duration text box and click the Run Analysis button. The
analysis is performed immediately; at the bottom of Figure 6-16, you see that the minimum required
undo tablespace size is 143MB.

FIGURE 6-15. Undo Advisor current settings and options

06-ch06.indd 205 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

206 Oracle Database 12c DBA Handbook

You don’t need to change your undo tablespace size immediately; the beauty of Undo Advisor
is that you can change the time period for analysis and retention to see what your disk requirements
will be in a given scenario.

FIGURE 6-16. Undo Advisor recommendations

06-ch06.indd 206 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 6: Monitoring Space Usage 207

Summary
It seems you never have enough disk space to hold all of the objects and their data in the database.
Even with the ever declining price per GB of storage and the advancements in solid state storage,
each GB still has a price attached to it. Given a finite amount of disk space, you must understand
how this storage is structured in the database and how to query the structures themselves. You must
understand the hierarchy of storage components in the database and this chapter explained that
hierarchy with blocks, extents, segments, datafiles, and tablespaces.

Once you know how the storage is structured, you must be able to query that storage metadata.
Oracle provides a number of data dictionary and dynamic performance views to show you where
and how your storage is allocated. Data dictionary views such as DBA_SEGMENTS shows you the
tables, indexes, and materialized views; DBA_EXTENTS shows how those segments were allocated.
Dynamic performance views such as V$UNDOSTAT have real-time information about the UNDO
tablespace and its occupants.

Oracle not only provides you with these views but gives you an advisor framework to proactively
alert you to impending space issues based on thresholds you provide. You can be alerted to space
usage at several levels including the tablespace, disk group, and even OS level so that you can
maintain an SLA that mandates little or no downtime.

06-ch06.indd 207 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 208

06-ch06.indd 208 13/05/15 9:56 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 209

CHAPTER
7

Managing Transactions
with Undo Tablespaces

07-ch07.indd 209 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

210 Oracle Database 12c DBA Handbook

In Chapter 6, we touched briefly on how the space in an undo tablespace is managed,
along with views such as V$UNDOSTAT that can help the DBA monitor and size the undo
tablespace. In this chapter, we’ll delve much more deeply into the configuration and

management of the undo tablespace, and how we may resolve the sometimes conflicting
requirements of providing enough undo for read consistency while also ensuring that DML
statements will not fail.

To start off this chapter, we’ll do a quick review of transactions from a database user’s point of
view so that you will better understand how to support the user’s transactions with the appropriately
sized undo tablespace. Next, we’ll cover the basics of how to create an undo tablespace, either
during database creation or later using the familiar CREATE TABLESPACE command. Undo
segments fulfill a number of requirements for database users, and I will enumerate and explain
each of those requirements in some detail.

Oracle provides a number of ways to monitor and, as a result, more precisely size undo
tablespaces. The package DBMS_ADVISOR can be used to analyze the undo tablespace usage, as
we did in Chapter 6; we will investigate this package in more detail and look at how Oracle
Enterprise Manager Cloud Control can make it easy to perform the analysis. Oracle Database 12c
further refines the resource requirements for undo by allowing the undo against temporary tables
to be stored in a temporary tablespace.

I’ll also review the different types of Oracle Flashback features that rely on an adequately
sized undo tablespace to recover from a number of different user error scenarios. All the major
Flashback features at the query, table, or transaction level are covered in this chapter; Flashback
Database is covered in Chapter 16.

Rollback segments from previous Oracle releases were hard to manage and were usually
sized too large or too small by most DBAs; Oracle strongly recommends that all new databases
use Automatic Undo Management and that databases upgraded from a previous version of Oracle
be converted to using Automatic Undo Management. We won’t cover any aspects of manual
undo management here except for how to migrate from rollback segments to automatic undo.

Transaction Basics
A transaction is a collection of SQL DML statements that is treated as a logical unit; the failure of
any of the statements in the transaction implies that none of the other changes made to the
database in the transaction should be permanently saved to the database. Once the DML
statements in the transaction have successfully completed, the application or SQL*Plus user will
issue a COMMIT to make the changes permanent. In the classic banking example, a transaction
that transfers a dollar amount from one account to another is successful only if both the debit of
one account (an UPDATE of the savings account balance) and the credit of another account (an
UPDATE of the checking account balance) are successful. Failure of either or both statements
invalidates the entire transaction. When the application or SQL*Plus user issues a COMMIT,
if only one or the other of the UPDATE statements is successful, the bank will have some very
unhappy customers!

A transaction is initiated implicitly. After a COMMIT of a previous transaction is completed,
and at least one row of a table is inserted, updated, or deleted, a new transaction is implicitly
created (an UPDATE with a predicate returning no rows does not create a transaction slot). Also,
any DDL commands such as CREATE TABLE and ALTER INDEX will commit an active transaction

07-ch07.indd 210 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 211

and begin a new transaction. You can name a transaction by using the SET TRANSACTION . . .
NAME 'transaction_name' command. Although this provides no direct benefit to the application,
the name assigned to the transaction is available in the dynamic performance view V$TRANSACTION
and allows a DBA to monitor long-running transactions; in addition, the transaction name helps
the DBA resolve in-doubt transactions in distributed database environments. The SET TRANSACTION
command, if used, must be the first statement within the transaction.

Within a given transaction, you can define a savepoint. A savepoint allows the sequence of DML
commands within a transaction to be partitioned so that it is possible to roll back one or more of
the DML commands after the savepoint, and subsequently submit additional DML commands or
commit the DML commands performed before the savepoint. Savepoints are created with the
SAVEPOINT savepoint_name command. To undo the DML commands since the last savepoint,
you use the command ROLLBACK TO SAVEPOINT savepoint_name.

A transaction is implicitly committed if a user disconnects from Oracle normally; if the user
process terminates abnormally, the most recent transaction is rolled back.

Undo Basics
Undo tablespaces facilitate the rollback of logical transactions. In addition, undo tablespaces
support a number of other features, including read consistency, various database-recovery operations,
and Flashback functions.

Rollback
As described in the previous section, any DML command within a transaction—whether the
transaction is one or one hundred DML commands—may need to be rolled back. When a DML
command makes a change to a table, the old data values changed by the DML command are
recorded in the undo tablespace within a system-managed undo segment or a rollback segment.

When an entire transaction is rolled back (that is, a transaction without any savepoints),
Oracle undoes all the changes made by DML commands since the beginning of the transaction
using the corresponding undo records, releases the locks on the affected rows, if any, and the
transaction ends.

If part of a transaction is rolled back to a savepoint, Oracle undoes all changes made by DML
commands after the savepoint. All subsequent savepoints are lost, all locks obtained after the
savepoint are released, and the transaction remains active.

Read Consistency
Undo provides read consistency for users who are reading rows that are involved in a DML
transaction by another user. In other words, all users who are reading the affected rows will see
no changes in the rows until they issue a new query after the DML user commits the transaction.
Undo segments are used to reconstruct the data blocks back to a read-consistent version and, as a
result, provide the previous values of the rows to any user issuing a SELECT statement before the
transaction commits.

For example, user CLOLSEN begins a transaction at 10:00 that is expected to commit at 10:15,
with various updates and insertions to the EMPLOYEES table. As each INSERT, UPDATE, and
DELETE occurs on the EMPLOYEES table, the old values of the table are saved in the undo
tablespace. When the user SUSANP issues a SELECT statement against the EMPLOYEES table at

07-ch07.indd 211 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

212 Oracle Database 12c DBA Handbook

10:08, none of the changes made by CLOLSEN are visible to anyone except CLOLSEN; the undo
tablespace provides the previous values of CLOLSEN’s changes for SUSANP and all other users.
Even if the query from SUSANP does not finish until 10:20, the table still appears to be unchanged
until a new query is issued after the changes are committed. Until CLOLSEN performs a COMMIT
at 10:15, the data in the table appears unchanged as of 10:00.

If there is not enough undo space available to hold the previous values of changed rows, the
user issuing the SELECT statement may receive an “ORA-01555: Snapshot Too Old” error. Later in
this chapter, we will discuss ways in which we can address this issue.

Database Recovery
Undo tablespaces are also a key component of instance recovery. The online redo logs bring both
committed and uncommitted transactions forward to the point in time of the instance crash; the
undo data is used to roll back any transactions that were not committed at the time of the crash
or instance failure.

Flashback Operations
The data in the undo tablespace is used to support the various types of Flashback options:
Flashback Table, Flashback Query, and the package DBMS_FLASHBACK. Flashback Table will
restore a table as of a point of time in the past, Flashback Query lets you view a table as of an SCN
or time in the past, and DBMS_FLASHBACK provides a programmatic interface for Flashback
operations. Flashback Data Archive, new as of Oracle Database 11g, stores and tracks all
transactions on a specified table for a specified time period; in a nutshell, Flashback Data Archive
stores undo data for a specific table in a specific tablespace outside of the global undo tablespace.
Also new as of Oracle Database 11g is Flashback Transaction Backout that can roll back an
already committed transaction and its dependent transactions while the database is online. All
these Flashback options are covered in more detail at the end of this chapter.

Managing Undo Tablespaces
Creating and maintaining undo tablespaces is a “set it and forget it” operation once the undo
requirements of the database are understood. Within the undo tablespace, Oracle automatically
creates, sizes, and manages the undo segments, unlike previous versions of Oracle in which the
DBA would have to manually size and constantly monitor rollback segments.

In the next couple sections, we’ll review the processes used to create and manage undo
tablespaces, including the relevant initialization parameters. In addition, we’ll review some
scenarios where we may create more than one undo tablespace and how to switch between undo
tablespaces.

Creating Undo Tablespaces
Undo tablespaces can be created in two ways: at database creation or with the CREATE
TABLESPACE command after the database is created. As with any other tablespace in Oracle 12c,
the undo tablespace can be a bigfile tablespace, further easing the maintenance of undo
tablespaces.

07-ch07.indd 212 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 213

Creating an Undo Tablespace with CREATE DATABASE
A database may have more than one undo tablespace, although only one can be active at a time.
Here’s what creating an undo tablespace at database creation looks like:

create database ord
 user sys identified by ds88dkw2
 user system identified by md78s233
 sysaux datafile '/u02/oradata/ord/sysaux001.dbf' size 1g
 default temporary tablespace temp01
 tempfile '/u03/oradata/ord/temp001.dbf' size 150m
 undo tablespace undotbs01
 datafile '/u01/oradata/ord/undo001.dbf' size 500m;

If the undo tablespace cannot be successfully created in the CREATE DATABASE command,
the entire operation fails. The error must be corrected, any files remaining from the operation
must be deleted, and the command must be reissued.

Although the UNDO TABLESPACE clause in the CREATE DATABASE command is optional,
if it is omitted and Automatic Undo Management is enabled (the default), an undo tablespace is
still created with an autoextensible datafile with an initial size of 10MB and the default name
SYS_UNDOTBS.

Creating an Undo Tablespace with CREATE TABLESPACE
Any time after the database is created, a new undo tablespace can be created. An undo tablespace
is created just as any other tablespace with the addition of the UNDO keyword:

create undo tablespace undotbs02
 datafile '/u01/oracle/rbdb1/undo0201.dbf'
 size 500m reuse autoextend on;

Most DML won’t need more than 500MB of UNDO space, so we start out this tablespace at only
500MB and allow it to grow for the occasional larger or one-time DML statements that might
need more.

Extents in an undo tablespace must be system managed; in other words, you can only specify
EXTENT MANAGEMENT as LOCAL AUTOALLOCATE.

Creating an Undo Tablespace Using EM Cloud Control
Creating an undo tablespace is straightforward using Enterprise Manager Cloud Control. From the
instance’s home page, navigate to Administration | Storage | Tablespaces . You will be presented
with a list of existing tablespaces; click the Create button. In Figure 7-1, we’re creating a new
undo tablespace named UNDO_BATCH. This undo tablespace will be used for all transactions
running during the overnight batch window even if SELECT statements are running. Specify Undo
Retention Guarantee as well. I’ll explain how that works later in this chapter.

07-ch07.indd 213 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

214 Oracle Database 12c DBA Handbook

At the bottom of the screen, click Add and specify the name of the datafile to use for the undo
tablespace, as indicated in Figure 7-2. In this example, you use the ASM disk group DATA for the
datafile with a size of 500MB and 100MB more each time it extends. Click Continue to return to
the page shown in Figure 7-1.

Clicking the Storage tab allows us to specify extent allocation, although for an undo
tablespace it must be automatic. If we are supporting multiple block sizes, we can specify the
block size for the undo tablespace. Figure 7-3 shows that we are specifying automatic extent
allocation and a block size of 8192, the default and only block size defined for the database.

FIGURE 7-1. Using EM Database Cloud Control to create an undo tablespace

07-ch07.indd 214 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 215

As with most every EM Cloud Control maintenance screen, we can view the actual SQL
commands that will be executed when we are ready to create the tablespace. In Figure 7-4, we
clicked the Show SQL button to preview the SQL commands used to create the tablespace.

After we click OK on the screen shown in Figure 7-3, the new undo tablespace is created
successfully, as shown in Figure 7-5.

Note that EM Cloud Control, although a big timesaver for the DBA, does not cover every
possible scenario, nor does it prevent the DBA from trying to create an undo tablespace with the
wrong parameters. On the Storage tab in Figure 7-3, we could have specified Uniform under Extent
Allocation, but when we then tried to create the undo tablespace, it would have failed with an
error message. As mentioned earlier in this chapter, undo tablespaces must have automatically
allocated extents.

FIGURE 7-2. Specifying a datafile for a new undo tablespace

07-ch07.indd 215 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

216 Oracle Database 12c DBA Handbook

FIGURE 7-3. Specifying storage characteristics for an undo tablespace

FIGURE 7-4. Previewing SQL commands to create an undo tablespace

07-ch07.indd 216 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 217

Dropping Undo Tablespaces
Dropping an undo tablespace is similar to dropping any other tablespace; the only restriction is
that the undo tablespace being dropped must not be the active undo tablespace or still have undo
data for an uncommitted transaction. You may, however, drop an undo tablespace that has unexpired
undo information, which may cause a long-running query to fail. To drop the tablespace we created
in the previous section, we use the DROP TABLESPACE command:

SQL> drop tablespace undo_batch;
Tablespace dropped.
SQL>

FIGURE 7-5. Create undo tablespace confirmation

07-ch07.indd 217 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

218 Oracle Database 12c DBA Handbook

The clause INCLUDING CONTENTS is implied when dropping an undo tablespace. However,
to remove the operating system data files when the tablespace is dropped, you must specify
INCLUDING CONTENTS AND DATAFILES. Trying to drop the active undo tablespace is not allowed:

SQL> drop tablespace undotbs1;
drop tablespace undotbs1
*
ERROR at line 1:
ORA-30013: undo tablespace 'UNDOTBS1' is currently in use
SQL>

The active undo tablespace must be switched with another undo tablespace before it can be
dropped. More information on switching undo tablespaces is covered later in this chapter.

Modifying Undo Tablespaces
The following operations are allowed on undo tablespaces:

 ■ Adding a datafile to an undo tablespace

 ■ Renaming a datafile in an undo tablespace

 ■ Changing an undo tablespace’s datafile to online or offline

 ■ Beginning or ending an open tablespace backup (ALTER TABLESPACE UNDOTBS BEGIN
BACKUP)

 ■ Enabling or disabling the undo retention guarantee

Everything else is automatically managed by Oracle.

Using OMF for Undo Tablespaces
In addition to using a bigfile tablespace for undo tablespaces, you can also use Oracle Managed
Files (OMF) to automatically name (and locate, if you’re not using ASM) an undo tablespace; the
initialization parameter DB_CREATE_FILE_DEST contains the location where an undo tablespace
will be created if the DATAFILE clause is not specified in the CREATE UNDO TABLESPACE command.
In the following example, we create an undo tablespace using OMF in an ASM disk group:

SQL> show parameter db_create_file_dest
NAME TYPE VALUE
------------------------------------ ----------- -----------------------------
db_create_file_dest string +DATA

SQL> create undo tablespace undo_bi;
Tablespace created.

SQL> select ts.name ts_name, df.name df_name, bytes
 2 from v$tablespace ts join v$datafile df using(ts#)
 3 where ts.name = 'UNDO_BI';

TS_NAME DF_NAME BYTES
------------ --- ----------
UNDO_BI +DATA/dw/datafile/undo_bi.275.629807457 104857600

SQL>

07-ch07.indd 218 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 219

Because we did not specify a datafile size either, the tablespace defaults to a size of 100MB;
in addition, the datafile is autoextensible with an unlimited maximum size, limited only by the
file system.

Undo Tablespace Dynamic Performance Views
A number of dynamic performance views and data dictionary views contain information about
undo tablespaces, user transactions, and undo segments. Table 7-1 contains the view names and
their descriptions.

The views in Table 7-1 are described in more detail later in this chapter.

Undo Tablespace Initialization Parameters
The following sections describe the initialization parameters needed to specify the undo tablespace
for the database as well as control how long Oracle will retain undo information in the database.

UNDO_MANAGEMENT
The parameter UNDO_MANAGEMENT defaults to MANUAL in Oracle Database 10g, and AUTO
in Oracle Database 11g and 12c. Setting the parameter UNDO_MANAGEMENT to AUTO places
the database in Automatic Undo Management mode. At least one undo tablespace must exist in
the database for this parameter to be valid, whether UNDO_TABLESPACE is specified or not.
UNDO_MANAGEMENT is not a dynamic parameter; therefore, the instance must be restarted
whenever UNDO_MANAGEMENT is changed from AUTO to MANUAL, or vice versa.

UNDO_TABLESPACE
The UNDO_TABLESPACE parameter specifies which undo tablespace will be used for Automatic
Undo Management. If UNDO_MANAGEMENT is not specified or is set to MANUAL, and
UNDO_TABLESPACE is specified, the instance will not start.

TABLE 7-1. Undo Tablespace Views

View Description

DBA_TABLESPACES Tablespace names and characteristics, including the CONTENTS
column, which can be PERMANENT, TEMPORARY, or UNDO; the undo
RETENTION column is NOT APPLY, GUARANTEE, or NOGUARANTEE.

DBA_UNDO_EXTENTS All undo segments in the database, including their size, their extents,
the tablespace where they reside, and current status (EXPIRED or
UNEXPIRED).

V$UNDOSTAT The amount of undo usage for the database at ten-minute intervals;
contains at most 1008 rows (7 days).

V$ROLLSTAT Rollback segment statistics, including size and status.

V$TRANSACTION Contains one row for each active transaction for the instance.

07-ch07.indd 219 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

220 Oracle Database 12c DBA Handbook

NOTE
UNDO_TABLESPACE is used in a Real Application Clusters (RAC)
environment to assign a particular undo tablespace to an instance,
where the total number of undo tablespaces in the database is the
same or more than the number of instances in the cluster.

Conversely, if UNDO_MANAGEMENT is set to AUTO and there is no undo tablespace in the
database, the instance will start, but then the SYSTEM rollback segment will be used for all undo
operations, and a message is written to the alert log. Any user DML that attempts to make changes
in non-SYSTEM tablespaces will, in addition, receive the error message “ORA-01552: cannot use
system rollback segment for non-system tablespace ‘USERS,’” and the statement fails.

UNDO_RETENTION
UNDO_RETENTION specifies a minimum amount of time that undo information is retained for
queries. In automatic undo mode, UNDO_RETENTION defaults to 900 seconds. This value is
valid only if there is enough space in the undo tablespace to support read-consistent queries; if
active transactions require additional undo space, an unexpired undo may be used to satisfy the
active transactions and may cause “ORA-01555: Snapshot Too Old” errors.

The column TUNED_UNDORETENTION of the dynamic performance view V$UNDOSTAT
gives the tuned undo retention time for each time period; the status of the undo tablespace usage
is updated in V$UNDOSTAT every ten minutes:

SQL> show parameter undo_retention

NAME TYPE VALUE
------------------------------------ ----------- ---------------
undo_retention integer 900

SQL> select to_char(begin_time,'yyyy-mm-dd hh24:mi'),
 2 undoblks, txncount, tuned_undoretention
 3 from v$undostat where rownum = 1;

TO_CHAR(BEGIN_TI UNDOBLKS TXNCOUNT TUNED_UNDORETENTION
---------------- ---------- ---------- -------------------
2014-08-05 16:07 9 89 900
1 row selected.
SQL>

Because the transaction load is very light during the most recent time period, and the instance
has just recently started up, the value in the TUNED_UNDORETENTION column is the same as
the minimum specified in the UNDO_RETENTION initialization parameter: 900 seconds (15
minutes). You may even set UNDO_RETENTION to 24 hours or more to facilitate AS OF queries
for users without needing DBA intervention.

TIP
You don’t need to specify UNDO_RETENTION unless you have
Flashback or LOB retention requirements; the UNDO_RETENTION
parameter is not used for managing transaction rollback.

07-ch07.indd 220 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 221

Multiple Undo Tablespaces
As mentioned earlier in this chapter, a database can have multiple undo tablespaces, but only one
of them can be active for a given instance at any one time. In this section, I’ll show an example of
switching to a different undo tablespace while the database is open.

NOTE
In a RAC environment, one undo tablespace is required for each
instance in the cluster.

In our dw database, we have three undo tablespaces:

SQL> select tablespace_name, status from dba_tablespaces
 2 where contents = 'UNDO';

TABLESPACE_NAME STATUS
--------------------------- ---------
UNDOTBS1 ONLINE
UNDO_BATCH ONLINE
UNDO_BI ONLINE

3 rows selected.

But only one of the undo tablespaces is active:

SQL> show parameter undo_tablespace

NAME TYPE VALUE
-------------------------- ----------- ----------------------
undo_tablespace string UNDOTBS1

For overnight processing, we change the undo tablespace from UNDOTBS1 to the tablespace
UNDO_BATCH, which is much larger to support higher DML activity. The disk containing the
daytime undo tablespace is much faster but has a limited amount of space; the disk containing
the overnight undo tablespace is much larger, but slower. As a result, we use the smaller undo
tablespace to support OLTP during the day, and the larger undo tablespace for our data mart and
data warehouse loads, as well as other aggregation activities, at night when response time is not
as big of an issue.

NOTE
Other than special circumstances described in this section, it is
unlikely that you will be switching undo tablespaces for a given
instance. Oracle’s best practices suggest that you create a single undo
tablespace per instance that is large enough to handle all transaction
loads; in other words, “set it and forget it.”

07-ch07.indd 221 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

222 Oracle Database 12c DBA Handbook

About the time the undo tablespace is going to be switched, the user HR is performing some
maintenance operations on the HR.EMPLOYEES table, and she has an active transaction in the
current undo tablespace:

SQL> connect hr/hr@dw;
Connected.
SQL> set transaction name 'Employee Maintenance';
Transaction set.
SQL> update employees set commission_pct = commission_pct * 1.1;
107 rows updated.
SQL>

Checking V$TRANSACTION, you see HR’s uncommitted transaction:

SQL> select t.status, t.start_time, t.name
 2 from v$transaction t join v$session s on t.ses_addr = s.saddr
 3 where s.username = 'HR';

STATUS START_TIME NAME
-------------- -------------------- -------------------------
ACTIVE 08/05/14 17:41:50 Employee Maintenance

1 row selected.

You change the undo tablespace as follows:

SQL> alter system set undo_tablespace=undo_batch;
System altered.

HR’s transaction is still active, and therefore the old undo tablespace still contains the undo
information for HR’s transaction, leaving the undo segment still available with the following status
until the transaction is committed or rolled back:

SQL> select r.status
 2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
 3 join v$session s on t.ses_addr = s.saddr
 4 where s.username = 'HR';

STATUS

PENDING OFFLINE

1 row selected.

Even though the current undo tablespace is UNDO_BATCH, the daytime tablespace UNDOTBS1
cannot be taken offline or dropped until HR’s transaction is committed or rolled back:

SQL> show parameter undo_tablespace

NAME TYPE VALUE
-------------------------- ----------- ----------------------
undo_tablespace string UNDO_BATCH

07-ch07.indd 222 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 223

SQL> alter tablespace undotbs1 offline;
alter tablespace undotbs1 offline
*
ERROR at line 1:
ORA-30042: Cannot offline the undo tablespace

The error message ORA-30042 applies if you try to offline an undo tablespace that is in use—
either it is the current undo tablespace or it still has pending transactions. Note that if we switch
back to the daytime tablespace before HR commits or rolls back the original transaction, the
status of HR’s rollback segment reverts to ONLINE:

SQL> alter system set undo_tablespace=undotbs1;
System altered.
SQL> select r.status
 2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
 3 join v$session s on t.ses_addr = s.saddr
 4 where s.username = 'HR';

STATUS

ONLINE

1 row selected.

Sizing and Monitoring the Undo Tablespace
There are three types of undo data in the undo tablespace: active or unexpired, expired, and
unused. Active or unexpired is undo data that is still needed for read consistency, even after a
transaction has been committed. Once all queries needing the active undo data have completed
and the undo retention period is reached, the active undo data becomes expired. Expired undo
data may still be used to support other Oracle features, such as the Flashback features, but it is no
longer needed to support read consistency for long-running transactions. Unused undo data is
space in the undo tablespace that has never been used.

As a result, the minimum size for an undo tablespace is enough space to hold the before-image
versions of all data from all active transactions that have not yet been committed or rolled back.
If the space allocated to the undo tablespace cannot even support the changes to uncommitted
transactions to support a rollback operation, the user will get the error message “ORA-30036:
unable to extend segment by space_qty in undo tablespace tablespace_name.” In this situation,
the DBA must increase the size of the undo tablespace, or as a stopgap measure the user can split
up a larger transaction into smaller ones while still maintaining any required business rules.

Manual Methods
The DBA can use a number of manual methods to correctly size the undo tablespace. As
demonstrated in Chapter 6, we can review the contents of the dynamic performance view

07-ch07.indd 223 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

224 Oracle Database 12c DBA Handbook

V$UNDOSTAT to see the undo segment usage at ten-minute intervals. In addition, the column
SSOLDERRCNT indicates how many queries failed with a “Snapshot too old” error:

SQL> select to_char(end_time,'yyyy-mm-dd hh24:mi') end_time,
 2> undoblks, ssolderrcnt from v$undostat;

END_TIME UNDOBLKS SSOLDERRCNT
---------------- ---------- -----------
2014-08-02 20:17 45 0
2014-08-02 20:07 116 0
2014-08-02 19:57 2763 0
2014-08-02 19:47 23 0
2014-08-02 19:37 45120 2
2014-08-02 19:27 119 0
2014-08-02 19:17 866 0

Between 19:27 and 19:37 we have a spike in undo usage, resulting in some failed queries. As
a rule of thumb, you can use the following calculations:

undo_tablespace_size = UR * UPS + overhead

In this formula, UR equals undo retention in seconds (from the initialization parameter
UNDO_RETENTION), UPS equals undo blocks used per second (maximum), and overhead
equals undo metadata, usually a very small number relative to the overall size. For example, if a
database has an 8KB block size, UNDO_RETENTION equals 43200 (12 hours), and we generate
500 undo blocks every second, all of which must be retained for at least 12 hours, our total undo
space must be

undo_tablespace_size = 43200 * 500 * 8192 = 176947200000 = 177GB

Add about 10 to 20 percent to this calculation to allow for unexpected situations. Alternatively,
you can enable autoextend for the datafiles in the undo tablespace. Although this calculation is
useful as a starting point, Oracle 10g’s and Oracle 11g’s built-in advisors, using trending analysis,
can give a better overall picture of undo space usage and recommendations.

Undo Advisor
Oracle 12c’s Undo Advisor automates a lot of the tasks necessary to fine-tune the amount of
space required for an undo tablespace. In Chapter 6, we reviewed two examples of using Undo
Advisor: via the EM Cloud Control interface and using the PL/SQL DBMS_ADVISOR packages
within the Automatic Workload Repository (AWR) to programmatically choose a time period to
analyze and perform the analysis.

The Automatic Undo Management GUI screen is shown in Figure 7-6.
UNDO_RETENTION is currently set to 15 minutes and the size of the active undo tablespace

(UNDOTBS1) is 60MB. In this example, if we want a read-consistent view of table data for 720
minutes, clicking the Run Analysis button tells us that we only need an undo tablespace size of
only 36MB (and ideally three times this amount) to support workload fluctuations. Therefore, our
undo tablespace would be sized adequately for future growth at 108MB.

07-ch07.indd 224 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 225

Controlling Undo Usage
Since Oracle9i, Oracle’s Database Resource Manager can help to control undo space usage by
user or by group of users within a resource consumer group via the UNDO_POOL directive. Each
consumer group can have its own undo pool; when the total undo generated by a group exceeds
the assigned limit, the current transaction generating the undo is terminated and generates the
error message “ORA-30027: Undo quota violation—failed to get number (bytes).” The session
will have to wait until the DBA increases the size of the undo pool or until other transactions from
users in the same consumer group complete.

FIGURE 7-6. Tablespace characteristics

07-ch07.indd 225 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

226 Oracle Database 12c DBA Handbook

In the following example, we change the default value of UNDO_POOL from NULL (unlimited)
to 50000KB (50MB) for users in the resource consumer group LOW_GROUP:

begin
 dbms_resource_manager.create_pending_area();
 dbms_resource_manager.update_plan_directive(
 plan => 'system_plan',
 group_or_subplan => 'low_group',
 new_comment => 'Limit undo space for low priority groups',
 new_undo_pool => 50000);
 dbms_resource_manager.validate_pending_area();
 dbms_resource_manager.submit_pending_area();
end;

Oracle Database Resource Manager and other resource directives are covered in more detail
in Chapter 5.

Storing Undo in Temporary Tablespaces
Oracle Database 12c introduces a new option for using undo: temporary undo. Although temporary
tables were available in previous versions of Oracle Database and enhanced performance because
no redo operations were generated by DML against temporary tables, there was still undo generated
that was recorded in the redo log files. Figure 7-7 shows the locations for undo data for both
persistent and temporary tables.

FIGURE 7-7. Temporary undo architecture

Stored in
Redo log �les

Redo

Stored in
Temporary
tablespace

Temporary
Table

Stored in
User

tablespace

Persistant
Table

Permanent
Undo

If not using
temporary undo

If using
temporary undo

Temporary
Undo

Stored in
Temporary tablespace Stored in

Undo tablespace

07-ch07.indd 226 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 227

Undo is still required for a temporary table to ensure consistent reads and transaction rollback
to a savepoint for the temporary table used in a single session, but the undo does not have to
reside in the database’s default undo tablespace. Instead, the undo for temporary tables can reside
in the temporary tablespace itself and therefore not generate additional vectors in the online redo
log files.

To enable temporary undo at the database level, change the initialization parameter TEMP_
UNDO_ENABLED:

SQL> alter system set temp_udno_enabled=true;

Temporary undo can also be enabled at the session level. To use temporary undo, the
COMPATIBLE initialization parameter must be set to at least 12.1.0.0.0.

Read Consistency vs. Successful DML
For OLTP databases, generally we want DML commands to succeed at the expense of read-
consistent queries. For a DSS environment, however, we may want long-running queries to complete
without getting a “Snapshot too old” error. Although increasing the UNDO_RETENTION parameter
or increasing the size of the undo tablespace helps to ensure that undo blocks are available for
read-consistent queries, undo tablespaces have another characteristic to help ensure that queries
will run to completion: the RETENTION GUARANTEE setting.

Undo retention guarantee is set at the tablespace level, and it can be altered at any time.
Setting a retention guarantee for an undo tablespace ensures that any unexpired undo within the
tablespace should be retained even if it means that DML transactions might not have enough
undo space to complete successfully. By default, a tablespace is created with NOGUARANTEE,
unless you specify the GUARANTEE keyword, either when the tablespace is created or later with
ALTER TABLESPACE:

SQL> alter tablespace undotbs1 retention guarantee;
Tablespace altered.

SQL> select tablespace_name, retention
 2 from dba_tablespaces
 3 where tablespace_name = 'UNDOTBS1';

TABLESPACE_NAME RETENTION
------------------------------ -----------
UNDOTBS1 GUARANTEE

1 row selected.

For non-undo tablespaces, the value of RETENTION is always NOT APPLY.

Flashback Features
In this section we’ll discuss the Flashback features supported by undo tablespaces or Flashback Data
Archive: Flashback Query, Flashback Table, Flashback Version Query, and Flashback Transaction
Query. In addition, we’ll cover the highlights of using the DBMS_FLASHBACK package. As of
Oracle Database 11g, these features are collectively known as the Oracle Total Recall Option.

07-ch07.indd 227 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

228 Oracle Database 12c DBA Handbook

Flashback Database and Flashback Drop are covered in Chapter 16. Flashback Database uses
Flashback logs in the Flash Recovery Area instead of undo in an undo tablespace to provide
the Flashback functionality. Flashback Drop places dropped tables into a virtual recycle bin
within the tablespace and they remain there until the user retrieves them with FLASHBACK TABLE
. . . TO BEFORE DROP command or empties the recycle bin, or else until the space is needed by
new permanent objects in the tablespace.

To further extend the self-service capabilities of Oracle Database 12c, the DBA can grant
system and object privileges to users to allow them to fix their own problems, usually without any
DBA intervention. In the following example, we’re enabling the user SCOTT to perform Flashback
operations on specific tables and to access transaction metadata across the database:

SQL> grant insert, update, delete, select on hr.employees to scott;
Grant succeeded.
SQL> grant insert, update, delete, select on hr.departments to scott;
Grant succeeded.
SQL> grant flashback on hr.employees to scott;
Grant succeeded.
SQL> grant flashback on hr.departments to scott;
Grant succeeded.
SQL> grant select any transaction to scott;
Grant succeeded.

Flashback Query
The AS OF clause is available in a SELECT query to retrieve the state of a table as of a given
timestamp or SCN. You might use this to find out which rows in a table were deleted since
midnight, or you might want to just do a comparison of the rows in a table today versus what was
in the table yesterday.

In the following example, HR is cleaning up the EMPLOYEES table and deletes two employees
who no longer work for the company:

SQL> delete from employees
 2 where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL>

Normally, HR will copy these rows to the EMPLOYEES_ARCHIVE table first, but she forgot to
do that this time; HR doesn’t need to put those rows back into the EMPLOYEES table, but she
needs to get the two deleted rows and put them into the archive table. Because HR knows she
deleted the rows less than an hour ago, we can use a relative timestamp value with Flashback
Query to retrieve the rows:

SQL> insert into hr.employees_archive
 2 select * from hr.employees
 3 as of timestamp systimestamp - interval '60' minute

07-ch07.indd 228 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 229

 4 where hr.employees.employee_id not in
 5 (select employee_id from hr.employees);

2 rows created.

SQL> commit;
Commit complete.

Because we know that EMPLOYEE_ID is the primary key of the table, we can use it to retrieve
the employee records that existed an hour ago but do not exist now. Note also that we didn’t have
to know which records were deleted; we essentially compared the table as it exists now versus an
hour ago and inserted the records that no longer exist into the archive table.

TIP
It is preferable to use the SCN for Flashback over a timestamp;
SCNs are exact, whereas the timestamp values are only stored every
three seconds to support Flashback operations. As a result, enabling
Flashback using timestamps may be off by as much as 1.5 seconds.

Although we could use Flashback Table to get the entire table back, and then archive and
delete the affected rows, in this case it is much simpler to merely retrieve the deleted rows and
insert them directly into the archive table.

Another variation of Flashback Table is to use Create Table As Select (CTAS) with the subquery
being a Flashback Query:

SQL> delete from employees where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL> create table employees_deleted as
 2 select * from employees
 3 as of timestamp systimestamp - interval '60' minute
 4 where employees.employee_id not in
 5 (select employee_id from employees);
Table created.

SQL> select employee_id, last_name from employees_deleted;

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 195 Jones
 196 Walsh

2 rows selected.

07-ch07.indd 229 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

230 Oracle Database 12c DBA Handbook

This is known as an out-of-place restore (in other words, restoring the table or a subset of the
table to a different location than the original). This has the advantage of being able to further
manipulate the missing rows, if necessary, before placing them back in the table; for example,
after reviewing the out-of-place restore, an existing referential integrity constraint may require that
you insert a row into a parent table before the restored row can be placed back in the child table.

One of the disadvantages of an out-of-place restore using CTAS is that neither constraints nor
indexes are rebuilt automatically.

DBMS_FLASHBACK
An alternative to Flashback Query is the package DBMS_FLASHBACK. One of the key differences
between the DBMS_FLASHBACK package and Flashback Query is that DBMS_FLASHBACK operates
at the session level, whereas Flashback Query operates at the object level.

Within a PL/SQL procedure or a user session, DBMS_FLASHBACK can be enabled and all
subsequent operations, including existing applications, can be carried out without the AS OF
clause being added to SELECT statements. After DBMS_FLASHBACK is enabled as of a particular
timestamp or SCN, the database appears as if the clock was turned back to the timestamp or SCN
until DBMS_FLASHBACK is disabled. Although DML is not allowed when DBMS_FLASHBACK is
enabled, a cursor can be opened in a PL/SQL procedure before DBMS_FLASHBACK is enabled to
allow data from a previous point in time to be inserted or updated in the database as of the
current point in time.

Table 7-2 lists the procedures available within DBMS_FLASHBACK.
The procedures that enable and disable Flashback mode are relatively simple to use. The

complexity usually lies within a PL/SQL procedure, for example, that creates cursors to support
DML commands.

In the following example, we’ll revisit HR’s deletion of the EMPLOYEES rows and how HR can
restore those to the table using the DBMS_FLASHBACK package. In this scenario, HR will put the

Procedure Description

DISABLE Disables Flashback mode for the session

ENABLE_AT_SYSTEM_CHANGE_NUMBER Enables Flashback mode for the session,
specifying an SCN

ENABLE_AT_TIME Enables Flashback mode for the session, using
the SCN closest to the TIMESTAMP specified

GET_SYSTEM_CHANGE_NUMBER Returns the current SCN

TRANSACTION_BACKOUT Backs out a transaction and all dependent
transactions using transaction names or
transaction identifiers (XIDs)

TABLE 7-2. DBMS_FLASHBACK Procedures

07-ch07.indd 230 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 231

deleted employee rows back into the table and instead add a termination date column to the table
to reflect the date at which the employees left the company:

SQL> delete from hr.employees where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

About ten minutes later, HR decides to get those rows back using DBMS_FLASHBACK, and
enables Flashback for her session:

SQL> execute dbms_flashback.enable_at_time(
 2 to_timestamp(sysdate - interval '45' minute));
PL/SQL procedure successfully completed.

Next, HR verifies that the two deleted rows existed as of 45 minutes ago:

SQL> select employee_id, last_name from hr.employees
 2 where employee_id in (195,196);

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 195 Jones
 196 Walsh

SQL>

To put the rows back into the HR.EMPLOYEES table, HR writes an anonymous PL/SQL
procedure to create a cursor to hold the deleted rows, disable Flashback Query, then reinsert the
rows:

declare
 -- cursor to hold deleted rows before closing
 cursor del_emp is
 select * from employees where employee_id in (195,196);
 del_emp_rec del_emp%rowtype; -- all columns of the employee row
begin
 -- open the cursor while still in Flashback mode
 open del_emp;
 -- turn off Flashback so we can use DML to put the rows
 -- back into the EMPLOYEES table
 dbms_flashback.disable;
 loop
 fetch del_emp into del_emp_rec;
 exit when del_emp%notfound;
 insert into employees values del_emp_rec;
 end loop;
 commit;
 close del_emp;
end; -- anonymous PL/SQL procedure

07-ch07.indd 231 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

232 Oracle Database 12c DBA Handbook

Note that HR could have enabled Flashback within the procedure; in this case, HR enabled it
outside of the procedure to run some ad hoc queries, and then used the procedure to create the
cursor, turn off Flashback, and reinsert the rows.

Flashback Transaction Backout
A given transaction in a complex application may be consistent and atomic, but the validity of the
transaction may not be validated until many other transactions have taken place; in other words,
the ill effects of an earlier transaction may cause other transactions to further modify the same
data as the original transaction. Trying to manually track the interdependent successive transactions
is tedious and error-prone. Flashback Transaction makes it easy to identify and roll back the
offending transaction and optionally all dependent transactions.

To enable Flashback Transaction Backout, enable archiving (if it is not already in
ARCHIVELOG mode) while the database is mounted (but not open):

alter database archivelog;

Next, run these commands to create at least one archived redo log file and to add additional
transaction information to the log files.

alter system archive log current;
alter database add supplemental log data;

Adding the supplemental log data will have a noticeable impact on performance in a heavy
DML environment. Be sure to monitor system resources before and after you enable the
additional logging to assess the cost of the logging operation. Finally, open the database:

alter database open;

You leverage Flashback Transaction Backout features via the DBMS_FLASHBACK procedure
TRANSACTION_BACKOUT. After you run DBMS_FLASHBACK.TRANSACTION_BACKOUT, the
DML against the related tables is performed but not committed; you must then review the tables
DBA_FLASHBACK_TRANSACTION_STATE and DBA_FLASHBACK_TRANSACTION_REPORT to
see if the correct transactions were rolled back. You must then manually perform either a
COMMIT or a ROLLBACK.

Flashback Table
The Flashback Table feature not only restores the state of rows in a table as of a point of time in
the past, but also restores the table’s indexes, triggers, and constraints while the database is online,
increasing the overall availability of the database. The table can be restored as of a timestamp or
an SCN. Flashback Table is preferable to other Flashback methods if the scope of user errors is
small and limited to one or very few tables. It’s also the most straightforward method if you know
that you want to restore the table to a point in the past unconditionally. For recovering the state of
a larger number of tables, Flashback Database may be a better choice. Flashback Table cannot
be used on a standby database and cannot reconstruct all DDL operations, such as adding and
dropping columns. See Chapter 14 for a way to recover a single table from an RMAN backup.

To use Flashback Table on a table or tables, you must enable row movement on the table
before performing the Flashback operation, although row movement need not be in effect when
the user error occurs. Row movement is also required to support Oracle’s segment shrink

07-ch07.indd 232 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 233

functionality; because row movement will change the ROWID of a table row, do not enable row
movement if your applications depend on the ROWID being the same for a given row until the
row is deleted. Because none of our applications reference our tables by ROWID, we can safely
enable row movement for the HR tables:

SQL> alter table employees enable row movement;
Table altered.
SQL> alter table departments enable row movement;
Table altered.
SQL> alter table jobs enable row movement;
Table altered.

The next day, the HR user accidentally deletes all the rows in the EMPLOYEES table due to a
cut-and-paste error from an existing script:

SQL> delete from hr.employees
 2 /
107 rows deleted.

SQL> commit
 2 ;
Commit complete.

SQL> where employee_id = 195
SP2-0734: unknown command beginning "where empl..." - rest of line ignored.

Because the undo tablespace is large enough and the HR user notices the problem within the
retention period, the HR user can bring back the entire table quickly without calling the DBA:

SQL> flashback table employees
 2 to timestamp systimestamp - interval '15' minute;
Flashback complete.

SQL> select count(*) from employees;
 COUNT(*)

 107

If two or more tables have a parent/child relationship with foreign key constraints, and rows
were inadvertently deleted from both tables, they can be flashed back in the same FLASHBACK
command:

SQL> flashback table employees, departments
 2 to timestamp systimestamp - interval '15' minute;
Flashback complete.

The HR user can also use EM Cloud Control to flash back one or more tables by choosing
Availability | Perform Recovery to open the Perform Recovery page, shown in Figure 7-8.

In simple scenarios, using the command line would take less time and is probably more
straightforward; however, if you have unknown dependencies or if the command-line syntax is
unfamiliar to you, then EM Cloud Control is a better option.

07-ch07.indd 233 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

234 Oracle Database 12c DBA Handbook

Flashback Version Query
Flashback Version Query, another Flashback feature that relies on undo data, provides a finer
level of detail than an AS OF query: Whereas the Flashback methods presented up to now bring
back rows of a table or an entire table for a particular point in time, Flashback Version Query
returns the entire history of a given row between two SCNs or timestamps.

For the examples in this and the next section, the user HR makes a number of changes to the
HR.EMPLOYEES and HR.DEPARTMENTS tables:

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011365

SQL> update hr.employees set salary = salary*1.2 where employee_id=195;
1 row updated.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011381

FIGURE 7-8. EM Cloud Control Perform Recovery page

07-ch07.indd 234 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 235

SQL> delete from hr.employees where employee_id = 196;
1 row deleted.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011409

SQL> insert into hr.departments values (660,'Security', 100, 1700);
1 row created.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011433

SQL> update hr.employees set manager_id = 100 where employee_id = 195;
1 row updated.

SQL> commit;
Commit complete.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011464
SQL> update hr.employees set department_id = 660 where employee_id = 195;
1 row updated.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011470

SQL> update hr.employees set salary = salary*1.2 where employee_id=195;
1 row updated.

SQL> commit;
Commit complete.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011508
SQL>

The next day, the HR user is out of the office, and the other HR department employees (who
use the HR user account) want to know what rows and tables were changed. Using Flashback
Version Query, the user HR can see not only the values of a column at a particular time, but the
entire history of changes between specified timestamps or SCNs.

07-ch07.indd 235 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

236 Oracle Database 12c DBA Handbook

A Flashback Version Query uses the VERSIONS BETWEEN clause to specify a range of SCNs
or timestamps for analysis of a given table (in this case, the EMPLOYEES table). When VERSIONS
BETWEEN is used in a Flashback Version Query, a number of pseudocolumns are available to
help identify the SCN and timestamp of the modifications, as well as the transaction ID and the
type of operation performed on the row. Table 7-3 shows the pseudocolumns available with
Flashback Version Queries.

The HR user runs a Flashback Version Query to see the changes to any key columns in
HR.EMPLOYEES for the two employees with IDs 195 and 196:

SQL> select versions_startscn startscn, versions_endscn endscn,
 2 versions_xid xid, versions_operation oper,
 3 employee_id empid, last_name name, manager_id mgrid, salary sal
 4 from hr.employees
 5 versions between scn 4011365 and 4011508
 6 where employee_id in (195,196);

 STARTSCN ENDSCN XID OPER EMPID NAME MGRID SAL
--------- --------- ---------------- ---- ----- -------- ----- ----------
 4011507 1100120025000000 U 195 Jones 100 4032
 4011463 4011507 0E001A0024000000 U 195 Jones 100 3360
 4011463 195 Jones 123 2800
 4011463 0E001A0024000000 D 196 Walsh 124 3100
 4011463 196 Walsh 124 3100

The rows are presented with the most recent changes first. Alternatively, HR could have
filtered the query by TIMESTAMP or displayed the TIMESTAMP values, but either can be used in a
Flashback Query or Flashback Table operation, if required later. From this output, we see that one
employee was deleted and that another employee received two pay adjustments instead of one.
It’s also worth noting that some of the transactions contain only one DML command, and others
have two. In the next section, we’ll attempt to correct one or more of these problems.

Pseudocolumn Description

VERSIONS_START{SCN|TIME} The starting SCN or timestamp when the change was made to the
row.

VERSION_END{SCN|TIME} The ending SCN or timestamp when the change was no longer
valid for the row. If this is NULL, either the row version is still
current or the row was deleted.

VERSIONS_XID The transaction ID of the transaction that created the row version.

VERSIONS_OPERATION The operation performed on the row (I=Insert, D=Delete,
U=Update).

TABLE 7-3. Flashback Version Query Pseudocolumns

07-ch07.indd 236 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 237

Flashback Transaction Query
Once we have identified any erroneous or incorrect changes to a table, we can use Flashback
Transaction Query to identify any other changes that were made by the transaction containing the
inappropriate changes. Once identified, all changes within the transaction can be reversed as a
group, typically to maintain referential integrity or the business rules used to process the transaction
in the first place.

A Flashback Transaction Query, unlike a Flashback Version Query, does not reference the
table involved in DML transactions; instead, you query the data dictionary view FLASHBACK_
TRANSACTION_QUERY, the columns of which are summarized in Table 7-4.

To further investigate the changes that were made to the EMPLOYEES table, we will query the
view FLASHBACK_TRANSACTION_QUERY with the oldest transaction from the query in the
previous section:

SQL> select start_scn, commit_scn, logon_user,
 2 operation, table_name, undo_sql
 3 from flashback_transaction_query
 4 where xid = hextoraw('0E001A0024000000');

START_SCN COMMIT_SCN LOGON_USER OPERATION TABLE_NAME
---------- ---------- ---------- ------------ ---------------
UNDO_SQL

Column Name Description

XID Transaction ID number

START_SCN SCN for the first DML in the transaction

START_TIMESTAMP Timestamp of the first DML in the transaction

COMMIT_SCN SCN when the transaction was committed

COMMIT_TIMESTAMP Timestamp when the transaction was committed

LOGON_USER User who owned the transaction

UNDO_CHANGE# Undo SCN

OPERATION DML operation performed: DELETE, INSERT, UPDATE,
BEGIN, or UNKNOWN

TABLE_NAME Table changed by DML

TABLE_OWNER Owner of the table changed by DML

ROW_ID ROWID of the row modified by DML

UNDO_SQL SQL statement to undo the DML operation

TABLE 7-4. FLASHBACK_TRANSACTION_QUERY Columns

07-ch07.indd 237 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

238 Oracle Database 12c DBA Handbook

 4011380 4011463 HR UPDATE EMPLOYEES
update "HR"."EMPLOYEES" set "MANAGER_ID" = '123' where ROWID =
'AAARAxAAFAAAAHGABO';

 4011380 4011463 HR INSERT DEPARTMENTS
delete from "HR"."DEPARTMENTS" where ROWID = 'AAARAsAAFAAAAA3AAb';

 4011380 4011463 HR DELETE EMPLOYEES
insert into "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME",
"LAST_NAME","EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY",
"COMMISSION_PCT","MANAGER_ID","DEPARTMENT_ID","WORK_RECORD")
values ('196','Alana','Walsh','AWALSH','650.507.9811',
TO_DATE('24-APR-08', 'DD-MON-RR'),'SH_CLERK','3100',
NULL,'124','50',NULL);

 4011380 4011463 HR UPDATE EMPLOYEES
update "HR"."EMPLOYEES" set "SALARY" = '2800' where
ROWID = 'AAARAxAAFAAAAHGABO';

 4011380 4011463 HR BEGIN

We confirm what we already expected—that another user in the HR department made the
deletion and salary update (thus pointing out the usefulness of assigning separate user accounts
for each member of the HR department). The UNDO_SQL column contains the actual SQL code
that can be used to reverse the effect of the transaction. Note, however, that in this example, this
is the first transaction to occur between the SCNs of interest. If other transactions made further
updates to the same columns, we may want to review the other updates before running the SQL
code in the UNDO_SQL column.

Flashback Data Archive
Regulations such as Sarbanes-Oxley and HIPAA require strict control and tracking requirements
for customer and patient data; keeping a historical record of all changes to rows in critical tables
is error prone and requires custom applications or database triggers to maintain repositories for
the historical changes. Every time you create a new application or update a table in an
application that requires historical tracking, you must make changes to your tracking application
as well. As of Oracle Database 11g, you can use Flashback Data Archive to automatically save
historical changes to all key tables for as long as regulatory agencies or your stakeholders require.

Flashback Data Archive is implemented natively in Oracle Database 11g; in a nutshell, you
create one or more repository areas (one of which can be the default), assign a default retention
period for objects in the repository, and then mark the appropriate tables for tracking.

A Flashback Data Archive acts much like an undo tablespace; however, a Flashback Data
Archive only records UPDATE and DELETE statements, but not INSERT statements. In addition,
undo data is typically retained for a period of hours or days for all objects; rows in Flashback Data
Archives can span years or even decades. Flashback Data Archive has a much narrower focus as
well, recording only historical changes to table rows; Oracle uses data in an undo tablespace for
read-consistency in long-running transactions and to roll back uncommitted transactions.

07-ch07.indd 238 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 239

You can access data in a Flashback Data Archive just as you do with Flashback Query: using
the AS OF clause in a SELECT statement. In the next few sections, I’ll show you how to create a
Flashback Data Archive, assign permissions to users and objects, and query historical data in a
Flashback Data Archive.

Creating an Archive
You can create one or several Flashback Data Archives in existing tablespaces using the CREATE
FLASHBACK ARCHIVE command; however, Oracle best practice recommends that you use
dedicated tablespaces. All archives must have a default retention period using the RETENTION
clause and can optionally be identified as the default archive using the DEFAULT keyword. The
disk quota in an archive is limited by the disk space within the tablespace unless you assign a
maximum amount of disk space in the archive using the QUOTA keyword.

In this example, you first create a dedicated tablespace for your Flashback Data Archive:

SQL> create tablespace fbda1
 2 datafile '+data' size 10g;

Tablespace created.
SQL>

Next, you create three Flashback Data Archives: one for the ES department with no quota limit
and a ten-year retention period, a second one for the finance department with a 500MB limit and
a seven-year retention period, and a third for all other users in the USERS4 tablespace as the default
with a 250MB limit and a two-year retention period:

SQL> create flashback archive fb_es
 2 tablespace fbda1 retention 10 year;

Flashback archive created.

SQL> create flashback archive fb_fi
 2 tablespace fbda1 quota 500m
 3 retention 7 year;

Flashback archive created.

SQL> create flashback archive default fb_dflt
 2 tablespace users4 quota 250m
 3 retention 2 year;

Flashback archive created.

SQL>

You cannot specify more than one tablespace in the CREATE FLASHBACK ARCHIVE command;
you must use the ALTER FLASHBACK ARCHIVE command to add a tablespace, as you’ll see a bit
later in this chapter, in the section “Managing Flashback Data Archives.”

07-ch07.indd 239 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

240 Oracle Database 12c DBA Handbook

Using Flashback Data Archive Data Dictionary Views
Two new data dictionary views support Flashback Data Archives: DBA_FLASHBACK_ARCHIVE
and DBA_FLASHBACK_ARCHIVE_TS. DBA_FLASHBACK_ARCHIVE lists the archives, and DBA_
FLASHBACK_ARCHIVE_TS displays the tablespace-to-archive mapping:

SQL> select flashback_archive_name, flashback_archive#,
 2 retention_in_days, status
 3 from dba_flashback_archive;

FLASHBACK_AR FLASHBACK_ARCHIVE# RETENTION_IN_DAYS STATUS
------------ ------------------ ----------------- -------
FB_ES 1 3650
FB_FI 2 2555
FB_DFLT 3 730 DEFAULT

SQL> select * from dba_flashback_archive_ts;

FLASHBACK_AR FLASHBACK_ARCHIVE# TABLESPACE QUOTA_IN_M
------------ ------------------ ---------- ----------
FB_ES 1 FBDA1
FB_FI 2 FBDA1 500
FB_DFLT 3 USERS4 250

SQL>

The view DBA_FLASHBACK_ARCHIVE_TABLES tracks the tables enabled for flashback
archiving. I’ll show you the contents of this view later in this chapter after enabling a table for
flashback archiving.

Assigning Flashback Data Archive Permissions
A user must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create or modify
Flashback Data Archives, and the FLASHBACK ARCHIVE object privilege to enable tracking on a
table. Once tracking is enabled, a user doesn’t need any specific permissions to use the AS OF
clause in a SELECT statement other than the SELECT permission on the table itself.

The FLASHBACK_ARCHIVE_ADMINSTER privilege also includes adding and removing
tablespaces from an archive, dropping an archive, and performing an ad hoc purge of history
data.

Managing Flashback Data Archives
You can easily add another tablespace to an existing archive; use the ALTER FLASHBACK
ARCHIVE command like this to add the USERS3 tablespace to the FB_DFLT archive with a quota
of 400MB:

SQL> alter flashback archive fb_dflt
 2 add tablespace users3 quota 400m;

Flashback archive altered.

SQL>

07-ch07.indd 240 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 241

You can purge archive data with the PURGE clause; in this example, you want to purge all
rows in the FB_DFLT archive before January 1, 2010:

SQL> alter flashback archive fb_dflt
 2 purge before timestamp
 3 to_timestamp('2010-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

Assigning a Table to a Flashback Data Archive
You assign a table to an archive either at table creation using the standard CREATE TABLE syntax
with the addition of the FLASHBACK ARCHIVE clause, or later with the ALTER TABLE command,
as in this example:

SQL> alter table hr.employees flashback archive fb_es;

Table altered.

Note that the previous command specified a specific archive for the HR.EMPLOYEES table;
if you did not specify an archive, Oracle would assign FB_DFLT. You can review the tables that use
Flashback Data Archive by querying the data dictionary view DBA_FLASHBACK_ARCHIVE_TABLES:

SQL> select * from dba_flashback_archive_tables;

TABLE_NAME OWNER_NAME FLASHBACK_AR ARCHIVE_TABLE_NAME
---------------------- ---------- ------------ --------------------
EMPLOYEES HR FB_ES SYS_FBA_HIST_70313

Querying Flashback Data Archives
Querying the historical data for a table in a Flashback Data Archive is as easy as using the AS OF
clause in a table when you are using DML activity stored in an undo tablespace. In fact, users will
not know whether they are retrieving historical data from the undo tablespace or from a Flashback
Data Archive.

In this scenario, much like in the scenarios earlier in this chapter, one of the employees in the
HR department deletes an employee row in the EMPLOYEES table and forgets to archive it to the
EMPLOYEE_HISTORY table first; with Flashback Data Archive enabled for the EMPLOYEES table,
the HR employee can rely on the FB_ES archive to satisfy any queries on employees no longer in
the EMPLOYEE table. This is the DELETE statement from three weeks ago:

SQL> delete from employees where employee_id = 169;

1 row deleted.

SQL>

The HR employee needs to find the hire date for employee 169, so she retrieves the historical
information from the EMPLOYEES table with the AS OF clause specifying a time four weeks ago:

SQL> select employee_id, last_name, hire_date
 2 from employees
 3 as of timestamp (systimestamp - interval '28' day)

07-ch07.indd 241 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

242 Oracle Database 12c DBA Handbook

 4 where employee_id = 169;

EMPLOYEE_ID LAST_NAME HIRE_DATE
----------- ------------------------- ---------
 169 Bloom 23-MAR-98

SQL>

Whether Oracle is using an undo tablespace or a Flashback Data Archive for a query containing
AS OF is completely transparent to the user.

Flashback and LOBs
Undo data for LOB columns in a table can take up gigabytes of disk space even for a single row;
therefore, to enable flashback operations for LOB columns, you must explicitly specify the
RETENTION keyword in the storage clause for the LOB. This keyword is mutually exclusive with
the PCTVERSION keyword, which specified a percentage of the table space for old versions of the
LOBs. If you use the RETENTION keyword, old versions of a LOB are retained for the amount of
time specified by the UNDO_RETENTION parameter, just as any other table rows in the undo
tablespace.

Migrating to Automatic Undo Management
To migrate your environment from manually managed rollback segments to Automatic Undo
Management, you need to know one thing: how large to size the undo tablespace based on the
usage of the rollback segments in manual undo mode. With all manual rollback segments online,
execute the procedure DBMS_UNDO_ADV.RBU_MIGRATION to return the size, in megabytes,
of the current rollback segment utilization:

SQL> variable undo_size number
SQL> begin
 2 :undo_size := dbms_undo_adv.rbu_migration;
 3 end;
 4 /

PL/SQL procedure successfully completed.

SQL> print :undo_size

 UNDO_SIZE

 2840

SQL>

In this example, an undo tablespace created to replace the rollback segments should be at least
2840MB, or 2.84GB, to support the undo requirements currently supported by rollback segments.

07-ch07.indd 242 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 7: Managing Transactions with Undo Tablespaces 243

Summary
Rarely does an Oracle database environment support only OLTP with constant DML or only BI
queries. Even though your e-commerce database primarily takes customer orders, you need to run
real-time analytic queries during the day along with the hourly extracts to the data warehouse. As
a result you have at least two conflicting priorities for space in your undo tablespace. You need to
have enough space in the undo tablespace to roll back failed transactions in addition to providing
read consistency for long-running queries initiated while hundreds or even thousands of transactions
are running against the same database.

The last three versions of Oracle Database (including 12c) have new features that leverage
undo data beyond transaction consistency and read consistency, in particular the Flashback
Query features covered in this chapter. As a result, your undo tablespace seems to get bigger with
every release and requires a longer retention period for the undo data. This is not a problem as
long as you, the DBA, understand your workload and set parameters such as UNDO_RETENTION
appropriately along with specifying the RETENTION GUARANTEE parameter for a given undo
tablespace.

The key to successful undo management involves using not only the tools available for reactive
management such as Oracle Enterprise Manager Cloud Control 12c but also the extensive
procedures in the DBMS_ADVISOR PL/SQL package to analyze your database on a regular basis
and size your undo tablespace for the constantly changing workload—both the type of workload
and the inevitable size of your workload as the demand for database consolidation increases.

07-ch07.indd 243 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 244

07-ch07.indd 244 13/05/15 9:57 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 245

CHAPTER
8

Database Tuning

08-ch08.indd 245 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

246 Oracle Database 12c DBA Handbook

From a tuning perspective, every system has a performance bottleneck that may move from
component to component over a time period of days or even weeks The goal of performance
design is to make sure that the physical limitations of the applications and the associated

hardware—I/O throughput rates, memory sizes, query performance, and so on—do not impact
the business performance. If the application performance limits the business process it is supposed
to be supporting, the application must be tuned. During the design process, the limits of the
application environment must be evaluated, including the hardware and the design of the application’s
interactions with the database. No environment provides infinite computing capacity, so every
environment is designed to fail at some performance point. In the process of designing the
application, you should strive to have your performance needs amply served by the performance
capabilities of the environment.

Performance tuning is a part of the life cycle of every database application, and the earlier
performance is addressed (preferably before going into production), the more likely it will be
successfully resolved. As noted in previous chapters, most performance problems are not isolated
symptoms but rather are the result of the system design. Tuning efforts should therefore focus on
identifying and fixing the underlying flaws that result in unacceptable performance.

Tuning is the final step in a four-step process: planning, implementing, and monitoring must
precede it. If you tune only for the sake of tuning, you are failing to address the full cycle of
activity and will likely never resolve the underlying flaws that caused the performance problem.

Most of the database objects that can be tuned are discussed elsewhere in this book—for
example, undo segments are covered thoroughly in Chapter 7. This chapter only discusses the
tuning-related activities for such objects, while their own chapters cover planning and monitoring
activities.

As of Oracle Database 10g, and significantly enhanced in Oracle Database 11g and 12c,
you can take advantage of new tuning tools and features, including the Automated Workload
Repository (AWR). For ease of use, and to take advantage of numerous automated monitoring and
diagnostic tools, Oracle Cloud Control 12c is the Oracle-recommended tool on a routine basis as
a central dashboard for all monitoring and performance tools. Before jumping into the Cloud
Control tools, however, I’ll present some of the prerequisites and principles behind effective
proactive and reactive tuning methods.

In the following sections, you will see tuning activities for the following areas:

 ■ Application design

 ■ SQL

 ■ Memory usage

 ■ Data access

 ■ Data manipulation

 ■ Network traffic

 ■ Physical storage

 ■ Logical storage

 ■ Tuning using the Automatic Workload Repository

 ■ Managing resources in a PDB

 ■ Performing Database Replay

08-ch08.indd 246 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 247

Tuning Application Design
Why should a DBA tuning guide include a section on application design? And why should this
section come first? Because nothing you can do as a DBA will have as great an impact on the
system performance as the design of the application. The requirements for making the DBA’s
involvement in application development a reality are described in Chapter 5. In designing an
application, you can take several steps to make effective and proper use of the available technology,
as described in the following sections.

Effective Table Design
No matter how well designed your database is, poor table design will lead to poor performance.
Not only that, but overly rigid adherence to relational table designs will lead to poor performance.
That is due to the fact that while fully relational table designs (said to be in the third normal form
or even fourth or fifth normal form) are logically desirable, they are usually physically undesirable
in anything but OLTP environments.

The problem with such designs is that although they accurately reflect the ways in which an
application’s data is related to other data, they do not reflect the normal access paths that users
will employ to access that data. Once the user’s access requirements are evaluated, the fully
relational table design will become unworkable for many large queries. Typically, the first problems
will occur with queries that return a large number of columns. These columns are usually scattered
among several tables, forcing the tables to be joined together during the query. If one of the joined
tables is large, the performance of the whole query may suffer unless a software/hardware platform
such as Oracle Exadata or Oracle In-Memory Database filters the table columns themselves to
only return the desired columns.

In designing the tables for an application, developers should first develop the model in third
normal form (3NF) and then consider denormalizing data to meet specific requirements—for
example, creating small derived tables (or materialized views) from large, static tables. Can that
data be dynamically derived from the large, static tables on demand? Of course. But if the users
frequently request it, and the data is largely unchanging, then it makes sense to periodically store
that data in the format in which the users will ask for it.

For example, some applications store historical data and current data in the same table. Each
row may have a timestamp column, so the current row in a set is the one with the most recent
timestamp. Every time a user queries the table for a current row, the user will need to perform a
subquery, such as the following:

where timestamp_col =
 (select max(timestamp_col)
 from table
 where emp_no=196811)

If two such tables are joined, there will be two subqueries. In a small database, this may not
present a performance problem, but as the number of tables and rows increase, performance
problems will follow. Partitioning the historical data away from the current data or storing the
historical data in a separate table will involve more work for the DBAs and developers but should
improve the long-term performance of the application.

User-centered table design, rather than theory-centered table design, will yield a system that
better meets the users’ requirements; this is not to say that you should not design the database
using 3NF and 4NF methodologies: it’s a good starting point for revealing business requirements

08-ch08.indd 247 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

248 Oracle Database 12c DBA Handbook

and a prerequisite for the physical database design. Physical database design options include
separating a single table into multiple tables, and the reverse—combining multiple tables into
one. The emphasis should be on providing the users the most direct path possible to the data they
want in the format they want.

Distribution of CPU Requirements
When effectively designed and given adequate hardware, an Oracle database application will
process I/O requests without excessive waits, will use memory areas without swapping and
paging memory to disk, and will use the CPU threads without generating high load averages. Data
that is read into memory by one process will be stored in memory and reused by many processes
before it is aged out of memory. SQL commands are reused via the shared SQL area (the shared
pool), further reducing the burden on the system.

If the I/O burdens of the system are reduced, the CPU burden may increase. You have several
options for managing the CPU resources:

 ■ Schedule the CPU load. You should time long-running batch queries or update programs
to run at off-peak hours. Rather than run them at lower operating system priority while
online users are performing transactions, run them at normal operating system priority
at an appropriate time. Maintaining their normal priority level while scheduling the jobs
appropriately will minimize potential locking, undo, and CPU conflicts.

 ■ Take advantage of the opportunity to physically shift CPU requirements from one server
to another. Wherever possible, isolate the database server from the application’s CPU
requirements. The data distribution techniques described in the networking chapters
of this book will result in data being stored in its most appropriate place, and the CPU
requirements of the application may be separated from the I/O requirements against the
database.

 ■ Consider using Oracle’s Real Application Clusters (RAC) technology on traditional
hardware platforms or on the Exadata engineered system platform to spread the database
access requirements for a single database across multiple instances. See Chapter 12 for a
review of RAC features.

 ■ Use the database resource management features. You can use the Database Resource
Manager to establish resource allocation plans and resource consumer groups. You can
use Oracle’s capabilities to change the resource allocations available to the consumer
groups. See Chapter 5 for details on creating and implementing resource consumer
groups and resource plans via the Database Resource Manager.

 ■ Use Parallel Query to distribute the processing requirements of SQL statements among
multiple CPUs. Parallelism can be used by almost every SQL, DML, and DDL command,
including SELECT, CREATE TABLE AS SELECT, CREATE INDEX, RECOVER, partition
management, and the SQL*Loader Direct Path loading options.

The degree to which a transaction is parallelized depends on the defined degree of parallelism
for the transaction. Each table has a defined degree of parallelism, and a query can override the
default degree of parallelism by using the PARALLEL hint. Using Automatic Degree of Parallelism
(Auto DOP), Oracle evaluates the number of CPUs available on the server and the number of
disks on which the table’s data is stored in order to determine the default degree of parallelism.

08-ch08.indd 248 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 249

The maximum available parallelism level is set at the instance level. The PARALLEL_MAX_
SERVERS initialization parameter sets the maximum number of parallel query server processes
that can be used at any one time by all the processes in the database. For example, if you set
PARALLEL_MAX_SERVERS to 32 for your instance, and you run a query that uses 30 parallel
query server processes for its query and sorting operations, then only two parallel query server
processes are available for all the rest of the users in the database. Therefore, you need to
carefully manage the parallelism you allow for your queries and batch operations. The PARALLEL_
ADAPTIVE_MULTI_USER parameter, when set to TRUE, enables an adaptive algorithm designed
to improve performance in multi-user environments using parallel execution. The algorithm
automatically reduces the requested degree of parallelism according to the system load at query
startup time. The effective degree of parallelism is based on the default degree of parallelism, or
the degree from the table, or hints, divided by a reduction factor.

For each table, you can set a default degree of parallelism via the PARALLEL clause of the
CREATE TABLE and ALTER TABLE commands. The degree of parallelism tells Oracle how many
parallel query server processes to attempt to use for each part of the operation. For example, if a
query that performs both table scanning and data sorting operations has a degree of parallelism of
8, there could be 16 parallel query server processes used—eight for scanning and eight for
sorting. You can also specify a degree of parallelism for an index when it is created, via the
PARALLEL clause of the CREATE INDEX command.

The minimum number of parallel query server processes started is set via the PARALLEL_
MIN_SERVERS initialization parameter. In general, you should set this parameter to a very low
number (less than 12) unless the system is actively used at all hours of the day. Setting this
parameter to a low value will force Oracle to repeatedly start new query server processes, but it
will greatly decrease the amount of memory held by idle parallel query server processes during
low-use periods. If you set a high value for PARALLEL_MIN_SERVERS, you may frequently have
idle parallel query server processes on your server, holding onto the memory they had previously
acquired but not performing any functions.

Parallelizing operations distributes their processing requirements across multiple CPUs;
however, you should use these features carefully. If you use a degree of parallelism of 5 for a large
query, you will have five separate processes accessing the data (and five more receiving the
processed rows). If you have that many processes accessing the data, you may create contention
for the disks on which the data is stored, thus hurting performance. When using Parallel Query,
you should selectively apply it to those tables whose data is well distributed over many physical
devices. Also, you should avoid using it for all tables; as noted earlier, a single query may use all
the available parallel query server processes, eliminating the parallelism for all the rest of the
transactions in your database.

Effective Application Design
In addition to the application design topics described later in this chapter are several general
guidelines for Oracle applications.

First, applications should minimize the number of times they request data from the database.
Options include the use of sequences, the use of PL/SQL blocks, and the denormalization of
tables. You can use distributed database objects such as materialized views to help reduce the
number of times a database is queried.

08-ch08.indd 249 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

250 Oracle Database 12c DBA Handbook

NOTE
Even mildly inefficient SQL can impact your database’s performance
if it is executed frequently enough. SQL that generates few or no
physical I/O reads still consumes CPU resources.

Second, different users of the same application should query the database in a very similar
fashion. Consistent access paths increase the likelihood that requests may be resolved by
information that is already available in the System Global Area (SGA). The sharing of data includes
not only the tables and rows retrieved but also the queries that are used. If the queries are identical,
a parsed version of a query may already exist in the shared SQL pool, reducing the amount of time
needed to process the query. Cursor-sharing enhancements in the optimizer increase the likelihood
of statement reuse within the shared pool—but the application needs to be designed with statement
reuse in mind.

Third, you should restrict the use of dynamic SQL. Dynamic SQL, by definition, is undefined
until run time; an application’s dynamic SQL may select a couple of rows the first time, perform
several full table scans of the order table the second time, and inadvertently perform a Cartesian
join the third time (or consciously perform a Cartesian join using the CROSS JOIN keyword in a
SELECT statement!). In addition, there is no way to guarantee that a dynamically generated SQL
statement is syntactically correct until run time. Dynamically generated SQL is a double-edged
sword: you have the flexibility to create your SQL on the fly based on user input, but you open
yourself up to SQL injection attacks for both your in-house applications and your external website
applications.

Fourth, you should minimize the number of times you open and close sessions in the
database. If the application repeatedly opens a session, executes a small number of commands,
and then closes the session, the performance of the SQL may be a minor factor in the overall
performance. The session management may cost more than any other step in the application.

When stored procedures are used, the same code may be executed multiple times, taking
advantage of the shared pool. You can also manually compile procedures, functions, and
packages to avoid run-time compilation. When you create a procedure, Oracle automatically
compiles it. If the procedure later becomes invalid, the database must recompile it before
executing it. To avoid incurring this compilation cost at run time, use the ALTER PROCEDURE
command shown here:

alter procedure user_util.update_benefits compile;

You can view the SQL text for all procedures in a database via the TEXT column in the DBA_
SOURCE view. The USER_SOURCE view will display the procedures owned by the user
performing the query. Text for packages, functions, and package bodies is also accessible via the
DBA_SOURCE and USER_SOURCE views, which in turn reference a table named SYS.SOURCE$.

The first two design guidelines discussed—limiting the number of user accesses and
coordinating their requests—require the application developer to know as much as possible about
how the data is to be used and the access paths involved. For this reason, it is critical that users be
as involved in the application design as they are in the table design. If the users spend long hours
drawing pictures of tables with the data modelers and little time with the application developers
discussing the access paths, the application will most likely not meet the users’ needs. The access
paths should be discussed as part of the data modeling exercise.

08-ch08.indd 250 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 251

Tuning SQL
As with application design, the tuning of SQL statements seems far removed from a DBA’s duties.
However, DBAs should be involved in reviewing the SQL that is written as part of the application.
A well-designed application may still experience performance problems if the SQL it uses is poorly
tuned. Application design and SQL problems cause most of the performance problems in properly
designed databases.

The key to tuning SQL is to minimize the search path that the database uses to find the data.
In most Oracle tables, each row has a ROWID associated with it. The ROWID contains information
about the physical location of the row—its file, the block within that file, and the row within the
database block.

When a query with no WHERE clause is executed, the database will usually perform a full
table scan, reading every block from the table under the high-water mark (HWM). During a full
table scan, the database locates the first block of the table and then reads sequentially through all
the other blocks in the table. For large tables, full table scans can be very time-consuming.

When specific rows are queried, the database may use an index to help speed the retrieval of
the desired rows. An index maps logical values in a table to their RowIDs—which in turn map
them to specific physical locations. Indexes may either be unique—in which case there is no
more than one occurrence for each value—or nonunique. Indexes only store RowIDs for NOT
NULL values in the indexed columns.

You may index several columns together. This is called a concatenated or composite index,
and it will be used if its leading column is used in the query’s WHERE clause. The optimizer can
also use a “skip-scan” approach in which a concatenated index is used even if its leading column
is not in the query’s WHERE clause.

Indexes must be tailored to the access path needed. Consider the case of a three-column,
concatenated index. As shown in the following listing, this index is created on the CITY, STATE,
and ZIP columns of the EMPLOYEE table:

create index city_st_zip_ndx
on employee(city, state, zip)
tablespace indexes;

If a query of the form

select *
from employee
where state='NJ';

is executed, then the leading column of the index (CITY) is not in the WHERE clause. Oracle can
use two types of index-based accesses to retrieve the rows—a skip-scan of the index or a full scan
of the index. The optimizer will select an execution path based on the index’s statistics—its size,
the size of the table, and the selectivity of the index. If users will frequently run this type of query,
the index’s columns may need to be reordered with STATE first in order to reflect the actual usage
pattern.

An index range scan is another index-based optimization that Oracle can use to efficiently
retrieve selective data. Oracle uses an index range scan when the variable in the WHERE clause is
equal to, less than, or greater than the specified constant and the variable is the leading column if the

08-ch08.indd 251 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

252 Oracle Database 12c DBA Handbook

index is a multi-part index. No ORDER BY clause is required if you want the rows returned in the
index order, as in this example where you are looking for employees hired before August 1st, 2012:

select * from EMPLOYEE where hire_date < '1-AUG-2012';

However, if you are using Parallel Query to retrieve these rows using the index, then you will
need the ORDER BY clause to return the rows in the index order.

It is critical that the table’s data be as ordered as possible. If users are frequently executing
range queries—selecting those values that are within a specified range—then having the data
ordered may require fewer data blocks to be read while resolving the query, thus improving
performance. The ordered entries in the index will point to a set of neighboring blocks in the table
rather than blocks that are scattered throughout the datafile(s); this assumes that the data was
ordered when loaded or the query has a GROUP BY clause using the indexed column(s).

For example, consider a range query of the following type:

select *
from employee
where empno between 1 and 100;

This range query will require fewer data blocks to be read if the physical rows in the EMPLOYEE
table are ordered by the EMPNO column. To guarantee that the rows are properly ordered
in the table, copy the rows to a temporary table with an ORDER BY clause, TRUNCATE the
original table, and reload the rows from the newly sorted table. In addition, you should use
online segment shrink to reclaim fragmented free space below the HWM for tables with frequent
DML activity; this improves cache utilization and requires fewer blocks to be scanned in full
table scans. You use the ALTER TABLE . . . SHRINK SPACE command to compact the free space in
a table.

Impact of Order on Load Rates
Indexes impact the performance of both queries and data loads. During INSERT operations, the
rows’ order has a significant impact on load performance. Even in heavily indexed environments,
properly ordering the rows prior to INSERT may improve load performance by 50 percent. This
assumes you only have one index—you can’t load rows in index order if you have more than one
index! Keep in mind that each additional index adds three times the overhead for DML operations
when maintaining the index.

As an index grows, Oracle allocates new blocks. If a new index entry is added beyond the
previous entry, the new entry will be added to the last block in the index. If the new entry causes
Oracle to exceed the space available in that block, the entry will be moved to a new block. There
is very little performance impact from this block allocation.

If the inserted rows are not ordered, new index entries will be written to existing index node
blocks. If there is no more room in the block where the new value is added, and the block is not
the last block in the index, the block’s entries will be split in two. Half the index entries will be
left in the original block, and half will be moved to a new block. As a result, the performance
suffers during loads (because of the additional space management activity) and during queries
(because the index contains more unused space, requiring more blocks to be read for the same
number of entries read).

08-ch08.indd 252 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 253

NOTE
There is a significant drop in load performance when an index
increases its number of internal levels. To see the number of levels,
analyze an index and then select its BLEVEL column value from DBA_
INDEXES.

Because of the way Oracle manages its indexes internally, load rates will be affected each
time a new index is added (because it is unlikely that inserted rows will be sorted correctly for
multiple columns). From a load rate perspective, favor fewer multicolumn indexes over multiple
single-column indexes.

Additional Indexing Options
If the data is not very selective, you may consider using bitmap indexes. As described in Chapter
18, bitmap indexes are most effective for queries against large, static data sets with few distinct
values. You can create both bitmap indexes and normal (B-tree) indexes on the same table, and
Oracle will perform any necessary index conversions dynamically during query processing. See
Chapter 18 for details on using bitmap indexes.

NOTE
Avoid creating bitmap indexes on tables modified by online transactions;
data warehouse tables, however, are excellent candidates for bitmap
indexes.

If two tables are frequently queried together, then clusters may be effective in improving
performance. Clusters store rows from multiple tables in the same physical data blocks, based on
their logical values (the cluster key).

Queries in which a column’s value is compared to an exact value (rather than a range of
values) are called equivalence queries. A hash cluster stores a row in a specific location based on
its value in the cluster key column. Every time a row is inserted, its cluster key value is used to
determine in which block it should be stored; this same logic can be used during queries to
quickly find data blocks that are needed for retrieval. Hash clusters are designed to improve the
performance of equivalence queries; they will not be as helpful in improving the performance of
the range queries discussed earlier. Performance will be significantly worse with range queries,
queries that force a full table scan, or for hash clusters that are frequently updated.

Reverse indexes provide another tuning solution for equivalence queries. In a reverse index,
the bytes of the index are stored in reverse order. In a traditional index, two consecutive values
are stored next to each other. In a reverse index, consecutive values are not stored next to each
other. For example, the values 2004 and 2005 are stored as 4002 and 5002, respectively, in a
reverse index. Although not appropriate for range scans, reverse indexes may reduce contention
for index blocks if many equivalence queries are performed. Reverse key indexes may need to be
rebuilt quite often to perform well. They should also include a large value for PCTFREE to allow
for inserts.

NOTE
You cannot reverse a bitmap index.

08-ch08.indd 253 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

254 Oracle Database 12c DBA Handbook

You can create function-based indexes on expressions involving columns. This query could
not use a B-tree index on the NAME column:

select * from employee
where upper(name) = 'JONES';

However, the query

select * from employee
where name = 'JONES';

could, because the second query does not perform a function on the NAME column. Instead of
creating an index on the column NAME, you can create an index on the column expression
UPPER(NAME), as shown in the following example:

create index emp_upper_name on
employee(upper(name));

Although function-based indexes can be useful, be sure to consider the following points when
creating them:

 ■ Can you restrict the functions that will be used on the column? If so, can you restrict all
functions from being performed on the column?

 ■ Do you have adequate storage space for the additional indexes?

 ■ When you drop the table, you will be dropping more indexes (and therefore more
extents) than before. How will that impact the time required to drop the table? (This is
less of a consideration if you are using locally managed tablespaces, which you should
be using if you’re running Oracle Database 10g or later.)

Function-based indexes are useful, but you should implement them sparingly. The more
indexes you create on a table, the longer all INSERT, UPDATE, and DELETE operations will take.
Of course, this applies to creating any additional indexes on a table, regardless of type.

Text indexes use Oracle’s text options (Oracle Text) to create and manage lists of words and
their occurrences—similar to the way a book’s index works. Text indexes are most often used to
support applications that perform searches on portions of words with wildcards.

Partitioned tables can have indexes that span all partitions (global indexes) or indexes that are
partitioned along with the table partitions (local indexes). From a query-tuning perspective, local
indexes may be preferable because they contain fewer entries than global indexes.

Generating Explain Plans
How can you determine which access path the database will use to perform a query? This
information can be viewed via the EXPLAIN PLAN command. This command will evaluate the
execution path for a query and will place its output into a table (named PLAN_TABLE) in the
database. A sample EXPLAIN PLAN command is shown in the following listing:

explain plan
 for
select *
 from BOOKSHELF
 where title like 'M%';

08-ch08.indd 254 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 255

The first line of this command tells the database that it is to explain its execution plan for the
query without actually executing the query. You can optionally include a SET STATEMENT_ID
clause to label the explain plan in PLAN_TABLE. Following the keyword FOR, the query to be
analyzed is listed.

The account that is running this command must have a plan table in its schema. Oracle
provides the CREATE TABLE commands needed for this table. The file, named utlxplan.sql, is
located in the $ORACLE_HOME/rdbms/admin directory. Oracle creates a single PLAN_TABLE
available for all users.

NOTE
You should drop and re-create the plan table following each Oracle
upgrade because new columns may be added by the upgrade scripts.

Query the plan table using the DBMS_XPLAN procedure:

select * from table(DBMS_XPLAN.DISPLAY);

You can also use the Oracle-supplied script in $ORACLE_HOME/rdbms/admin/utlxpls.sql to
query the plan table for serial execution, or the $ORACLE_HOME/rdbms/admin/utlxplp.sql for
parallel execution.

This query will report on the types of operations the database must perform to resolve the
query. The output will show the steps of the query execution in a hierarchical fashion, illustrating
the relationships between the steps. For example, you may see an index-based step that has a
TABLE ACCESS BY INDEX ROWID step as its parent, indicating that the index step is processed
first and the RowIDs returned from the index are used to retrieve specific rows from the table.

You can use the SET AUTOTRACE ON command in SQL*Plus to automatically generate the
EXPLAIN PLAN output and trace information for every query you run. The autotrace-generated
output will not be displayed until after the query has completed, whereas the EXPLAIN PLAN
output is generated without running the command. To enable autotrace-generated output, a plan
table must either be created in the schema in which the autotrace utility will be used or created in
the SYSTEM schema with access granted to the schema that will use the autotrace utility. The script
plustrce.sql, located in the $ORACLE_HOME/sqlplus/admin directory, must also be run as SYS
before you can SET AUTOTRACE ON. Users must have the PLUSTRACE role enabled prior to
executing SET AUTOTRACE ON. For an installation or upgrade to Oracle Database 10g or later,
this script is run automatically.

NOTE
To show the EXPLAIN PLAN output without running the query, use the
SET AUTOTRACE TRACEONLY EXPLAIN command.

If you use the parallel query options or query remote databases, an additional section of the
SET AUTOTRACE ON output will show the text of the queries executed by the parallel query
server processes or the query executed within the remote database.

To disable the autotrace feature, use the SET AUTOTRACE OFF command.

08-ch08.indd 255 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

256 Oracle Database 12c DBA Handbook

The following listing shows how to turn on autotrace and generate an explain plan:

set autotrace traceonly explain

select *
 from BOOKSHELF
 where Title like 'M%';

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=2 Bytes=80)
 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (TABLE) (Cost
 =3 Card=2 Bytes=80)
 2 1 INDEX (RANGE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Co
 st=1 Card=2)

To understand the explain plan, read the order of operations within the hierarchy from inside
out, until you come to a set of operations at the same level of indentation; then read from top to
bottom. In this example, there are no operations at the same level of indentation; therefore, you
read the order of operations from inside out. The first operation is the index range scan, followed
by the table access; the SELECT STATEMENT operation displays the output to the user. Each
operation has an ID value (the first column) and a parent ID value (the second number; it is blank
in the topmost operation). In more complex explain plans, you may need to use the parent ID
values to determine the order of operations.

This plan shows that the data returned to the user comes via a TABLE ACCESS BY INDEX
ROWID operation. The RowIDs are supplied by an index range scan of a unique index.

Each step is assigned a “cost.” The cost is cumulative, reflecting the cost of that step plus the
costs of all its child steps. You can use the cost values to identify steps that contribute the greatest
amount to the overall cost of the query and then target them for specific tuning efforts.

When evaluating the output of the EXPLAIN PLAN command, you should make sure that the
most selective indexes (that is, the most nearly unique indexes) are used by the query. If a
nonselective index is used, you may be forcing the database to perform unnecessary reads to
resolve the query. A full discussion of SQL tuning is beyond the scope of this book, but you
should focus your tuning efforts on making sure that the most resource-intensive SQL statements
are using the most selective indexes possible.

In general, transaction-oriented applications (such as multi-user systems used for data entry)
judge performance by the time it takes to return the first row of a query. For transaction-oriented
applications, you should focus your tuning efforts on using indexes to reduce the database’s
response time to the query.

If the application is batch oriented (with large transactions and reports), you should focus on
improving the time it takes to complete the overall transaction instead of the time it takes to return
the first row from the transaction. Improving the overall throughput of the transaction may require
using full table scans in place of index accesses—and may improve the overall performance of
the application.

If the application is distributed across multiple databases, focus on reducing the number of
times database links are used in queries. If a remote database is frequently accessed during a
query, the cost of accessing that remote database is paid each time the remote data is accessed.
Even if the cost of accessing the remote data is low, accessing it thousands of times will eventually

08-ch08.indd 256 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 257

place a performance burden on your application. See the section “Reducing Network Traffic” later
in this chapter for additional tuning suggestions for distributed databases.

Tuning Memory Usage
In Oracle Database 10g, you were able to use the Automatic Workload Repository (AWR) toolset
to gather and manage statistical data (as described later in this chapter). As of Oracle Database
11g, new initialization parameters were introduced such as MEMORY_TARGET to further
automate the overall memory used by Oracle—helping you tune the database automatically
when you don’t have time to read the AWR reports! With Oracle Database 12c, you can now tune
your SQL statements with “zero effort.” This seems like marketing hype at first glance, but in some
cases it’s true, because the Oracle optimizer can use an adaptive execution plan by stopping a
plan after initial execution and making run-time adjustments to the plan after finding variations in
the initial cardinality estimates.

The data block buffer cache and the shared pool are managed via a least recently used (LRU)
algorithm. A preset area is set aside to hold values; when it fills, the least recently used data is
eliminated from memory and written back to disk. An adequately sized memory area keeps the
most frequently accessed data in memory; accessing less frequently used data requires physical
reads.

Managing SGA Pools
You can see the queries performing the logical and physical reads in the database via the V$SQL
view. V$SQL reports the cumulative number of logical and physical reads performed for each
query currently in the shared pool, as well as the number of times each query was executed. The
following script shows the SQL text for the queries in the shared pool, with the most I/O-intensive
queries listed first. The query also displays the number of logical reads (buffer gets) per execution:

select buffer_gets,
 disk_reads,
 executions,
 buffer_gets/executions b_e,
 sql_text
from v$sql where executions != 0
order by disk_reads desc;

If the shared pool has been flushed, queries executed prior to the flush will no longer be
accessible via V$SQL. However, the impact of those queries can still be seen, provided the users
are still logged in. The V$SESS_IO view records the cumulative logical reads and physical reads
performed for each user’s session. You can query V$SESS_IO for each session’s hit ratio, as shown
in the following listing:

select sess.username,
 sess_io.block_gets,
 sess_io.consistent_gets,
 sess_io.physical_reads,
 round(100*(sess_io.consistent_gets
 +sess_io.block_gets-sess_io.physical_reads)/
 (decode(sess_io.consistent_gets,0,1,

08-ch08.indd 257 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

258 Oracle Database 12c DBA Handbook

 sess_io.consistent_gets+sess_io.block_gets)),2)
 session_hit_ratio
from v$sess_io sess_io, v$session sess
where sess.sid = sess_io.sid
 and sess.username is not null
order by username;

To see the objects whose blocks are currently in the data block buffer cache, query the X$BH
table in SYS’s schema, as shown in the following query (note that the SYS and SYSTEM objects are
excluded from the output so the DBA can focus on the application tables and indexes present in
the SGA):

select object_name,
 object_type ,
 count(*) num_buff
from x$bh a, sys.dba_objects b
where a.obj = b.object_id
 and owner not in ('sys','system')
group by object_name, object_type;

NOTE
You can query the NAME and KIND columns from V$CACHE to see
similar data if you are not connected as the SYS user.

There are multiple cache areas within the data block buffer cache:

 ■ DEFAULT cache This is the standard cache for objects that use the default database
block size for the database.

 ■ KEEP cache This is dedicated to objects you wish to keep in memory at all times. In
general, this area is used for small tables with few transactions. This cache is good for
lookup tables for such things as state codes, ZIP codes, and salesperson data.

 ■ RECYCLE cache This is dedicated to objects you wish to flush from memory quickly.
Like the KEEP cache, the RECYCLE cache isolates objects in memory so that they do not
interfere with the normal functioning of the DEFAULT cache. The KEEP and RECYCLE
cache sizes only apply to the default database block size.

 ■ Block size–specific caches (DB_nK_CACHE_SIZE) Oracle supports multiple database
block sizes within a single database; you must create a cache for each non-default
database block size.

With all the areas of the SGA—the data block buffers, the dictionary cache, and the shared
pool—the emphasis should be on sharing data among users. Each of these areas should be large
enough to hold the most commonly requested data from the database. In the case of the shared
pool, it should be large enough to hold the parsed versions of the most commonly used queries.
When they are adequately sized, the memory areas in the SGA can dramatically improve the
performance of individual queries and of the database as a whole.

The sizes of the KEEP and RECYCLE buffer pools do not reduce the available space in the data
block buffer cache. For a table to use one of the new buffer pools, specify the name of the buffer

08-ch08.indd 258 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 259

pool via the BUFFER_POOL parameter within the table’s STORAGE clause. For example, if you
want a table to be quickly removed from memory, assign it to the RECYCLE pool. The default pool
is named DEFAULT, so you can use the ALTER TABLE command to redirect a table to the
DEFAULT pool at a later date. Here is an example of assigning a table to the KEEP buffer pool:

create table state_cd_lookup
 (state_cd char(2),
 state_nm varchar2(50)
)
storage (buffer_pool keep);

If you do not set a size for the KEEP and RECYCLE pools, all of the data and index blocks
assigned to those areas go to the default buffer cache.

You can use the LARGE_POOL_SIZE initialization parameter to specify the size of the large
pool allocation heap in bytes. The large pool allocation heap is used in shared server systems for
session memory, by parallel execution for message buffers, and by backup processes for I/O
buffers. By default, the large pool is not created.

As of Oracle Database 10g, you can use Automatic Shared Memory Management (ASMM). To
activate ASMM, set a nonzero value for the SGA_TARGET database initialization parameter. After
you set SGA_TARGET to the size of the SGA you want (that is, all of the caches added together),
you can then set the other cache-related parameters (DB_CACHE_SIZE, SHARED_POOL_SIZE,
JAVA_POOL_SIZE, and LARGE_POOL_SIZE) each to 0; if you provide values for these parameters,
those values will serve as the lower bound for the automatic tuning algorithm. Shut down and
restart the database for the changes to take effect; the database will then begin actively managing
the size of the different caches. You can monitor the size of the caches at any time via the
V$SGASTAT dynamic performance view. Oracle Database 11g takes the automation a step
farther: you can set MEMORY_TARGET to the total amount of memory available to Oracle. The
amount of memory specified in MEMORY_TARGET is allocated between the SGA and PGA
automatically; when MEMORY_TARGET is set, SGA_TARGET and PGA_AGGREGATE_TARGET
are set to 0 and ignored.

As the workload in the database changes, the database will alter the cache sizes to reflect the
needs of the application. For example, if there is a heavy batch-processing load at night and a
more intensive online transaction load during the day, the database may alter the cache sizes as
the load changes. These changes occur automatically, without DBA intervention. If you specify a
value for a pool in your initialization parameter file, Oracle will use that as the minimum value
for that pool.

NOTE
DBAs can create KEEP and RECYCLE pools in the buffer cache. KEEP
and RECYCLE pools are not affected by the dynamic cache resizing
and are not part of the DEFAULT buffer pool.

You may wish to selectively “pin” packages in the shared pool. Pinning packages in memory
immediately after starting the database will increase the likelihood that a large enough section of
contiguous free space is available in memory. As shown in the following listing, the KEEP procedure
of the DBMS_SHARED_POOL package designates the packages to pin in the shared pool:

execute dbms_shared_pool.keep('APPOWNER.ADD_CLIENT','P');

08-ch08.indd 259 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

260 Oracle Database 12c DBA Handbook

Pinning of packages is more closely related to application management than application tuning,
but it can have a performance impact. If you can avoid dynamic management of fragmented memory
areas, you minimize the work Oracle has to do when managing the shared pool.

Specifying the Size of the SGA
To enable the automatic management of the caches, set the SGA_TARGET initialization parameter
to the size of the SGA.

If you choose to manage the caches manually, you can set the SGA_MAX_SIZE parameter to the
size of the SGA. You can then specify the sizes for the individual caches; they can be dynamically
altered while the database is running via the ALTER SYSTEM command.

You can also set SGA_TARGET to a size smaller than SGA_MAX_SIZE. Oracle will use the value
of SGA_TARGET to initially set the individual caches and can grow them over time to occupy more
memory up to SGA_MAX_SIZE. This is a good way to determine what the total memory requirements
should be before deploying your database in a production environment.

Parameter Description

SGA_MAX_SIZE The maximum size to which the SGA can grow.

SHARED_POOL_SIZE The size of the shared pool.

DB_BLOCK_SIZE The default database block size for the database.

DB_CACHE_SIZE The cache size specified in bytes.

DB_nK_CACHE_SIZE If you will be using multiple database block sizes within a single
database, you must specify a DB_CACHE_SIZE parameter value and
at least one DB_nK_CACHE_SIZE parameter value. For example,
if your standard database block size is 4KB, you can also specify a
cache for the 8KB block size tablespaces via the DB_8K_CACHE_SIZE
parameter.

For example, you may specify the following:

SGA_MAX_SIZE=32G
SHARED_POOL_SIZE=4G
DB_BLOCK_SIZE=8192
DB_CACHE_SIZE=12G
DB_4K_CACHE_SIZE=4G

With these parameters, 4MB will be available for data queried from objects in tablespaces with
4KB block sizes. Objects using the standard 8KB block size will use the 160MB cache. While the
database is open, you can change the SHARED_POOL_SIZE and DB_CACHE_SIZE parameter
values via the ALTER SYSTEM command.

NOTE
With few exceptions, Oracle recommends a single block size of
8KB. Even on Oracle engineered systems such as Exadata the
recommended and only block size is 8KB.

08-ch08.indd 260 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 261

SGA_TARGET is a dynamic parameter and can be changed through Cloud Control or with the
ALTER SYSTEM command.

SGA_TARGET can be increased up to the value of SGA_MAX_SIZE. It can be reduced until any
one of the auto-tuned components reaches its minimum size—either a user-specified minimum or
an internally determined minimum. Both of these parameters can be used to tune the SGA.

Using the Cost-Based Optimizer
With each release of its software, Oracle has added new features to its optimizer and has enhanced
existing features. Effective use of the cost-based optimizer requires that the tables and indexes
in your application be analyzed regularly. The frequency with which you analyze the objects depends
on the rate of change within the objects. For batch transaction applications, you should reanalyze
the objects after each large set of batch transactions. For OLTP applications, you should
reanalyze the objects on a time-based schedule (such as via a weekly or nightly process).

NOTE
As of Oracle Database 10g Release 1, the rule-based optimizer is
deprecated. There is no reason to use it unless you are supporting a
legacy application that only runs under previous versions of Oracle
Database.

Statistics on objects are gathered via executions of the DBMS_STATS package’s procedures.
If you analyze a table, its associated indexes are automatically analyzed as well. You can analyze
a schema (via the GATHER_SCHEMA_STATS procedure) or a specific table (via GATHER_TABLE_
STATS). You can also analyze only the indexed columns, thus speeding the analysis process. In
general, you should analyze a table’s indexes each time you analyze the table. In the following
listing, the PRACTICE schema is analyzed:

execute dbms_stats.gather_schema_stats('PRACTICE', 'COMPUTE');

You can view the statistics on tables and indexes via DBA_TABLES, DBA_TAB_COL_STATISTICS,
and DBA_INDEXES. Some column-level statistics are still provided in DBA_TAB_COLUMNS, but
they are provided there strictly for backward compatibility. The statistics for the columns of partitioned
tables are found in DBA_PART_COL_STATISTICS.

NOTE
As of Oracle Database 10g, statistics are automatically gathered
in a default installation using the automated maintenance tasks
infrastructure (AutoTask) during maintenance windows.

When the command in the preceding listing is executed, all the objects belonging to the
PRACTICE schema will be analyzed using the GATHER AUTO option of DBMS_STATS.GATHER_
SCHEMA_STATS. You can also choose to estimate statistics based on a specified percentage of the
table’s rows, but using the GATHER AUTO option gathers additional statistics that can further
improve execution plans.

08-ch08.indd 261 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

262 Oracle Database 12c DBA Handbook

Tuning Data Access
Even if your tables are properly configured and indexed, your performance may suffer if there
are wait events caused by file accesses. In the following sections, I’ll present some general
recommendations related to file and tablespace configuration.

As the old saying goes, the best kind of I/O is the I/O you don’t have to do. Given that you do
have to perform some I/O, your best investment in database configuration is to use Automatic
Storage Management (ASM). While you can get the same general level of performance from a
well-tuned OS file system (with optimal queue depths, SAN configuration, and so forth), ASM makes
management of Oracle storage easier while at the same time maintaining optimal performance.

Identifying Chained Rows
When a data segment is created, a PCTFREE value is specified. The PCTFREE parameter tells the
database how much space should be kept free in each data block. The free space is used when
rows that are already stored in the data block extend in length via UPDATE operations.

If an UPDATE to a row causes that row to no longer completely fit in a single data block, that
row may be moved to another data block, or the row may be chained to another block. If you are
storing rows whose length is greater than the Oracle block size, you will automatically have
chaining.

Chaining affects performance because it requires Oracle to look in multiple physical locations
for data from the same logical row. By eliminating unnecessary chaining, you reduce the number
of physical reads needed to return data from a datafile.

You can avoid chaining by setting the proper value for PCTFREE during the creation of data
segments. The default value, 10, should be increased if your application will frequently update
NULL values to non-NULL values, or if long text values are frequently updated.

If you must perform mass updates of a table, it will be much faster and more efficient to
re-create the table and perform the update as part of the process. No rows will be chained or
migrated utilizing this method.

You should only use the ANALYZE command to collect information about chained rows and
to collect information about freelist blocks. The ANALYZE command has an option that detects
and records chained rows in tables. Its syntax is

analyze table table_name list chained rows into CHAINED_ROWS;

The ANALYZE command will put the output from this operation into a table called
CHAINED_ROWS in your local schema. The SQL to create the CHAINED_ROWS table is in a file
named utlchain.sql, in the $ORACLE_HOME/rdbms/admin directory. The following query will
select the most significant columns from the CHAINED_ROWS table:

select
 owner_name, /*owner of the data segment*/
 table_name, /*name of the table with the chained rows*/
 cluster_name, /*name of the cluster, if it is clustered*/
 head_rowid /*rowid of the first part of the row*/
from chained_rows;

The output will show the RowIDs for all chained rows, allowing you to quickly see how many of
the rows in the table are chained. If chaining is prevalent in a table, that table should be rebuilt
with a higher value for PCTFREE.

08-ch08.indd 262 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 263

You can see the impact of row chaining by querying V$SYSSTAT. The V$SYSSTAT entry for the
“table fetch continued row” statistic will be incremented each time Oracle selects data from a
chained row. This statistic will also be incremented when Oracle selects data from a spanned
row—a row that is chained because it is greater than a block in length. Tables with LONG, BLOB,
CLOB, and NCLOB datatypes are likely to have spanned rows. The “table fetch continued row”
statistic is also available in the AWR reports (or Statspack reports in Oracle Database 10g and
earlier).

In addition to chaining rows, Oracle will occasionally move rows. If a row exceeds the space
available to its block, the row may be inserted into a different block. The process of moving a row
from one block to another is called row migration, and the moved row is called a migrated row.
During row migration, Oracle has to dynamically manage space in multiple blocks and access
the freelist (the list of blocks available for INSERT operations). A migrated row does not appear as
a chained row, but it does impact the performance of your transactions. See Chapter 6 for an
example of using the DBMS_ADVISOR package to find and reorganize tables with chained rows.

TIP
Accessing a migrated row increments the count in the “table fetch
continued row” statistic.

Using Index-Organized Tables
An index-organized table (IOT) is an index in which an entire row is stored, rather than just the
key values for the row. Rather than storing a RowID for the row, the primary key for the row is
treated as the row’s logical identifier. Rows in IOTs do not have RowIDs.

Within the IOT, the rows are stored sorted by their primary key values. Thus, any range query
that is based on the primary key may benefit because the rows are stored near each other (see the
section “Tuning SQL” earlier in this chapter for the steps involved in ordering the data within
normal tables). Additionally, any equivalence query based on the primary key may benefit because
the table’s data is all stored in the index. In the traditional table/index combination, an index-
based access requires an index access followed by a table access. In an IOT, only the IOT is
accessed; there is no companion index.

However, the performance gains from a single index access in place of a normal index/table
combination access may be minimal—any index-based access should be fast. To help improve
performance further, index-organized tables offer additional features:

 ■ An overflow area By setting the PCTTHRESHOLD parameter when the IOT is created,
you can store the primary key data apart from the row data. If the row’s data exceeds the
threshold of available space in the block, it will dynamically be moved to an overflow
area. You can designate the overflow area to be in a separate tablespace, improving your
ability to distribute the I/O associated with the table.

 ■ Secondary indexes You can create secondary indexes on the IOT. Oracle will use the
primary key values as the logical RowIDs for the rows.

 ■ Reduced storage requirements In a traditional table/index combination, the same key
values are stored in two places. In an IOT, they are stored once, reducing the storage
requirements.

08-ch08.indd 263 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

264 Oracle Database 12c DBA Handbook

TIP
When specifying an overflow area, you can use the INCLUDING
COLUMN clause to specify the column (and all successive columns in
the table definition) that will be stored in the overflow area:

create table ord_iot
 (order_id number,
 order_date date,
 order_notes varchar2(1000), primary key(order_id,order_date))
 organization index including order_date
 overflow tablespace over_ord_tab
 PARTITION BY RANGE (order_date)
 (PARTITION p1 VALUES LESS THAN ('01-JAN-2009')
 TABLESPACE data01,
 PARTITION p2 VALUES LESS THAN ('01-JAN-2010')
 TABLESPACE data02,
 PARTITION p3 VALUES LESS THAN ('01-JAN-2011')
 TABLESPACE data03,
 PARTITION p4 VALUES LESS THAN ('01-JAN-2012')
 TABLESPACE data04,
 PARTITION p5 VALUES LESS THAN ('01-JAN-2013')
 TABLESPACE data05,
 PARTITION p6 VALUES LESS THAN (MAXVALUE)
 TABLESPACE data06);

Both ORDER_DATE and ORDER_NOTES will be stored in the
overflow area.

To create an IOT, use the ORGANIZATION INDEX clause of the CREATE TABLE command.
You must specify a primary key when creating an IOT. Within an IOT, you can drop columns or
mark them as inactive via the SET UNUSED clause of the ALTER TABLE command.

Tuning Issues for Index-Organized Tables
Like indexes, IOTs may become internally fragmented over time, as values are inserted, updated,
and deleted. To rebuild an IOT, use the MOVE clause of the ALTER TABLE command. In the
following example, the EMPLOYEE_IOT table is rebuilt, along with its overflow area:

alter table EMPLOYEE_IOT
move tablespace DATA
overflow tablespace DATA_OVERFLOW;

You should avoid storing long rows of data in IOTs. In general, you should avoid using an IOT
if the data is longer than 75 percent of the database block size. If the database block size is 4KB,
and your rows will exceed 3KB in length, you should investigate the use of normal tables and
indexes instead of IOTs. The longer the rows are, and the more transactions are performed against
the IOT, the more frequently it will need to be rebuilt.

08-ch08.indd 264 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 265

NOTE
You cannot use LONG datatypes in IOTs, but you can use LOBs. You
shouldn’t be using LONG datatypes any more anyway—their use
will be deprecated in a future version of Oracle. CLOBs have all the
functionality of LONG datatypes and more.

As noted earlier in this chapter, indexes impact data load rates. For best results, the primary key
index of an IOT should be loaded with sequential values to minimize the costs of index management.

Tuning Data Manipulation
Several data manipulation tasks—usually concerning the manipulation of large quantities of
data—may involve the DBA. You have several options when loading and deleting large volumes
of data, as described in the following sections.

Bulk Inserts: Using the SQL*Loader Direct Path Option
When used in the Conventional Path mode, SQL*Loader reads records from a file, generates
INSERT commands, and passes them to the Oracle kernel. Oracle then finds places for those rows
in free blocks in the table and updates any associated indexes.

In Direct Path mode, SQL*Loader creates formatted data blocks and writes directly to the
datafiles. This requires occasional checks with the database to get new locations for data blocks,
but no other I/O with the database kernel is required. The result is a data load process that is
dramatically faster than Conventional Path mode.

If the table is indexed, the indexes will be placed in DIRECT PATH state during the load. After
the load is complete, the new keys (index column values) will be sorted and merged with the
existing keys in the index. To maintain the temporary set of keys, the load will create a temporary
index segment that is at least as large as the largest index on the table. The space requirements for
this can be minimized by presorting the data and using the SORTED INDEXES clause in the
SQL*Loader control file.

To minimize the amount of dynamic space allocation necessary during the load, the data
segment that you are loading into should already be created, with all the space it will need
already allocated. You should also presort the data on the columns of the largest index in the
table. Sorting the data and leaving the indexes on the table during a Direct Path load will usually
yield better performance than if you were to drop the indexes before the load and then re-create
them after it completed.

However, keep in mind that direct path load operations always use new extents. Therefore, if
you use parallel DELETEs and then follow it with parallel direct path loads, you will potentially
have an ever-increasing amount of free space in every block, and the disk space allocated to the
table will increase much faster than you expect.

To take advantage of the Direct Path option, the table cannot be clustered, and there can be
no other active transactions against it. During the load, only NOT NULL, UNIQUE, and PRIMARY
KEY constraints will be enforced; after the load has completed, the CHECK and FOREIGN KEY
constraints can be automatically reenabled. To force this to occur, use the REENABLE DISABLED_
CONSTRAINTS clause in the SQL*Loader control file.

08-ch08.indd 265 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

266 Oracle Database 12c DBA Handbook

The only exception to this reenabling process is that table insert triggers, when reenabled, are
not executed for each of the new rows in the table. A separate process must manually perform
whatever commands were to have been performed by this type of trigger.

The SQL*Loader Direct Path loading option provides significant performance improvements
over the SQL*Loader Conventional Path loader in loading data into Oracle tables by bypassing
SQL processing, buffer cache management, and unnecessary reads for the data blocks. The Parallel
Data Loading option of SQL*Loader allows multiple processes to load data into the same table,
utilizing spare resources on the system and thereby reducing the overall elapsed times for loading.
Given enough CPU and I/O resources, this can significantly reduce the overall loading times.

To use Parallel Data Loading, start multiple SQL*Loader sessions using the PARALLEL keyword
(otherwise, SQL*Loader puts an exclusive lock on the table). Each session is an independent
session requiring its own control file. The following listing shows an example of a Direct Path load
using the DIRECT=TRUE parameter on the command line:

sqlldr userid=rjb/rjb control=part1.ctl direct=true parallel=true
sqlldr userid=rjb/rjb control=part2.ctl direct=true parallel=true
sqlldr userid=rjb/rjb control=part3.ctl direct=true parallel=true

Each session creates its own log, bad, and discard files (part1.log, part2.log, part3.log, part1
.bad, part2.bad, and so on) by default. Because you have multiple sessions loading data into the
same table, only the APPEND option is allowed for Parallel Data Loading. The SQL*Loader
REPLACE, TRUNCATE, and INSERT options are not allowed for Parallel Data Loading. If you need
to delete the table’s data before starting the load, you must manually delete the data (via DELETE
or TRUNCATE commands). You cannot use SQL*Loader to delete the rows automatically if you
are using Parallel Data Loading.

NOTE
If you use Parallel Data Loading, indexes are not maintained by the
SQL*Loader session. Before starting the loading process, you must
drop all indexes on the table and disable all its PRIMARY KEY and
UNIQUE constraints. After the loads complete, you can re-create the
table’s indexes.

In serial Direct Path loading (PARALLEL=FALSE), SQL*Loader loads data into extents in the
table. If the load process fails before the load completes, some data could be committed to the
table prior to the process failure. In Parallel Data Loading, each load process creates temporary
segments for loading the data. The temporary segments are later merged with the table. If a
Parallel Data Loading process fails before the load completes, the temporary segments will not
have been merged with the table. If the temporary segments have not been merged with the table
being loaded, no data from the load will have been committed to the table.

You can use the SQL*Loader FILE parameter to direct each data loading session to a different
datafile. By directing each loading session to its own datafile, you can balance the I/O load of the
loading processes. Data loading is very I/O intensive and must be distributed across multiple disks
for parallel loading to achieve significant performance improvements over serial loading.

After a Parallel Data Load, each session may attempt to reenable the table’s constraints. As
long as at least one load session is still underway, attempting to reenable the constraints will fail.
The final loading session to complete should attempt to reenable the constraints, and should
succeed. You should check the status of your constraints after the load completes. If the table

08-ch08.indd 266 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 267

being loaded has PRIMARY KEY and UNIQUE constraints, you can create the associated indexes
in parallel prior to enabling the constraints.

Bulk Data Moves: Using External Tables
You can query data from files outside the database via an object called an external table. An
external table’s structure is defined via the ORGANIZATION EXTERNAL clause of the CREATE
TABLE command; its syntax closely resembles the SQL*Loader control file syntax.

You cannot manipulate rows in an external table, and you cannot index it—every access of
the table results in a full table scan (that is, a full scan of the file at the operating system level). As
a result, the performance of queries against external tables tends to be worse than that of queries
against tables stored within the database. However, external tables offer a couple of potential
benefits for systems that load large sets of data:

 ■ Because the data is not stored within the database, the data is only stored once (outside
the database, rather than both outside and inside the database), thus saving space.

 ■ Because the data is never loaded into the database, the data-loading time is eliminated.

Given that you cannot index external tables, they are most useful for operations in which
large volumes of data are accessed once serially by batch programs. For example, many data
warehousing environments have a staging area in which data is loaded into temporary tables prior
to rows being inserted into the tables users will query. Instead of loading the data into those
temporary tables, you can access the operating system files directly via external tables, saving time
and space.

From an architectural perspective, external tables allow you to focus your database contents
on the objects users will most commonly use—small codes tables, aggregation tables, and
transaction tables—while keeping very large data sets outside the database. You can replace the
files accessed by the external tables at any time without incurring any transaction overhead within
the database.

Bulk Inserts: Common Traps and Successful Tricks
If your data is not being inserted from a flat file, SQL*Loader will not be a useful solution. For
example, if you need to move a large set of data from one table to another, you will likely want to
avoid having to write the data to a flat file and then read it back into the database. The fastest way
to move data in your database is to move it from one table to another without going out to the
operating system.

When you’re moving data from one table to another, there are several common methods for
improving the performance of the data migration:

 ■ Tuning the structures (removing indexes and triggers)

 ■ Disabling constraints during the data migration

 ■ Using hints and options to improve the transaction performance

The first of the tips, tuning the structures, involves disabling any triggers or indexes that are on
the table into which data is being loaded. For example, if you have a row-level trigger on the
target table, that trigger will be executed for every row inserted into the table. If possible, disable
the triggers prior to the data load. If the trigger should be executed for every inserted row, you

08-ch08.indd 267 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

268 Oracle Database 12c DBA Handbook

may be able to do a bulk operation once the rows have been inserted, rather than a repeated
operation during each INSERT. If properly tuned, the bulk operation will complete faster than the
repeated trigger executions. You will need to be sure that the bulk operations execute for all rows
that have not already been processed by the triggers.

In addition to disabling triggers, you should disable the indexes on the target table prior to
starting the data load. If the indexes are left on the table, Oracle will dynamically manage the
indexes as each row is inserted. Rather than continuously manage the index, drop it prior to the
start of the load and re-create it when the load has completed.

NOTE
Disabling indexes and triggers resolves most of the performance
problems associated with large table-to-table data migration efforts.

In addition to disabling indexes, you should consider disabling constraints on the table. If the
source data is already in a table in the database, you can check that data for its adherence to your
constraints (such as foreign keys or CHECK constraints) prior to loading it into your target table.
Once the data has been loaded, you can reenable the constraints.

If none of those options gives you adequate performance, you should investigate the options
Oracle has introduced for data migration tuning. Those options include the following:

 ■ The APPEND hint for INSERT commands Like the SQL*Loader Direct Path option, the
APPEND hint loads blocks of data into a table, starting at the HWM for the table. Use of
the APPEND hint will increase your space usage.

 ■ The NOLOGGING option If you are performing a CREATE TABLE AS SELECT
command, use the NOLOGGING option to avoid writing to the redo logs during the
operation. If the database utilizes a standby (Data Guard) server, then FORCE LOGGING
will be the default behavior so that the inserted data will be logged into the redo logs
regardless of the use of the NOLOGGING option.

 ■ The PARALLEL option Parallel Query uses multiple processes to accomplish a single
task. For a CREATE TABLE AS SELECT operation, you can parallelize both the CREATE
TABLE portion and the query. If you use the PARALLEL option, you should also use
the NOLOGGING option; otherwise, the parallel operations will have to wait due to
serialized writes to the online redo log files. However, Oracle best practices suggest
logging all operations in a production database.

Before using any of these advanced options, you should first investigate the target table’s
structures to make sure you’ve avoided the common traps cited earlier in this section.

You can also use programming logic to force INSERTs to be processed in arrays rather than as
an entire set. For example, PL/SQL, Java, and C support array INSERTs, thus reducing the size of
the transactions required to process a large set of data.

Bulk Deletes: The TRUNCATE Command
Occasionally, users attempt to delete all the rows from a table at once. When they encounter
errors during this process, they complain that the rollback segments are too small, when in fact
their transaction is too large.

08-ch08.indd 268 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 269

A second problem occurs once the rows have all been deleted. Even though the segment no
longer has any rows in it, it still maintains all the space that was allocated to it. Therefore, deleting
all those rows saved not a single byte of allocated space.

The TRUNCATE command resolves both of these problems. It is a DDL command, not a DML
command, so it cannot be rolled back. Once you have used the TRUNCATE command on a table,
its rows are gone, and none of its DELETE triggers are executed in the process. However, the table
retains all its dependent objects—such as grants, indexes, and constraints.

The TRUNCATE command is the fastest way to delete large volumes of data. Because it will
delete all the rows in a table, this may force you to alter your application design so that no protected
rows are stored in the same table as the rows to be deleted. If you use partitions, you can truncate
one partition of a table without affecting the rest of the table’s partitions (see Chapter 18).

A sample TRUNCATE command for a table is shown here:

truncate table EMPLOYEE drop storage;

This example, in which the EMPLOYEE table’s rows are deleted, shows a powerful feature of
TRUNCATE. The DROP STORAGE clause is used to deallocate the non-INITIAL space from the
table (this is the default option). Therefore, you can delete all of a table’s rows and reclaim all but
its initial extent’s allocated space, without dropping the table.

The TRUNCATE command also works for clusters. In this example, the REUSE STORAGE
option is used to leave all allocated space empty within the segment that acquired it:

truncate cluster EMP_DEPT reuse storage;

When this example command is executed, all the rows in the EMP_DEPT cluster will be instantly
deleted.

To truncate a partition, you need to know its name. In the following example, the partition
named PART3 of the EMPLOYEE table is truncated via the ALTER TABLE command:

alter table EMPLOYEE
truncate partition PART3
drop storage;

The rest of the partitions of the EMPLOYEE table will be unaffected by the truncation of the PART3
partition. See Chapter 18 for details on creating and managing partitions.

As an alternative, you can create a PL/SQL program that uses dynamic SQL to divide a large
DELETE operation into multiple smaller transactions with a COMMIT after each group of rows.

Using Partitions
You can use partitions to isolate data physically. For example, you can store each month’s
transactions in a separate partition of an ORDERS table. If you perform a bulk data load or
deletion on the table, you can customize the partitions to tune the data manipulation operation.
For example:

 ■ You can truncate a partition and its indexes without affecting the rest of the table.

 ■ You can drop a partition, via the DROP PARTITION clause of the ALTER TABLE command.

 ■ You can drop a partition’s local index.

 ■ You can set a partition to NOLOGGING, reducing the impact of large transactions.

08-ch08.indd 269 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

270 Oracle Database 12c DBA Handbook

From a performance perspective, the chief advantage of partitions lies in their ability to be
managed apart from the rest of the table. For example, being able to truncate a partition enables
you to delete a large amount of data from a table (but not all of the table’s data) without generating
any redo information. In the short term, the beneficiary of this performance improvement is the
DBA; in the longer term, the entire enterprise benefits from the improved availability of the data.
See Chapter 18 for details on implementing partitions and subpartitions.

You can use the EXCHANGE PARTITION option to greatly reduce the impact your data-loading
processes have on system availability. Start by creating an empty table that has the same column
structure as your partitioned table. Load your data into the new table and then analyze the new
table. Create indexes on the new table to match the partitioned table’s indexes; the indexes must
be local, and not global, indexes. When these steps are complete, alter the partitioned table using
the EXCHANGE PARTITION clause to exchange an empty partition with the new table you
populated. All the loaded data will now be accessible via the partitioned table. There is little
impact to the system availability during this step because it is a DDL operation.

Reducing Network Traffic
As databases and the applications that use them become more distributed, the network that
supports the servers may become a bottleneck in the process of delivering data to the users.
Because DBAs typically have little control over the network management, it is important to use
the database’s capabilities to reduce the number of network packets required for the data to be
delivered. Reducing network traffic will reduce your reliance on the network and thus eliminate
a potential cause of performance problems.

Replication of Data Using Materialized Views
You can manipulate and query data from remote databases. However, it is not desirable to have
large volumes of data constantly sent from one database to another. To reduce the amount of data
being sent across the network, you should consider different data replication options.

In a purely distributed environment, each data element exists in one database. When data is
required, it is accessed from remote databases via database links. This purist approach is similar
to implementing an application strictly in third normal form—an approach that will not easily
support any major production application. Modifying the application’s tables to improve data
retrieval performance involves denormalizing data. The denormalization process deliberately
stores redundant data in order to shorten users’ access paths to the data.

In a distributed environment, replicating data accomplishes this goal. Rather than force queries
to cross the network to resolve user requests, selected data from remote servers is replicated to the
local server. This can be accomplished via a number of means, as described in the following
sections.

Replicated data is out of date as soon as it is created. Replicating data for performance
purposes is therefore most effective when the source data is very infrequently changed or when
the business processes can support the use of old data.

Oracle’s distributed capabilities offer a means of managing the data replication within a
database. Materialized views replicate data from a master source to multiple targets. Oracle provides
tools for refreshing the data and updating the targets at specified time intervals.

08-ch08.indd 270 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 271

Materialized views may be read-only or updatable. The management issues for materialized
views are covered in Chapter 19; in this section, you will see their performance-tuning aspects.

Before creating a materialized view for replication, you should first create a database link to
the source database. The following example creates a private database link called HR_LINK, using
the LOC service name:

create database link hr_link
connect to hr identified by in4quandry
using 'loc';

The CREATE DATABASE LINK command, as shown in this example, has several parameters:

 ■ The name of the link (HR_LINK, in this case).

 ■ The account to connect to.

 ■ The service name of the remote database (as found in the tnsnames.ora file for the server).
In this case, the service name is LOC.

Materialized views automate the data replication and refresh processes. When materialized
views are created, a refresh interval is established to schedule refreshes of replicated data. Local
updates can be prevented, and transaction-based refreshes can be used. Transaction-based
refreshes, available for many types of materialized views, send from the master database only
those rows that have changed for the materialized view. This capability, described later in this
chapter, may significantly improve the performance of your refreshes.

The syntax used to create the materialized view on the local server is shown in the following
example, where the materialized view is given a name (LOCAL_EMP) and its storage parameters
are specified. Its base query is given as well as its refresh interval. In this case, the materialized
view is told to immediately retrieve the master data and then to perform the refresh operation
again in seven days (SYSDATE+7).

create materialized view local_emp
pctfree 5
tablespace data_2
storage (initial 100m next 100m pctincrease 0)
refresh fast
 start with sysdate
 next sysdate+7
as select * from employee@hr_link;

The REFRESH FAST clause tells the database to use a materialized view log to refresh the local
materialized view. The ability to use materialized view logs during refreshes is only available if
the materialized view’s base query is simple enough that Oracle can determine which row in the
materialized view will change when a row changes in the source tables.

When a materialized view log is used, only the changes to the master table are sent to the
targets. If you use a complex materialized view, you must use the REFRESH COMPLETE clause in
place of the REFRESH FAST clause. In a complete refresh, the refresh completely replaces the
existing data in the materialized view’s underlying table.

08-ch08.indd 271 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

272 Oracle Database 12c DBA Handbook

Materialized view logs must be created in the master database, via the CREATE MATERIALIZED
VIEW LOG command. An example of the CREATE MATERIALIZED VIEW LOG command is
shown here:

create materialized view log on EMPLOYEE
tablespace DATA
storage (initial 500k next 100k pctincrease 0);

The materialized view log is always created in the same schema as the master table.
You can use simple materialized views with materialized view logs to reduce the amount of

network traffic involved in maintaining the replicated data. Because only the changes to the data
will be sent via a materialized view log, the maintenance of simple materialized views should use
fewer network resources than complex materialized views require, particularly if the master tables
are large, fairly static tables. If the master tables are not static, the volume of transactions sent via
the materialized view log may not be any less than would be sent to perform a complete refresh.
For details on the refresh capabilities of materialized views, see Chapter 19.

Regardless of the refresh option chosen, you should index the materialized view’s base table
to optimize queries against the materialized view. From a performance perspective, your goal is to
present the users with the data they want in the format they want as quickly as possible. By
creating materialized views on remote data, you can avoid traversing database links during
queries. By creating materialized views on local data, you can prevent users from repeatedly
aggregating large volumes of data, presenting them instead with pre-aggregated data that answers
their most common queries.

Using Remote Procedure Calls
When using procedures in a distributed database environment, you can use one of two options:
to create a local procedure that references remote tables or to create a remote procedure that is
called by a local application.

The proper location for the procedure depends on the distribution of the data and the way the
data is to be used. The emphasis should be on minimizing the amount of data that must be sent
through the network to resolve the data request. The procedure should reside within the database
that contains most of the data used during the procedure’s operations.

For example, consider this procedure:

create procedure my_raise (my_emp_no in number, raise in number)
as
begin
 update employee@hr_link
 set salary = salary+raise
 where empno = my_emp_no;
end;
/

In this case, the procedure only accesses a single table (EMPLOYEE) on a remote node (as
indicated by the database link HR_LINK). To reduce the amount of data sent across the network,
move this procedure to the remote database identified by the database link HR_LINK and remove
the reference to that database link from the FROM clause in the procedure. Then, call the procedure
from the local database by using the database link, as shown here:

execute my_raise@hr_link(1234,2000);

08-ch08.indd 272 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 273

In this case, two parameters are passed to the procedure—MY_EMP_NO is set to 1234, and RAISE
is set to 2000. The procedure is invoked using a database link to tell the database where to find
the procedure.

The tuning benefit of performing a remote procedure call is that all of the procedure’s processing
is performed in the database where the data resides. The remote procedure call minimizes the
amount of network traffic necessary to complete the procedure’s processing.

To maintain location transparency, you may create a local synonym that points to the remote
procedure. The database link name will be specified in the synonym so that user requests will
automatically use the remote database:

create synonym my_raise for my_raise@hr_link;

A user could then enter the command

execute my_raise(1234,2000);

and it would execute the remote procedure defined by the synonym MY_RAISE.

Using the Automatic Workload Repository
In Oracle Database 10g and earlier, Statspack gathers and reports on database statistics, albeit in
a strictly text-based format! As of Oracle 10g, the Automatic Workload Repository (AWR) provides
enhancements to the Statspack concept, generating all statistics found in Statspack, and more. In
addition, the AWR is highly integrated with OEM, making it easy to analyze and fix a performance
problem.

NOTE
Statspack is still available in Oracle Database 12c as a free option.
To use AWR reports, you must be licensed for the Diagnostics pack.

Like Statspack, the AWR collects and maintains performance statistics for problem detection
and self-tuning purposes. You can generate reports on the AWR data, and you can access it via
views and through Cloud Control 12c. You can report on recent session activity as well as the
overall system statistics and SQL usage.

The AWR captures the system statistics on an hourly basis (taking “snapshots” of the database)
and stores the data in its repository tables. As with Statspack, the space requirements of the AWR
will increase as the historical retention period is increased or the interval between snapshots is
decreased. By default, seven days’ worth of data is maintained in the AWR. You can see the
snapshots that are stored in the AWR via the DBA_HIST_SNAPSHOT view.

To enable the AWR, set the STATISTICS_LEVEL initialization parameter to TYPICAL or ALL.
If you set STATISTICS_LEVEL to BASIC, you can take manual snapshots of the AWR data, but they
will not be as comprehensive as those performed automatically by the AWR. Setting STATISTICS_
LEVEL to ALL adds timed OS statistics and plan execution statistics to those gathered with the
TYPICAL setting.

08-ch08.indd 273 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

274 Oracle Database 12c DBA Handbook

Managing Snapshots
To take a manual snapshot, use the CREATE_SNAPSHOT procedure of the DBMS_WORKLOAD_
REPOSITORY package:

execute dbms_workload_repository.create_snapshot ();

To alter the snapshot settings, use the MODIFY_SNAPSHOT_SETTINGS procedure. You can
modify the retention (in minutes) and the interval (in minutes) for snapshots. The following example
changes the interval to 30 minutes for the current database:

execute dbms_workload_repository.modify_snapshot_settings
(interval => 30);

To drop a range of snapshots, use the DROP_SNAPSHOT_RANGE procedure, specifying the
start and end of the snapshot IDs to drop:

execute dbms_workload_repository.drop_snapshot_range
 (low_snap_id => 1, high_snap_id => 10);

Managing Baselines
You can designate a set of snapshots as a baseline for the performance of the system. The baseline
data will be retained for later comparisons with snapshots. Use the CREATE_BASELINE procedure
to specify the beginning and ending snapshots for the baseline:

execute dbms_workload_repository.create_baseline
 (start_snap_id => 1, end_snap_id => 10,
 baseline_name => 'Monday baseline');

When you create a baseline, Oracle will assign an ID to the baseline; you can view past
baselines via the DBA_HIST_BASELINE view. The snapshots you specify for the beginning and
ending of the baseline are maintained until you drop the baseline. To drop the baseline, use the
DROP_BASELINE procedure:

execute dbms_workload_repository.drop_baseline
(baseline_name => 'Monday baseline', cascade => FALSE);

If you set the CASCADE parameter of the DROP_BASELINE procedure to TRUE, the related
snapshots will be dropped when the baseline is dropped.

You can see the AWR data via Cloud Control 12c or via the data dictionary views listed earlier
in this section. Additional views supporting the AWR include V$ACTIVE_SESSION_HISTORY
(sampled every second), DBA_HIST_SQL_PLAN (execution plans), and DBA_HIST_WR_CONTROL
(for the AWR settings).

Generating AWR Reports
You can generate reports from the AWR either via Cloud Control 12c or via the reporting scripts
provided. The awrrpt.sql script generates a report based on the differences in statistics between
the beginning and ending snapshots. A second report, awrrpti.sql, displays a report based on the
beginning and ending snapshots for a specified database and instance.

08-ch08.indd 274 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 275

Both awrrpt.sql and awrrpti.sql are located in the $ORACLE_HOME/rdbms/admin directory.
When you execute a report (from any DBA account), you will be prompted for the type of report
(HTML or text), the number of days for which snapshots will be listed, the beginning and ending
snapshot IDs, and the name for the output file. For RAC environments, you can use awrgrpt.sql to
report most of the statistics across all instances.

Running the Automatic Database Diagnostic Monitor Reports
Rather than relying on manual reporting against the AWR table (much as you did with Statspack
in previous versions of Oracle), you can use the Automatic Database Diagnostic Monitor (ADDM).
Because it is based on AWR data, ADDM requires that the STATISTICS_LEVEL parameter be set
(either to TYPICAL or ALL, as recommended earlier). You can access ADDM via the Performance
Analysis section of Cloud Control 12c, or you can run an ADDM report manually.

To run ADDM against a set of snapshots, use the addmrpt.sql script located in the $ORACLE_
HOME/rdbms/admin directory.

NOTE
You must have the ADVISOR system privilege in order to execute
ADDM reports.

Within SQL*Plus, execute the addmrpt.sql script. You will be prompted for the beginning and
ending snapshot IDs for the analysis and a name for the output file.

To view the ADDM data, you can use Cloud Control 12c or the advisor data dictionary views.
The advisor views include DBA_ADVISOR_TASKS (existing tasks), DBA_ADVISOR_LOG (status
and progress on tasks), DBA_ADVISOR_RECOMMENDATIONS (completed diagnostic tasks plus
recommendations), and DBA_ADVISOR_FINDINGS. You can implement the recommendations to
address the findings identified via ADDM. Figure 8-1 shows a typical AWR report, generated from
the default baseline; in this example, the snapshot began on 14-Sep-2013 and ended on 22-Sep-
2013. This database seems to be lightly loaded with plenty of CPU and memory resources; for
example, latch contention is nonexistent, and there is enough memory to perform all sorting without
using disk.

Using Automatic SQL Tuning Advisor
New as of Oracle Database 11g, Automatic SQL Tuning Advisor runs during the default maintenance
window (using AutoTask) and targets the highest-load SQL statements collected in the AWR. Once
the automatic SQL tuning begins during a maintenance window, the following steps are
performed by the Automatic SQL Tuning Advisor:

1. Identify repeated high-load SQL from AWR statistics. Recently tuned SQL and recursive
SQL are ignored.

2. Tune high-load SQL using calls to the SQL Tuning Advisor.

3. Create SQL Profiles for the high-load SQL; performance is tested both with and without
the profile.

4. If the performance is better by at least a factor of three, automatically keep the profile;
otherwise, note the improvement in the tuning report.

08-ch08.indd 275 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

276 Oracle Database 12c DBA Handbook

FIGURE 8-1. Sample AWR report via Cloud Control 12c

08-ch08.indd 276 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 277

Figure 8-2 shows a summary of the Advisor tasks from Advisor Central; in this example, you
can see a summary of the results for the Automatic Database Diagnostic Monitor (ADDM),
Segment Advisor, and SQL Tuning Advisor.

Clicking the SQL Tuning Advisor result link, you can see the Automatic SQL Tuning Result
Summary in Figure 8-3. On this database, the SQL Tuning Advisor found 124 potential SQL
statements that could be improved by implementing a SQL Profile, adding one or more indexes,
collecting statistics more often, or rewriting the SQL statement.

Performance Tuning in a Multitenant Environment
In Chapter 11 I cover the basics of Oracle’s multitenant architecture. This includes the different
types of containers available: the root container (container database, or CDB) that at a minimum
comprises the root database, a seed database, and zero or more pluggable databases (PDBs).
Oracle 12c databases can be standalone databases as well and converted to PDBs. I also distinguish
between common and local users: common users have privileges across all PDBs within a
container, whereas local users see the PDB as a standalone database (non-CDB). In a multitenant
environment, the traditional USER_, ALL_, and DBA_ data dictionary views are supplemented
with CDB_ views that are visible across the entire container to common users.

As you might expect, tuning a multitenant container database (the container itself or one of
the PDBs) is much like tuning a non-CDB in that you’re tuning a single instance with many
different applications (PDBs) sharing and competing for the same server resources. This is in line
with the multitenant database architecture in that there is minimal or no difference between
a CDB and a non-CDB from a usage, compatibility, and tuning perspective.

FIGURE 8-2. Cloud Control 12c Advisor Central summary

08-ch08.indd 277 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

278 Oracle Database 12c DBA Handbook

The keys to performance tuning a PDB are monitoring and resource allocation. Not only must
you tune individual SQL statements within a PDB, but you also must decide what percentage of the
server’s resources a PDB can have if all PDBs are active. Many of the same tools you use for a non-
CDB database are also used for a CDB, such as the SQL Tuning Advisor and the familiar AWR and
ADDM reports. The big difference in a CDB environment is that tuning SQL statements happens at
the PDB level, whereas the AWR, ASH, and ADDM reports are at the instance (CDB) level.

As you will find out in Chapter 11, some initialization parameters can also be set at the PDB
level if the default value at the CDB level is not appropriate. I’ll show you how to change some of
these parameters at the PDB level in a tuning scenario.

Even though there is database activity at the CDB level, the bulk of the activity should be
occurring in each PDB from a logical perspective. Remember that from an instance perspective,
it’s still one database instance. Therefore, the standard Oracle tuning methodologies still apply to
a CDB environment.

At the CDB level, you want to optimize the amount of memory you need to host one or more
PDBs; that’s the reason you’re using a multitenant environment in the first place! In the following
sections, I’ll review the standard tuning methodologies as well as how you can change initialization
parameters at the PDB level. Using performance reports such as the ASH, ADDM, and AWR reports
helps you identify performance issues for the CDB, and using the SQL Tuning Advisor helps you
optimize your SQL activity within each PDB.

FIGURE 8-3. Automatic SQL Tuning Advisor results

08-ch08.indd 278 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 279

Tuning Methodology
The standard Oracle tuning methodology developed and refined over the last several releases of
Oracle Database still apply to multitenant environments. The overall steps are as follows:

1. Identify the tuning goal:

a. Reduce elapsed time for individual queries?

b. Increase the number of users without buying new hardware?

c. Optimize memory usage?

d. Reduce disk space usage (compression, normalization)?

2. Determine the cause of the bottleneck (OS, network, I/O); usually it’s one cause.

3. Tune the application from the top down:

a. Review the application design.

b. Modify the database design (denormalization, materialized views, data warehouse).

c. Tune the SQL code.

d. Tune the instance.

4. Use database analysis tools once you finish step 3:

a. Collect statistics at the instance and OS levels.

b. Use the AWR report to identify wait events and poorly performing SQL.

c. Use the SQL Tuning Advisor, memory advisors, and other advisors to tune and reduce
elapsed time, CPU, and I/O.

5. After tuning one or more components, start again at step 2 if the tuning goal has not yet
been met.

The biggest focus of any tuning effort is identifying when to stop tuning. In other words,
you need to identify the goal for a tuning effort after several users complain that “the database
is slow.” Identifying the performance issue, reevaluating the service-level agreements (SLAs) in
place, and monitoring database growth and the user base are important factors in deciding how
much time you want to spend tuning a database (CDB or non-CDB) before you reach the decision
that you need faster hardware, a faster network, or a new database design.

Sizing the CDB
Adjusting parameters at the CDB level is much like tuning a single instance in a non-CDB
environment that has several applications with different resource and availability requirements.
It’s worth mentioning again that a CDB is a single database instance, but with the added features
of the multitenant environment, you have much more control over resource consumption among
the several applications (each in their own PDB) in addition to the strong isolation between the
applications from a security perspective.

08-ch08.indd 279 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

280 Oracle Database 12c DBA Handbook

Tuning CDB Memory and CPU Resources
Tuning the memory in a CDB means you’re changing the same memory areas as in a non-CDB:

 ■ Buffer cache (SGA)

 ■ Shared pool (SGA)

 ■ Program Global Area (PGA)

When you calculate the memory requirements for a CDB, your first estimate should be the sum of
all corresponding memory requirements for each non-CDB that will become a PDB. Of course,
you will eventually want to reduce the total memory footprint for the CDB based on a number of
factors. For example, not all PDBs will be active at the same time; therefore, you will likely not
need as much total memory allocated to the CDB.

Using Enterprise Manager Cloud Control 12c is a good way to see resource usage across the
CDB. In Figure 8-4, the container CDB01 has three PDBs active and two inactive.

The total memory allocated for the CDB is approximately 5GB. Three non-CDBs would likely
use 5GB or more each; all five PDBs in CDB01 may perform just fine in a total of 5GB.

FIGURE 8-4. Viewing PDB resource usage within a CDB using Cloud Control 12c

08-ch08.indd 280 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 281

There are a few different approaches to resource allocation among PDBs within a CDB:

 ■ None Let each PDB use all resources of the CDB if no other PDB is active; when multiple
PDBs need resources, they are divided equally.

 ■ Minimum Each PDB gets a minimum guaranteed resource allocation.

 ■ Minimum/maximum Each PDB gets both a minimum guaranteed resource allocation
and a maximum.

Resource usage allocation in a CDB is measured in shares. By default, all PDBs can consume
all resources allocated to the CDB. I cover more details on how shares are allocated and calculated
later in the chapter.

Modifying Initialization Parameters
As you will find out in Chapter 11, there is only one SPFILE per CDB instance. All database
parameters are stored in the CDB’s SPFILE, but 171 of those parameters (out of a total of 367 for
Oracle Database 12c 12.1.0.1) can be changed at the PDB level. The column ISPDB_MODIFIABLE
is an easy way to see which parameters you can change at the PDB level:

SQL> select ispdb_modifiable,count(ispdb_modifiable)
 2 from v$parameter
 3 group by ispdb_modifiable;

ISPDB COUNT(ISPDB_MODIFIABLE)
----- -----------------------
TRUE 171
FALSE 196

SQL>

When you unplug a PDB, its customized parameters stay with the unplugged PDB and are set
when that PDB is plugged back in regardless of which PDB it is plugged into. When a PDB is
cloned, the custom parameters are cloned as well. At the container level, you can also look at
the data dictionary view PDB_SPFILE$ to see which parameters are different across PDBs:

select pdb_uid,pdb_name,name,value$
from pdb_spfile$ ps
 join cdb_pdbs cp
 on ps.pdb_uid=cp.con_uid;

 PDB_UID PDB_NAME NAME VALUE$
---------- --------------- ------------------------------ ----------
1258510409 TOOL sessions 200
1288637549 RPTQA12C cursor_sharing 'FORCE'
1288637549 RPTQA12C star_transformation_enabled TRUE
1288637549 RPTQA12C open_cursors 300

In the TOOL PDB, the SESSIONS parameter is different from the default (at the CDB level);
the RPTQA12C PDB has three non-default parameters set.

08-ch08.indd 281 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

282 Oracle Database 12c DBA Handbook

Using Memory Advisors
The buffer cache in a CDB, shared across all PDBs, behaves much like the buffer cache in a non-
CDB: The same LRU algorithms are used to determine when and if a block should stay in the
buffer cache. Because the buffer cache is shared, the PDB’s container ID (CON_ID) is also stored
in each block. The same container ID is stored in the other SGA and PGA memory areas, such as
the shared pool in the SGA and the global PGA. The memory advisors from previous versions of
Oracle Database work in much the same way in a multitenant environment; sizing recommendations
are at the CDB (instance) level. Individual memory parameters that can be adjusted at the PDB
level are limited to SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE, although in general
Oracle best practices dictate that you only set PGA_AGGREGATE_TARGET and let Oracle manage
the other memory areas.

Figure 8-5 shows the output from the SGA Memory Advisor launched from Cloud Control 12c.
Even with several PDBs in the CDB01 container, it appears that the total memory for the CDB

can be reduced by at least 1GB and retain good performance for all PDBs.
To accommodate a potentially larger number of sessions in a CDB, the parameter PGA_

AGGREGATE_LIMIT was added to place a hard limit on the amount of PGA memory used. The
existing parameter PGA_AGGREGATE_TARGET was useful in previous releases as a soft limit but
only for tunable memory. Several sessions using untunable memory (such as PL/SQL applications
that allocate large memory arrays) could potentially use up all available PGA memory, causing
swap activity at the OS level and affecting performance across all instances on the server. Thus,
the parameter PGA_AGGREGATE_LIMIT was added to abort PGA memory requests by one or
more non-SYSTEM connections to get under this limit.

SGA Size Advice
100

0

–100

–200

–300

Im
pr

ov
em

en
t

in
 D

B
 T

im
e

(%
)

–400

–500

–600

–700

–800
1000 2000 3000 4000 5000 6000

Total SGA Size (MB)

Percentage improvement in DB Time for various sizes of SGA

7000 8000 9000 10000 11000

FIGURE 8-5. CDB SGA Memory Advisor in Cloud Control 12c

08-ch08.indd 282 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 283

Leveraging AWR Reports
As with all previously described Oracle tuning tools, AWR snapshots include a container ID
number, and that container ID is reflected in any AWR report. Figure 8-6 shows an excerpt of the
SQL statements executed during the three-hour window specified for the AWR report.

The SQL statements run during this window were from two PDBs and the root container. As
in a non-CDB environment, your tuning effort will focus first on the statements with the longest
elapsed time along with statements whose total time across multiple executions is at the top of
the list.

Using the SQL Tuning Advisor
When you run the SQL Tuning Advisor against one or more SQL statements, such as those in
Figure 8-6, the advisor runs only in the context of a single PDB. In other words, the recommendations
are based only on the performance and resource usage within the PDB. Even if the same SQL
statement is run in multiple PDBs, the schema names, statistics, data volumes, and initialization
parameters can and will likely be different between PDBs. Therefore, if any recommendations are
implemented, they are applied in only a single PDB.

Other new and enhanced SQL Tuning features in Oracle Database 12c can be used for CDBs
and non-CDBs:

 ■ Adaptive SQL plan management

 ■ Automatic SQL plan baseline evolution

 ■ SQL management base

 ■ SQL plan directives

 ■ Improved statistics gathering performance

The usage of these tools is beyond the scope of this book.

FIGURE 8-6. AWR report in a multitenant environment

08-ch08.indd 283 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

284 Oracle Database 12c DBA Handbook

Managing Resource Allocation Within a PDB
In the previous section, I introduced the concept of resource sharing within a CDB by using
shares. I’ll expand on that concept by showing how you can allocate shares among PDBs within
a CDB. In addition, I’ll talk about resource management within a PDB, which is much like how
Resource Manager operates in a non-CDB environment and previous versions of Oracle Database.

Once a portion of resources is allocated to a PDB, Resource Manager will prioritize resource
requests by users. In both cases you’ll use the DBMS_RESOURCE_MANAGER package to create
and deploy resource allocations.

Using Shares to Manage Inter-PDB Resources
Each PDB that’s plugged into a CDB competes for the resources of the CDB—primarily CPU,
parallel servers, and, in the case of Oracle Exadata, I/O. How much of each resource a PDB gets
depends on how many shares that PDB was assigned when it was created.

NOTE
Neither consumer groups (using Resource Manager) nor shares can be
defined for the root container.

By default, each PDB gets one share unless otherwise specified. When a new PDB is added or
an existing PDB is unplugged, the number of shares each PDB has remains the same. Table 8-1
shows a CDB with four PDBs: HR, BI, REPOS, and TOOL. The BI PDB has three shares, and the
rest have one each, the default.

The TOOL database, for example, is guaranteed 16.67 percent of the server’s CPU resources
if needed. If one or more of the other PDBs are not active, TOOL can use its default allocation if
there is no activity in the other PDBs.

Suppose you create a PDB called NCAL and don’t specify the number of shares; it defaults to 1,
with the results shown in Table 8-2.

The minimum CPU guaranteed for each PDB is automatically recalculated based on the new
total number of shares. Each PDB with one share now gets 14.29 percent of the CPU resources,
and the amount of CPU resources available (at a minimum) for the BI PDB is now 42.86 percent.

Creating and Modifying Resource Manager Plans
To further refine the resource consumption, you can set limits within each PDB using Resource
Manager. From the perspective of the PDB, all resources are controlled by directives created using
DBMS_RESOURCE_MANAGER. The amount of CPU, Exadata I/O, and concurrent parallel servers

PDB Name Shares CPU Percent (Maximum)

HR 1 16.67 percent

BI 3 50 percent

REPOS 1 16.67 percent

TOOL 1 16.67 percent

TABLE 8-1. PDBs and Share Allocation for Four PDBs

08-ch08.indd 284 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 285

used by the PDB default to 100 percent but can be adjusted down to 0 percent depending on the
time of day or other circumstances.

The resource plan itself is created at the CDB level, and you create directives for each PDB
within the CDB. You can also specify a set of default directives for those PDBs that do not have an
explicit set of directives.

Identifying Parameters to Limit PDB Resource Usage
As part of the utilization plan for each PDB, there are two key limits you can control: the utilization
limit for CPU, Exadata I/Os, and parallel servers and a parallel server limit. These plan directive
limits are UTILIZATION_LIMIT and PARALLEL_SERVER_LIMIT, respectively.

The resource directive UTILIZATION_LIMIT defines the percentage of CPU, I/Os, and parallel
servers available to a PDB. If UTILIZATION_LIMIT is set at 30, then the PDB can use no more
than 30 percent of the resources available to the CDB.

To further refine the resource limits, you can use PARALLEL_SERVER_LIMIT to define the
maximum percentage of the CDB’s PARALLEL_SERVERS_TARGET value; this value overrides the
UTILIZATION_LIMIT directive but only for parallel resources. The default is 100 percent.

Creating the CDB Resource Plan
The steps for creating a CDB resource plan are similar to those for creating a resource plan in a
non-CDB, but with additional steps for each PDB. You create and manage the resource plan from
the root container only. Table 8-3 lists the steps and corresponding DBMS_RESOURCE_MANAGER
calls needed to create and configure the CDB resource plan.

Other key procedures in DBMS_RESOURCE_MANAGER include UPDATE_CDB_PLAN to
change the characteristics of the CDB resource plan and DELETE_CDB_PLAN to delete the
resource plan and all of its directives. To update and delete individual CDB plan directives, use
UPDATE_CDB_PLAN_DIRECTIVE and DELETE_CDB_PLAN_DIRECTIVE.

Here is an example of creating a CDB resource plan for the CDB01 container and defining
the plan directives for two of the PDBs in the CDB.

1. Create a pending area for the CDB plan:

SQL> connect / as sysdba
Connected.
SQL> exec dbms_resource_manager.create_pending_area();

PL/SQL procedure successfully completed.

PDB Name Shares CPU Percent (Maximum)

HR 1 14.29 percent

BI 3 42.86 percent

REPOS 1 14.29 percent

TOOL 1 14.29 percent

NCAL 1 14.29 percent

TABLE 8-2. PDBs and Share Allocation for Five PDBs After Adding a New One

08-ch08.indd 285 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

286 Oracle Database 12c DBA Handbook

2. Create a resource plan that manages the TOOL and CCREPOS PDBs to minimize CPU
and other resource usage:

SQL> begin
 2 dbms_resource_manager.create_cdb_plan(
 3 plan => 'low_prio_apps',
 4 comment => 'TOOL and repository database low priority');
 5 end;
 6 /

PL/SQL procedure successfully completed.
SQL>

3. Create a plan directive that gives both the TOOL and CCREPOS PDBs one share. The
utilization limit for TOOL should be 50 percent, and for CCREPOS it will be 75 percent:

SQL> begin
 2 dbms_resource_manager.create_cdb_plan_directive(
 3 plan => 'low_prio_apps',
 4 pluggable_database => 'tool',
 5 shares => 1,
 6 utilization_limit => 50,
 7 parallel_server_limit => 50);
 8 end;
 9 /

PL/SQL procedure successfully completed.

SQL> begin
 2 dbms_resource_manager.create_cdb_plan_directive(
 3 plan => 'low_prio_apps',
 4 pluggable_database => 'ccrepos',
 5 shares => 1,
 6 utilization_limit => 75,

Step Description DBMS_RESOURCE_MANAGER Procedure

1 Create a pending area. CREATE_PENDING_AREA

2 Create a CDB resource plan. CREATE_CDB_PLAN

3 Create PDB directives. CREATE_CDB_PLAN_DIRECTIVE

4 Update default PDB directives. UPDATE_CDB_DEFAULT_DIRECTIVE

5 Update default AutoTask directives. UPDATE_CDB_AUTOTASK_DIRECTIVE

6 Validate the pending area. VALIDATE_PENDING_AREA

7 Submit the pending area. SUBMIT_PENDING_AREA

TABLE 8-3. Steps to Create a Resource Plan with DBMS_RESOURCE_MANAGER Calls

08-ch08.indd 286 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 287

 7 parallel_server_limit => 75);
 8 end;
 9 /

PL/SQL procedure successfully completed.

SQL>

4. Validate and submit the pending area:

SQL> exec dbms_resource_manager.validate_pending_area();

PL/SQL procedure successfully completed.

SQL> exec dbms_resource_manager.submit_pending_area();

PL/SQL procedure successfully completed.

SQL>

5. Finally, make this resource manager plan the current plan:

SQL> alter system set resource_manager_plan='low_prio_apps';
System altered.
SQL>

Viewing Resource Plan Directives
In Oracle Database 12c you have a data dictionary view called DBA_CDB_RSRC_PLAN_DIRECTIVES
to see all of the current resource plans. Querying that view, you can see the resource plans you
just created for TOOL and CCREPOS:

SQL> select plan, pluggable_database, shares,
 2 utilization_limit, parallel_server_limit
 3 from dba_cdb_rsrc_plan_directives
 4 order by plan,pluggable_database;

PLAN PLUGGABLE_DATABASE SHARES UTILIZA PARALLEL_
------------------------- ------------------ ------ ------- ---------
DEFAULT_CDB_PLAN ORA$AUTOTASK 90 100
DEFAULT_CDB_PLAN ORA$DEFAULT_PDB_DI 1 100 100
 RECTIVE
DEFAULT_MAINTENANCE_PLAN ORA$AUTOTASK 90 100
DEFAULT_MAINTENANCE_PLAN ORA$DEFAULT_PDB_DI 1 100 100
 RECTIVE

LOW_PRIO_APPS CCREPOS 1 75 75
LOW_PRIO_APPS ORA$AUTOTASK 90 100
LOW_PRIO_APPS ORA$DEFAULT_PDB_DI 1 100 100
 RECTIVE
LOW_PRIO_APPS TOOL 1 50 50
ORA$INTERNAL_CDB_PLAN ORA$AUTOTASK

08-ch08.indd 287 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

288 Oracle Database 12c DBA Handbook

ORA$INTERNAL_CDB_PLAN ORA$DEFAULT_PDB_DI
 RECTIVE
ORA$QOS_CDB_PLAN ORA$AUTOTASK 90 100
ORA$QOS_CDB_PLAN ORA$DEFAULT_PDB_DI 1 100 100
 RECTIVE

In previous releases of Oracle Database and for non-CDBs in Oracle Database 12c, the
corresponding data dictionary view is DBA_RSRC_PLAN_DIRECTIVES.

Managing Resources Within a PDB
Resource plans can manage workloads within a PDB as well. These resource plans manage
workloads just as they do in a non-CDB and, not surprisingly, are called PDB resource plans.
There are a few restrictions and differences with PDB plans. Table 8-4 shows the parameter and
feature differences between non-CDB and PDB resource plans.

Regardless of the container type, you still view resource plans using the V$RSRC_PLAN
dynamic performance view. To find the active CDB resource plan, select the row in V$RSRC_PLAN
with CON_ID=1.

Migrating Non-CDB Resource Plans
You will likely convert and plug in many non-CDBs as well as creating new PDBs. This process is
straightforward, and all of your applications should work as expected. If the non-CDB has a
resource plan, it will be converted as well, as long as it meets these conditions:

 ■ There are no more than eight consumer groups.

 ■ There are no subplans.

 ■ All resource allocations are on level 1.

In other words, the migrated resource plan must be compatible with a new PDB resource plan
that follows the rules in the previous section. If the plan violates any of these conditions, the plan
is converted during the plug-in operation to a plan that is compatible with a PDB. This plan may
be unsuitable; you can drop, modify, or create a new resource plan. The original plan is saved in
DBA_RSRC_PLAN_DIRECTIVES with the STATUS column having a value of LEGACY.

Resource Plan Feature Non-CDB PDB

Multilevel plans Yes No

Consumer groups Maximum: 32 Maximum: 8

Subplans Yes No

CREATE_PLAN_DIRECTIVE parameter N/A SHARE

CREATE_PLAN_DIRECTIVE parameter MAX_UTILIZATION_LIMIT UTILIZATION_LIMIT

CREATE_PLAN_DIRECTIVE parameter PARALLEL_TARGET_
PERCENTAGE

PARALLEL_SERVER_LIMIT

TABLE 8-4. Differences Between Non-CDB and PDB Resource Plans

08-ch08.indd 288 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 289

Performing Database Replay
The Database Replay functionality from previous Oracle Database releases has also been enhanced
in Oracle Database 12c to include simultaneous workload replays as a planning tool for estimating
how multiple non-CDBs will perform in a CDB environment. You can take production workloads
from multiple servers in a non-CDB environment and play them back in various configurations on
a single new server to simulate how well they would coexist in a multitenant environment.

Analyze the Source Database Workloads
When you capture workloads for potential multitenant deployment, the workloads are typically in
different business units and locations; the peak load for each application is likely at different times
of the day, which makes these applications ideal candidates for consolidation. Figure 8-7 shows a
typical set of workloads from applications currently on different servers.

You can also analyze existing PDBs and capture workloads to see how they would perform as
a PDB of another CDB on a different server. The general steps you’ll follow as part of this analysis
phase are as follows:

1. Capture the workload of an existing non-CDB or PDB.

2. Optionally export the AWR snapshots for the database.

3. Restore the candidate database onto the target system.

4. Make changes to the imported candidate database as needed, such as upgrading to Oracle
Database 12c.

5. Copy the generated workload files to the target system.

6. Process the workload as a one-time prerequisite step.

7. Repeat steps 1–6 for all other candidate databases.

8. Configure the target system for replay (such as the workload replay client processes).

9. Replay the workloads for all PDBs within the single CDB on the target system.

FIGURE 8-7. Candidate workloads for multitenant consolidation

Consolidated Workload ReplayIndividual Workloads

AR
HR
Sales
DW

AR

HR

Sales

DW

08-ch08.indd 289 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

290 Oracle Database 12c DBA Handbook

Capture Source Database Workloads
On the source database server, you’ll capture the workload for a typical 8-hour or 24-hour period.
You’ll want all captured workloads to cover the same time period. To optimize the performance of
the replay test, you can optionally export AWR snapshots, SQL profiles, and SQL tuning sets.

Process Workloads on Target System
After you import the candidate database into a PDB of the new CDB, you import the workload
generated on the source server. You preprocess the workload files in preparation for the replay,
which needs to happen only once for each imported workload. It’s recommended that you replay
each imported workload individually to ensure that there are no extreme variations in performance
compared to that database’s performance on the original server.

Replay Workloads on Target CDB
After all PDBs have been created and preprocessed, remap any connections that might refer to
objects that don’t exist on the target system. Create a replay schedule that will replay each workload
at the same time and rate that it does on the source system. You can create multiple schedules to
see how workloads can be shifted to optimize the CDB’s overall performance.

Verify Replay Results
After the replay session is complete, review the reports generated by Consolidated Database
Replay to see, for example, if the response time and overall SLA of the databases on their original
servers can be met by this consolidation platform. If there are severe regressions, then you can
use the tuning methodologies discussed earlier in this chapter and run the replay again. Even after
tuning, you may find that the server needs more CPUs or memory. Ideally, you’ll find out that
each database runs just as fast as or faster than it did on the original server!

Last, but not least, having accurate and easy-to-manage diagnostic information for your CDB
and PDBs is more important than ever. The Automatic Diagnostic Repository (ADR) has the same
structure as in previous releases, and the CDB and the PDBs within the CDB have their own
subdirectories under the ADR Base directory.

Summary
This chapter does not cover every potential tuning solution. However, there is an underlying approach
to the techniques and tools presented throughout this chapter. Before spending your time and
resources on the implementation of a new feature, you should first stabilize your environment and
architecture—the server, the database, and the application. If the environment is stable, you should
be able to quickly accomplish two goals:

1. Successfully re-create the performance problem.

2. Successfully isolate the cause of the problem.

To achieve these goals, you may need to have a test environment available for your performance
tests. Once the problem has been successfully isolated, you can apply the steps outlined in this

08-ch08.indd 290 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 8: Database Tuning 291

chapter to the problem. In general, your tuning approach should mirror the order of the sections
of this chapter:

1. Evaluate application design.

2. Tune SQL.

3. Tune memory usage.

4. Tune data access.

5. Tune data manipulation.

6. Tune network traffic.

7. Tune physical and logical storage.

8. Use the AWR to tune queries.

9. Manage PDB resources.

10. Leverage Database Replay for resource planning.

Depending on the nature of your application, you may choose a different order for the steps,
or you may combine steps.

If the application design cannot be altered and the SQL cannot be altered, you can tune the
memory and disk areas used by the application. As you alter the memory and disk area settings,
you must be sure to revisit the application design and SQL implementation to be sure that your
changes do not adversely impact the application. The need to revisit the application design process
is particularly important if you choose to use a data replication method, because the timeliness of
the replicated data may cause problems within the business process served by the application.

Finally, you’ll need to expand your tuning expertise to include tuning pluggable databases in
a multitenant environment. This tuning expertise is easy to come by: The container database can
be tuned as a traditional single-instance database and individual statements within a pluggable
database can be tuned with the tools you’re already familiar with such as the SQL Tuning Advisor.
Resource management in a multitenant environment adds the concept of a share to allocate
resources among several pluggable tenants in a container database. Within each pluggable database
you’ll once again be able to use the Resource Manager tools you’re familiar with from previous
versions of Oracle Database.

08-ch08.indd 291 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 292

08-ch08.indd 292 13/05/15 9:59 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 293

CHAPTER
9

In-Memory Option

09-ch09.indd 293 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

294 Oracle Database 12c DBA Handbook

In Chapter 8, we talked about tuning methodologies and other ways to maximize throughput
and minimize response time. One of the most useful and powerful new features of Oracle
Database 12c, the In-Memory option (available starting with version 12.1.0.2), adds another

tool you can use to make your queries run faster than ever before.

This chapter gives a high-level overview of the Oracle In-Memory option, what system
requirements you need to use it effectively, and what it can and cannot do. I’ll give a few real-
world examples of how In-Memory works and review the dynamic performance views you need
to use to identify how well In-Memory is working in your environment.

Overview of Oracle In-Memory Option
The considerations for using the In-Memory option are primarily licensing costs and how much
memory you can allocate to the In-Memory column store. As of version 12.1.0.2, the licensing
costs for In-Memory are comparable to that of RAC licensing; memory prices go down every year,
but because the bottleneck moves from I/O to the memory, your server’s memory bus and
memory speed become critical to the performance of In-Memory as a whole.

The In-Memory (IM) column store is allocated as part of the SGA; therefore, your total SGA
size (SGA_MAX_SIZE) includes the memory you want to allocate to the IM column store. As the
name implies, the IM column store contains one or more columns from a table stored in the SGA
alongside the table’s row store in the buffer cache and on disk. Any changes to values in the IM
column are kept in synch with the row store in the buffer cache and, of course, in the table’s
datafile.

You don’t necessarily have to enable the IM column store for each table—you can enable it
for a single column, or you can enable it for an entire tablespace by default. For a partitioned
table, one partition can default to residing in the IM column store while the rest of the partitions
are stored only in the row store.

Using the IM column store gives the most benefit in these scenarios:

 ■ Query aggregates

 ■ Scanning a very large number of rows using operators such as =, <, >, and IN

 ■ Frequently retrieving a very small number of columns from a table with a large number
of columns

 ■ Joins between a small table and a large table (e.g., a data warehouse dimension table and
fact table)

If you have the memory available, you can store most columns of your biggest tables in the IM
column store continuously; once the column resides in the IM column store, it is maintained
alongside the row store on disk and is removed from the IM column store only if pushed out by
another, more frequently accessed column of another table or if the database instance is restarted.
Using ALTER TABLE to disable the IM column store for that column immediately invalidates and
flushes the contents of that column from the SGA.

System Requirements and Setup
The requirements to use the IM column store are not much more than what you likely already
have—you probably need a bit more memory and maybe another CPU, but your I/O requirements
will be somewhat less demanding since you will almost certainly be doing less I/O. You may not

09-ch09.indd 294 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 9: In-Memory Option 295

even need more CPU threads, because the processing required to manage the IM column store in
memory is offset by reduced I/O, and therefore your elapsed time, especially in a batch or data
warehouse environment, is going to be significantly reduced.

The most important hardware component for implementing the IM column store is the
additional memory required to hold the tables or table columns in memory. The memory bandwidth,
not just the amount of memory, becomes much more critical because the bottleneck in throughput
has moved from the I/O subsystem to memory; you’re using the existing buffer cache to hold table
rows (the row cache) while maintaining some or all columns in the dedicated IM column store.

Do you need to have enough memory to hold all of your tables and all columns in memory?
Not at all. Most likely only a small subset of columns in your biggest tables are accessed most
often. In addition, any given table column will be stored in memory at one of four compression
levels; which level of compression you choose depends on the type and distribution of the data
in the column as well as the CPU resources available. A primary key column will not compress
much at all regardless of the compression type, but a column such as SERVICE_DATE or
LOCATION_ID will compress nicely.

You won’t need an Exadata engineered system to effectively use the IM column store. A
monolithic traditional server with lots of fast memory will actually give you some of the advantages
of an Exadata system at a somewhat lower total cost of ownership (TCO).

If you already have an Exadata engineered system, you can certainly take advantage of the IM
column store. While the Exadata storage subsystem leverages many of the algorithms used by the
IM column store, having several tables’ columns in memory across nodes in an Exadata RAC
environment still reduces the amount of I/O required by the storage subsystem. The best performing
I/O is still the I/O that you don’t have to do!

In-Memory Case Study
Using the IM column store is easy, as long as you understand its limitations and requirements.
Setting up the initialization parameters is easy, but you must also be cognizant of which initialization
parameters cannot be changed while the instance is running and the dependencies on those
parameters. In this section I’ll present the main initialization parameters you need to set and show
you how to mark entire tablespaces, tables, or columns to leverage the IM column store.

Initialization Parameters
The key parameters for using the IM column store are INMEMORY_SIZE, SGA_TARGET, and
SGA_MAX_SIZE. On a server with 384GB of RAM, you start by defining the total size of the SGA,
including the IM column store, leaving room for the OS and the PGA. You don’t want to set the
IM column store area too big since you still need space in the SGA for the shared pool and the
standard buffer cache; you can still use SGA_TARGET in this scenario, but keep in mind that the
target size must include the total size of the IM column store:

alter system set sga_max_size=240g scope=spfile;
alter system set inmemory_size=128g scope=spfile;
alter system set sga_target=200g scope=spfile;

Restart the instance after setting these parameters. If the value for SGA_TARGET is too low or,
worse yet, less than the value of INMEMORY_SIZE, your instance will not start and you’ll need to
create a temporary text-based initialization file (PFILE) to get the instance started again!

Since the parameters SGA_MAX_SIZE and INMEMORY_SIZE are static, you might need to
control use of the IM column store in other ways until you can restart the instance. For example,

09-ch09.indd 295 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

296 Oracle Database 12c DBA Handbook

you can set INMEMORY_QUERY to DISABLE either at the system level to turn off all use of the
IM column store or at the session level to easily test query performance with and without the IM
column store, even if the table columns in the query might currently be in the IM column store for
other sessions.

Marking Tablespaces, Tables, and Columns
Your other point of control for using the IM column store is, of course, marking tables and columns
to use the IM column store. You can perform this operation while the instance is up and running.
Keep in mind, though, that turning off and then turning on the IM column store attribute for a
column will require a repopulation operation, which can temporarily affect performance of the
instance due to higher CPU usage during the repopulation process.

If you want all of your IM-enabled tables to reside in a single tablespace, you can mark the
entire tablespace that way and automatically enable the IM column store for any table created in
or moved to that tablespace by using the ALTER TABLESPACE command:

alter tablespace users default inmemory;

The defaults that go along with the INMEMORY setting may be fine for you—but you also
have the option to fine-tune how much compression should be used, whether the compression
should favor SELECT statements or DML statements, and what priority this tablespace’s objects
will have in the IM column store when there is not enough room to hold all the selected columns
simultaneously:

alter tablespace users default inmemory
 memcompress for query low priority high;

You can always override the settings at the table level or column level even if the table resides
in a tablespace whose default setting is INMEMORY. Marking the ORDER_PROC table for residency
in the IM column store is as easy as this:

alter table order_proc
 inmemory memcompress for query high;

Specifying QUERY HIGH means that all columns of ORDER_PROC are stored with relatively
high compression but still suitable for frequent SELECT query activity. However, knowing that the
ORDER_PROC table has 215 columns and that you will likely not need to use all of those columns
in most reports, you want to be more selective. If most of your big reports only need the ORDER_
PROC_ID, PROC_CODE, and PANEL_PROC_ID columns, you can instead mark just those columns:

alter table clarity.order_proc
 inmemory memcompress for query high
 (
 order_proc_id,proc_code,panel_proc_id
);

If you need the flexibility, you can even mark some columns with a different compression level
if desired.

Query Performance Before and After
As I mentioned earlier in this chapter, you may not have the memory to keep all desired columns
in the IM column store. You also might need to keep memory contention in check by keeping

09-ch09.indd 296 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 9: In-Memory Option 297

some of the smaller tables’ columns out of the IM column store and instead relying on the SGA
buffer cache with traditional I/O. While some queries are using the IM column store, the others
may not need as much CPU at any given moment because they are bound by I/O waits (even
though the disk is fast—but usually not as fast as server memory). In this example, a daily report
batch consisting of about 4000 reports consumes I/O at a rate of about 3 GBps, maxing out the
throughput of the I/O subsystem. Figure 9-1 shows the I/O throughput and type for this report batch.

After some analysis, you determine that a small number of tables, though large, account for
most of the long-running queries. In addition, only about 20 columns across those big tables
account for all columns referenced in the reports. Therefore, you mark those tables for
INMEMORY and QUERY HIGH as in the example in the previous section. After taking a few
minutes to construct the ALTER TABLE statements, you rerun the report batch to see the results of
your new IM column store configuration. In Figure 9-2 you see that even your minimal level of
analysis has yielded significant results:

Not only is the elapsed time reduced from about 20 minutes to 12 minutes, the overall I/O
consumption has been cut by about two-thirds. The queries in the latter portion of the report
batch are referencing many of the same columns as queries in the beginning of the report batch
(although probably with different predicates and aggregation). With some additional analysis you
might be able to reduce the elapsed time even more, but in this case the I/O subsystem now has
additional bandwidth for other database instances by offloading the I/O to the IM column store.

FIGURE 9-1. Report batch with IM column store inactive

FIGURE 9-2. Report batch with IM column store active

09-ch09.indd 297 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

298 Oracle Database 12c DBA Handbook

Execution Plans
As you might expect, the Oracle optimizer is aware of the execution costs of using column data
from the IM column store versus retrieving the column from the buffer cache via traditional I/O
against the row store on disk. In the execution plan in Figure 9-3, every column referenced in the
query was marked for storage in the IM column store.

FIGURE 9-3. Execution plan for a query with IM column store columns

09-ch09.indd 298 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 9: In-Memory Option 299

Most of the steps referencing tables confirm that the IM column store is being used:

TABLE ACCESS INMEMORY FULL

However, it appears that the table PAT_ENC is being accessed in the buffer cache using
traditional I/O. The optimizer cost for using a full table scan came out lower than using the copy
in the IM column store. This could be the case for several reasons. For example, the columns in
PAT_ENC could be marked for the IM column store as CAPACITY HIGH, meaning that the CPU
cost for decompressing and scanning those columns in the IM column store was higher than
retrieving the uncompressed columns that were already in the buffer cache.

You’ll also see cases where every column of every table in a query is in the IM column store
as QUERY LOW but the optimizer still chooses to use one of the table’s indexes on disk. This
costing decision makes sense if the number of rows retrieved is low—retrieving a couple of blocks
of an index from disk will often take less time or resources than scanning an entire table’s column
values in memory.

Data Dictionary Views
There are only a few dynamic performance views you’ll use to see the status of your IM column
store: V$IM_SEGMENTS, V$INMEMORY_AREA, and, an old favorite, V$SGA.

V$IM_SEGMENTS
The V$IM_SEGMENTS view is clearly the most granular and important view you’ll use to monitor
the status of your IM column store.

SQL> select segment_name, inmemory_compression,
 2> inmemory_size,bytes
 3> from v$im_segments;

SEGMENT_NAME INMEMORY_COMPRESS INMEMORY_SIZE BYTES
---------------------- ----------------- ---------------- ----------------
PATIENT FOR QUERY HIGH 137,822,208 588,251,136
RES_DB_MAIN FOR QUERY HIGH 963,248,128 1,342,177,280
IB_RECEIVER FOR QUERY LOW 371,785,728 1,549,795,328
CLARITY_DEP FOR QUERY HIGH 1,179,648 589,824
IB_MESSAGES FOR QUERY LOW 440,991,744 2,469,396,480
HSP_WQ_HISTORY FOR QUERY HIGH 1,953,628,160 5,161,091,072
HSP_WORKQUEUES FOR QUERY HIGH 1,179,648 720,896
CLARITY_EMP FOR QUERY HIGH 3,276,800 16,777,216
. . .
LPF_PREF_LISTS FOR QUERY LOW 32,702,464 45,088,768
ORD_PRFLST_TRK FOR QUERY LOW 1,361,969,152 2,697,986,048
PAT_ENC_HSP FOR QUERY LOW 495,190,016 5,786,042,368

33 rows selected.

SQL>

09-ch09.indd 299 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

300 Oracle Database 12c DBA Handbook

Note that even for columns marked as FOR QUERY LOW, the compression ratios are quite high;
in the case of PAT_ENC_HSP, the compression ratio is approximately 12:1. The column’s compression
(primarily due to repeating column values) reduces both the memory footprint for storing that column
and the time it takes to scan all column values. This somewhat offsets the CPU cost of “uncompressing”
the column values when using them in a query.

Other columns in V$IM_SEGMENTS show the status of the IM column store population process
(POPULATE_STATUS), the type of segment in the IM column store (SEGMENT_TYPE: TABLE, TABLE
PARTITION, or TABLE SUBPARTITION), and the column’s priority for the population process and
its retention in the IM column store (INMEMORY_PRIORITY).

V$INMEMORY_AREA
The view V$INMEMORY_AREA shows a high-level status of each pool in the IM column store. The
two pools have a distinctly different purpose: the 1MB pool stores the actual column values in
memory while the 64KB pool contains the metadata about the column values stored in the 1MB pool:

SQL> select pool,alloc_bytes,used_bytes,populate_status
 2> from v$inmemory_area;

POOL ALLOC_BYTES USED_BYTES POPULATE_STATUS
--------------- ---------------- ---------------- --------------------
1MB POOL 109,511,180,288 16,715,350,016 DONE
64KB POOL 27,900,510,208 206,372,864 DONE

SQL>

As you might expect, the 64KB pool is going to be much smaller and take up less memory
than the 1MB pool as long as you’re storing columns from tables with millions of rows instead of
only hundreds of rows.

V$SGA
The view V$SGA has the same rows as in previous releases of Oracle Database along with the
new row for the In-Memory Area:

SQL> select name,value from v$sga;

NAME VALUE
-------------------- ----------------
Fixed Size 6,875,568
Variable Size 32,212,256,336
Database Buffers 87,509,958,656
Redo Buffers 529,993,728
In-Memory Area 137,438,953,472

SQL>

09-ch09.indd 300 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 9: In-Memory Option 301

Summary
The In-Memory option, new in Oracle Database 12c (12.1.0.2), is one of the most useful and
powerful features second only to the multitenant architecture. You can speed up your queries by a
magnitude or more by keeping some or all columns of a table in a special compressed format in
a new area of the SGA known as the In-Memory column store. This column store works side by
side with the traditional row store that maintains tables in row format on disk and whose data
blocks reside in the SGA buffer cache or a session’s private PGA area. All of your applications work
as before and the IM column store stays in synch with any DML operations on the underlying table
in the row store on disk.

The increased speed of queries using the IM column store and the significant reduction of I/O
come at a price, however. You’ll need more memory allocated in the SGA and potentially more
CPU resources to perform the compress and decompress operations on the column store. However,
the higher CPU and memory demands are typically offset by the reduction of I/O and the
accompanying wait events, meaning not only that your elapsed time for any given query is much
shorter, but also that you’ll more easily meet your customer’s SLA. Or, in another scenario,
your shorter execution times mean that you’ll be able to run more queries in the same amount
of time.

09-ch09.indd 301 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 302

09-ch09.indd 302 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 303

CHAPTER
10

Database Security
and Auditing

10-ch10.indd 303 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

304 Oracle Database 12c DBA Handbook

To protect one of the most vital assets to a company—its data—you as a DBA must be
keenly aware of how Oracle can protect corporate data and the different tools you have at
your disposal. The Oracle-provided tools and mechanisms fall into three broad categories:

authentication, authorization, and auditing.

Authentication includes methods used to identify who is accessing the database, ensuring that
you are who you say you are, regardless of what resources you are requesting of the database.
Even if you are merely trying to access the daily lunch menu at the cafeteria, it is important that
you identify yourself correctly to the database. If, for example, the web-based database
application presents customized content based on the user account, you want to make sure you
get the lunch menu for your branch office in Houston, Texas, and not the one for the home office
in Buffalo, New York!

Authorization provides access to various objects in the database once you are authenticated
by the database. Some users may be authorized to run a report against the daily sales table, some
users may be developers and therefore need to create tables and reports, whereas others may only
be allowed to see the daily lunch menu. Some users may never log in at all, but their schema may
own a number of tables for a particular application, such as payroll or accounts receivable.
Additional authorization methods are provided for database administrators, due to the extreme
power that a database administrator has. Because a DBA can shut down and start up a database,
an additional level of authorization is provided.

Authorization goes well beyond simple access to a table or a report; it also includes the rights
to use system resources in the database as well as privileges to perform certain actions in the
database. A given database user might be allowed to use only 15 seconds of CPU time per
session, for example, or to be idle only for five minutes before being disconnected from the
database. Another database user might be granted the privilege to create or drop tables in any
other user’s schema, but not be able to create synonyms or view data dictionary tables. Fine-
grained access control gives the DBA more control over how database objects are accessed. For
example, standard object privileges will either give a user access to an entire row of a table or
give the user no access at all; using fine-grained access control, a DBA can create a policy
implemented by a stored procedure that restricts access based on time of day, where the request
originates, which column of the table is being accessed, or all three.

At the end of the section on database authorization, I will present a short example of a Virtual
Private Database (VPD) to provide methods for defining, setting, and accessing application
attributes along with the predicates (usually WHERE clauses) to control which data is accessible
or returned to the user of the application.

Auditing in an Oracle database encompasses a number of different levels of monitoring in the
database. At a high level, auditing can record both successful and unsuccessful attempts to log in,
access an object, or perform an action. Fine-grained auditing (FGA) can record not only what
objects are accessed, but what columns of a table are accessed when an insert, update, or delete
is being performed on the data in the column. Fine-grained auditing is to auditing what fine-
grained access control is to standard authorization: more precise control and information about
the objects being accessed or actions being performed.

DBAs must use auditing judiciously so as not to be overwhelmed by audit records or create
too much overhead by implementing continuous auditing. On the flip side, auditing can help to
protect company assets by monitoring who is using what resource, at what time, and how often,
as well as whether the access was successful or not. Therefore, auditing is another tool that the
DBA should be using on a continuous basis to monitor the security health of the database.

10-ch10.indd 304 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 305

Non-database Security
All the methodologies presented later in the chapter are useless if access to the operating system
is not secure or the physical hardware is not in a secure location. In this section, I’ll discuss a few
of the elements outside of the database itself that need to be secure before the database can be
considered secure.

The following are a few things that need to be considered outside of the database:

 ■ Operating system security Unless the Oracle database is running on its own dedicated
hardware with only the root and oracle user accounts enabled, operating system security
must be reviewed and implemented. Ensure that the software is installed with the oracle
account and not the root account. You may also consider using another account instead
of oracle as the owner of the software and the database files, to eliminate an easy target
for a hacker. Ensure that the software and the database files are readable only by the
oracle account and the group that oracle belongs to. Other than the Oracle executables
that require it, turn off the SUID (set UID, or running with root privileges) bit on files that
don’t require it. Don’t send passwords (operating system or Oracle) to users via e-mail
in plain text. Finally, remove any system services that are not required on the server to
support the database, such as telnet and ftp.

 ■ Securing backup media Ensure that the database backup media—whether tape, disk, or
CD/DVD-ROM—is accessible by a limited number of people. A secure operating system
and robust, encrypted passwords on the database are of little value if a hacker can obtain
backup copies of the database and load them onto another server. The same applies to
any server that contains data replicated from your database.

 ■ Background security checks Screening of employees that deal with sensitive database
data—whether it be a DBA, auditor, or operating system administrator—is a must.

 ■ Security education Ensure that all database users understand the security and usage
policies of the IT infrastructure. Requiring that users understand and follow the security
policies emphasizes the critical nature and value of the data to the company, including
the information in the database. A well-educated user will be more likely to resist
attempts at system access from a hacker’s social-engineering skills.

 ■ Controlled access to hardware All computer hardware that houses the database should be
located in a secure environment that is accessible only with badges or security access codes.

Database Authentication Methods
Before the database can allow a person or application access to objects or privileges in the database,
the person or application must be authenticated; in other words, the identity of who is attempting
access to the database needs to be validated.

In this section, I’ll give an overview of the most basic method used to allow access to the
database—the user account, otherwise known as database authentication. In addition, I’ll show
how to reduce the number of passwords a user needs to remember by allowing the operating
system to authenticate the user and, as a result, automatically connect the user to the database.
Using 3-tier authentication via an application server, network authentication, or Oracle’s Identity
Management can reduce the number of passwords even further. Finally, I’ll talk about using a

10-ch10.indd 305 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

306 Oracle Database 12c DBA Handbook

password file to authenticate DBAs when the database is down and cannot provide authentication
services.

Database Authentication
In an environment where the network is protected from the outside environment with firewalls and
the network traffic between the client and the database server uses some method of encryption,
authentication by the database is the most common and easiest method to authenticate the user
with the database. All information needed to authenticate the user is stored in a table within the
SYSTEM tablespace.

Very special database operations, such as starting up or shutting down the database, require a
different and more secure form of authentication, either by using operating system authentication
or by using password files.

Network authentication relies on third-party authentication services such as the Distributed
Computing Environment (DCE), Kerberos, Public Key Infrastructure (PKI), and Remote
Authentication Dial-In User Service (RADIUS). Although at first glance 3-tier authentication
appears to be a network authentication method, it is different in that a middle tier, such as Oracle
Application Server, authenticates the user while maintaining the client’s identity on the server. In
addition, the middle tier provides connection pooling services and implements business logic for
the client.

Later in this chapter, in the section titled “User Accounts,” we’ll go through all the options
available to the DBA for setting up accounts in the database for authentication.

Database Administrator Authentication
The database is not always available to authenticate a DBA, such as when it is down because of
an unplanned outage or for an offline database backup. To address this situation, Oracle uses a
password file to maintain a list of database users who are allowed to perform functions such as
starting up and shutting down the database, initiating backups, and so forth.

Alternatively, a DBA can use operating system authentication, which we discuss in the next
section. The flowchart shown in Figure 10-1 identifies the options for a DBA when deciding what
method will work the best in their environment.

For connecting locally to the server, the main consideration is the convenience of using the
same account for both the operating system and the Oracle server versus maintaining a password
file. For a remote administrator, the security of the connection is the driving factor when choosing
an authentication method. Without a secure connection, a hacker could easily impersonate a user
with the same account as that of an administrator on the server itself and gain full access to the
database with OS authentication.

NOTE
When using a password file for authentication, ensure that the
password file itself is in a directory location that is only accessible by
the operating system administrators and the user or group that owns
the Oracle software installation.

We will discuss system privileges in greater detail later in this chapter. For now, though, you
need to know that three particular system privileges give administrators special authentication in
the database:

10-ch10.indd 306 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 307

 ■ SYSOPER An administrator with the SYSOPER privilege can start up and shut down
the database, perform online or offline backups, archive the current redo log files, and
connect to the database when it is in RESTRICTED SESSION mode.

 ■ SYSDBA The SYSDBA privilege contains all the rights of SYSOPER, with the addition
of being able to create a database and grant the SYSDBA or SYSOPER privilege to other
database users.

 ■ SYSASM As of Oracle Database 11g, the SYSASM privilege is specific to an ASM
instance to manage database storage.

Oracle Database 12c has three additional privileges to further enhance Oracle’s support for
separation of duties: SYSBACKUP, SYSDG, and SYSKM.

To connect to the database from a SQL*Plus session, you append AS SYSDBA or AS SYSOPER
to your CONNECT command. Here’s an example:

[oracle@kthanid ~]$ sqlplus /nolog
SQL*Plus: Release 12.1.0.2.0 Production on Tue Oct 28 10:18:22 2014

Copyright (c) 1982, 2014, Oracle. All rights reserved.

SQL> connect rjb/rjb as sysdba;
Connected.
SQL> show user
USER is "SYS"
SQL>

Other than the additional privileges available to the users who connect as SYSDBA or
SYSOPER, the default schema is also different for these users when they connect to the database.
Users who connect with the SYSDBA or SYSASM privilege connect as the SYS user; the SYSOPER

FIGURE 10-1. Authentication method flowchart

10-ch10.indd 307 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

308 Oracle Database 12c DBA Handbook

privilege sets the user to PUBLIC. Each of the privileges SYSKM, SYSBACKUP, and SYSDG
connects to a database user with the same name.

As with any database connection request, you have the option to specify the username and
password on the same line as the sqlplus command, along with the SYSDBA or SYSOPER
keyword:

[oracle@dw ~]$ sqlplus rjb/rjb as sysdba

Although a default installation of Oracle Database using the Oracle Universal Installer with a
seed database or using the Database Creation Assistant will automatically create a password file,
there are occasions when you may need to re-create one if it is accidentally deleted or damaged.
The orapwd command will create a password file with a single entry for the SYS user and other
options, as noted, when you run the orapwd command without any options:

[oracle@dw ~]$ orapwd
Usage: orapwd file=<fname> password=<password>
 entries=<users> force=<y/n> ignorecase=<y/n> nosysdba=<y/n>

 where
 file - name of password file (required),
 password - password for SYS (optional),
 entries - maximum number of distinct DBA (required),
 force - whether to overwrite existing file (optional),
 ignorecase - passwords are case-insensitive (optional),
 nosysdba - whether to shut out the SYSDBA logon
 (optional Database Vault only).

 There must be no spaces around the equal-to (=) character.
[oracle@dw ~]$

Once you re-create the password file, you will have to grant the SYSDBA and SYSOPER
privileges to those database users who previously had those privileges. In addition, if the
password you provided in the orapwd command is not the same password that the SYS account
has in the database, this is not a problem: when you connect using CONNECT / AS SYSDBA,
you’re using operating system authentication. And just to reiterate, if the database is down or in
MOUNT mode, you must use operating system authentication or the password file. Also worth
noting is that operating system authentication takes precedence over password file authentication,
so as long as you fulfill the requirements for operating system authentication, the password file
will not be used for authentication if it exists.

CAUTION
As of Oracle Database 11g, database passwords are case sensitive.
To disable case sensitivity, set the SEC_CASE_SENSITIVE_LOGON
initialization parameter to FALSE.

The system initialization parameter REMOTE_LOGIN_PASSWORDFILE controls how the
password file is used for the database instance. It has three possible values: NONE, SHARED, and
EXCLUSIVE.

10-ch10.indd 308 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 309

If the value is NONE, then Oracle ignores any password file that exists. Any privileged users
must be authenticated by other means, such as by operating system authentication, which is
discussed in the next section.

With a value of SHARED, multiple databases can share the same password file, but only the
SYS user is authenticated with the password file, and the password for SYS cannot be changed. As
a result, this method is not the most secure, but it does allow a DBA to maintain more than one
database with a single SYS account.

TIP
If a shared password file must be used, ensure that the password
for SYS is at least 12 characters long and includes a combination of
upper- and lowercase alphabetic, numeric, and special characters to
fend off a brute-force attack.

A value of EXCLUSIVE binds the password file to only one database, and other database user
accounts can exist in the password file. As soon as the password file is created, use this value to
maximize the security of SYSDBA or SYSOPER connections.

The dynamic performance view V$PWFILE_USERS lists all the database users who have one
of the six available privileges, as shown here:

SQL> select * from v$pwfile_users;

USERNAME SYSDB SYSOP SYSAS SYSBA SYSDG SYSKM CON_ID
------------------------------ ----- ----- ----- ----- ----- ----- ----------
SYS TRUE TRUE FALSE FALSE FALSE FALSE 0
SYSDG FALSE FALSE FALSE FALSE TRUE FALSE 0
SYSBACKUP FALSE FALSE FALSE TRUE FALSE FALSE 0
SYSKM FALSE FALSE FALSE FALSE FALSE TRUE 0
RJB TRUE FALSE FALSE FALSE FALSE FALSE 0

5 rows selected.

SQL>

Operating System Authentication
If a DBA chooses to implement operating system authentication, a database user is automatically
connected to the database when they use the following SQL*Plus syntax:

SQL> sqlplus /

This method is similar to how an administrator connects to the database, without the AS SYSDBA
or AS SYSOPER clause. The main difference is that the operating system account authorization
methods are used instead of an Oracle-generated and -maintained password file.

In fact, administrators can also use operating system authentication to connect using AS
SYSDBA or AS SYSOPER. If the administrator’s operating system login account is in the Unix
group dba (or the Windows group ORA_DBA), the administrator can connect to the database
using AS SYSDBA. Similarly, if the operating system login account is in the Unix group oper

10-ch10.indd 309 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

310 Oracle Database 12c DBA Handbook

(or the Windows group ORA_OPER), the administrator can connect to the database using AS SYSOPER
without the need for an Oracle password file.

The Oracle server makes the assumption that if the user is authenticated by an operating
system account, then the user is also authenticated for the database. With operating system
authentication, Oracle does not need to maintain passwords in the database, but it still maintains
the usernames. The usernames are still needed to set the default schema and tablespaces in
addition to providing information for auditing.

In a default Oracle 12c installation, as well as in previous releases of Oracle, operating
system authentication is enabled for user accounts if you create database users with the identified
externally clause. The prefix for the database username must match the value of the initialization
parameter OS_AUTHENT_PREFIX; the default value is OPS$. Here’s an example:

SQL> create user ops$corie identified externally;

When the user logs into the operating system with the account CORIE, she is automatically
authenticated in the Oracle database as if the account OPS$CORIE was created with database
authentication.

Setting the value of OS_AUTHENT_PREFIX to a null string allows the database administrator
and the operating system account administrator to use identical usernames when using external
authentication.

Using IDENTIFIED GLOBALLY is similar to using IDENTIFIED EXTERNALLY in that the
authentication is done outside of the database. However, with a globally identified user,
authentication is performed by an enterprise directory service such as Oracle Internet Directory
(OID). OID facilitates ease of account maintenance for DBAs and the convenience of single
sign-on for database users who need to access more than just a single database or service.

Network Authentication
Authentication by a network service is another option available to the DBA to authenticate users
in the database. Although a complete treatment is beyond the scope of this book, I will give a
brief summary of each method and its components. These components include Secure Sockets
Layer (SSL), Distributed Computing Environment (DCE), Kerberos, PKI, RADIUS, and directory-
based services.

Secure Sockets Layer Protocol
Secure Sockets Layer (SSL) is a protocol originally developed by Netscape Development Corporation
for use in web browsers. Because it is a public standard and open source, it faces continuous
scrutiny by the programming community to ensure that there are no holes or “back doors” that
can compromise its robustness.

At a minimum, a server-side certificate is required for authentication. Client authentication is
also doable with SSL to validate the client, but setting up certificates may become a large
administrative effort.

Using SSL over TCP/IP requires only slight changes to the listener configuration by adding
another protocol (TCPS) at a different port number in the listener.ora file. In the following excerpt,
configured with Oracle Net Configuration Assistant (netca), the listener named LISTENER on the
server dw10g will accept traffic via TCP on port 1521 and SSL TCP traffic on port 2484:

listener.ora Network Configuration File:
 /u01/app/oracle/product/12.1.0/network/admin/listener.ora

10-ch10.indd 310 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 311

Generated by Oracle configuration tools.
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (GLOBAL_DBNAME = dw.world)
 (ORACLE_HOME = /u01/app/oracle/product/12.1.0)
 (SID_NAME = dw)
)
)

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dw12c)(PORT = 1521))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCPS)(HOST = dw12c)(PORT = 2484))
)
)
)

Distributed Computing Environment
The Distributed Computing Environment (DCE) provides a number of services, such as remote
procedure calls, distributed file services, and distributed time service, in addition to a security
service. DCE supports distributed applications in a heterogeneous environment on all major
software and hardware platforms.

DCE is one of the protocols that support single sign-on (SSO); once a user authenticates with
DCE, they can securely access any Oracle database configured with DCE without specifying a
username or password.

Kerberos
Kerberos is another trusted third-party authentication system that, like DCE, provides SSO
capabilities. Oracle fully supports Kerberos version 5 with Oracle Advanced Security under the
Enterprise Edition of Oracle Database 12c.

As with other middleware authentication solutions, the basic premise is that passwords should
never be sent across the network; all authentication is brokered by the Kerberos server. In Kerberos
terminology, a password is a “shared secret.”

Public Key Infrastructure
Public Key Infrastructure (PKI) comprises a number of components. It is implemented using the SSL
protocol and is based on the concept of secret private keys and related public keys to facilitate
secure communications between the client and server.

10-ch10.indd 311 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

312 Oracle Database 12c DBA Handbook

To provide identification and authentication services, PKI uses certificates and certificate
authorities (CAs). In a nutshell, a certificate is an entity’s public key validated by a trusted third
party (a certificate authority), and it contains information such as the certificate user’s name, an
expiration date, the public key, and so forth.

RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a lightweight protocol used for
authentication as well as authorization and accounting services. In an Oracle environment, the
Oracle server acts as the client to a RADIUS server when an authorization request is sent from an
Oracle client.

Any authentication method that supports the RADIUS standard—whether it be token cards,
smart cards, or SecurID ACE—can easily be added to the RADIUS server as a new authentication
method without any changes being made on the client or server configuration files, such as
sqlnet.ora.

3-Tier Authentication
In a 3-tier or multitier environment, an application server can provide authentication services for
a client and provide a common interface to the database server, even if the clients use a variety of
different browsers or “thick” client applications. The application server, in turn, is authenticated
with the database and demonstrates that the client is allowed to connect to the database, thus
preserving the identity of the client in all tiers.

In multitier environments, both users and middle tiers are given the fewest possible privileges
necessary to do their jobs. The middle tier is granted permission to perform actions on behalf of a
user with a command such as the following:

alter user kmourgos
 grant connect through oes_as
 with role all except ordmgmt;

In this example, the application server service OES_AS is granted permission to perform
actions on behalf of the database user KMOURGOS. The user KMOURGOS has been assigned a
number of roles, and they can all be enabled through the application server, except for the
ORDMGMT role. As a result, when KMOURGOS connects through the application server, he is
permitted to access, via the Web, all tables and privileges granted to him via roles, except for the
order management functions. Because of the business rules in place at his company, all access to
the order management applications must be done via a direct connection to the database. Roles
are discussed in detail in the section titled “Creating, Assigning, and Maintaining Roles” later in
this chapter.

Client-Side Authentication
Client-side authentication is one way to authenticate users in a multitier environment, but Oracle
strongly discourages this method unless all clients are on a secure network, inside a firewall, with
no connections allowed to the database from outside the firewall. In addition, users should not
have any administrative rights on any workstation that can connect to the database.

If an Oracle user is created with the IDENTIFIED EXTERNALLY attribute, and the initialization
parameter REMOTE_OS_AUTHENT is set to TRUE, then an attacker can easily authenticate

10-ch10.indd 312 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 313

himself on the workstation with a local user account that matches the oracle user account, and as
a result gain access to the database.

As a result, it is strongly recommended that the REMOTE_OS_AUTHENT parameter be set to
FALSE. The database will have to be stopped and restarted for this change to take effect.

NOTE
As of Oracle Database 11g, the parameter REMOTE_OS_AUTHENT is
deprecated. There are several other, more secure ways to allow remote
access to the database.

User Accounts
In order to gain access to the database, a user must provide a username to access the resources
associated with that account. Each username must have a password and is associated with one
and only one schema in the database; some accounts may have no objects in the schema, but
instead would have the privileges granted to that account to access objects in other schemas.

In this section, I’ll explain the syntax and give examples for creating, altering, and dropping
users. In addition, I’ll show you how to become another user without explicitly knowing the
password for the user.

Creating Users
The CREATE USER command is fairly straightforward. It has a number of parameters, the most
important of which are listed in Table 10-1 along with a brief description of each one.

In the following example, we are creating a user (KLYNNE) to correspond with the user Jeff K.
Lynne, employee number 100 in the HR.EMPLOYEES table from the sample schemas installed
with the database:

SQL> create user klynne identified by KLYNNE901
 2 account unlock
 3 default tablespace users
 4 temporary tablespace temp;
User created.

The user KLYNNE is authenticated by the database with an initial password of KLYNNE901. The
second line is not required; all accounts are created unlocked by default. Both the default permanent
tablespace and default temporary tablespace are defined at the database level, so the last two
lines of the command aren’t required unless you want a different default permanent tablespace or
a different temporary tablespace for the user.

Even though the user KLYNNE has been either explicitly or implicitly assigned a default
permanent tablespace, he cannot create any objects in the database until we provide both a quota
and the rights to create objects in their own schema.

A quota is simply a space limit, by tablespace, for a given user. Unless a quota is explicitly
assigned or the user is granted the UNLIMITED TABLESPACE privilege (privileges are discussed
later in this chapter), the user cannot create objects in their own schema. In the following
example, we’re giving the KLYNNE account a quota of 250MB in the USERS tablespace:

SQL> alter user KLYNNE quota 250M on users;
User altered.

10-ch10.indd 313 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

314 Oracle Database 12c DBA Handbook

Note that we could have granted this quota at the time the account was created, along
with almost every other option in the CREATE USER command. A default role, however, can
only be assigned after the account is created. (Role management is discussed later in this
chapter.)

Unless we grant some basic privileges to a new account, the account cannot even log in;
therefore, we need to grant at least the CREATE SESSION privilege or the CONNECT role (roles
are discussed in detail later in this chapter). For Oracle Database 10g Release 1 and earlier, the
CONNECT role contains the CREATE SESSION privilege, along with other basic privileges, such
as CREATE TABLE and ALTER SESSION; as of Oracle Database 10g Release 2, the CONNECT role

Parameter Usage

username The name of the schema, and therefore the user, to be
created. The username can be up to 30 characters long and
cannot be a reserved word unless it is quoted (which is not
recommended).

IDENTIFIED { BY password |
EXTERNALLY | GLOBALLY AS
‘extname’ }

Specifies how the user will be authenticated: by the database
with a password, by the operating system (local or remote),
or by a service (such as Oracle Internet Directory).

DEFAULT TABLESPACE
tablespace

The tablespace where permanent objects are created, unless a
tablespace is explicitly specified during creation.

TEMPORARY TABLESPACE
tablespace

The tablespace where temporary segments are created during
sort operations, index creation, and so forth.

QUOTA { size | UNLIMITED }
ON tablespace

The amount of space allowed for objects created on the
specified tablespace. Size is in kilobytes (K) or megabytes
(M).

PROFILE profile The profile assigned to this user. Profiles are discussed later
in this chapter. If a profile is not specified, the DEFAULT
profile is used.

PASSWORD EXPIRE At first logon, the user must change their password.

ACCOUNT {LOCK |
UNLOCK}

Specifies whether the account is locked or unlocked. By
default, the account is unlocked.

ENABLE EDITIONS Allows this user to create one or more versions of editionable
objects in their schema.

CONTAINER = {CURRENT |
ALL}

Creates a single user account in the current container of a
multitenant database or in all containers (a common user).
If the account is a common user, it must begin with C## or
c##; local users must not begin with C## or c##.

TABLE 10-1. Options for the CREATE USER Command

10-ch10.indd 314 13/05/15 10:00 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 315

only has the CREATE SESSION privilege and therefore is deprecated. In the following example,
we grant KLYNNE the CREATE SESSION and CREATE TABLE privileges:

SQL> grant create session, create table to KLYNNE;
Grant succeeded.

Now the user KLYNNE has a quota on the USERS tablespace as well as the privileges to create
objects in that tablespace.

All these options for CREATE USER are available in the web-based Oracle Cloud Control 12c
interface, as demonstrated in Figure 10-2.

As with any Cloud Control operation, the Show SQL button shows the actual SQL commands,
such as CREATE and GRANT, that will be run when the user is created. This is a great way to take
advantage of the web interface’s ease of use, while at the same time brushing up on your SQL
command syntax!

FIGURE 10-2. Creating users with Cloud Control

10-ch10.indd 315 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

316 Oracle Database 12c DBA Handbook

In Figure 10-3, you can see that it’s also very easy to pick an existing user and create a new
user with the same characteristics except for the password.

Other options available in the Cloud Control interface include expiring a user account,
generating the DDL used to create the account, and locking or unlocking the account.

Altering Users
Changing the characteristics of a user is accomplished by using the ALTER USER command. The
syntax for ALTER USER is nearly identical to that of CREATE USER, except that ALTER USER
allows you to assign roles as well as grant rights to a middle-tier application to perform functions
on behalf of the user.

In this example, we’ll change user KLYNNE to use a different default permanent tablespace:

SQL> alter user KLYNNE
 2 default tablespace users2
 3 quota 500M on users2;
User altered.

Note that the user KLYNNE still can create objects in the USERS tablespace, but he must
explicitly specify USERS in any CREATE TABLE and CREATE INDEX commands.

Dropping Users
Dropping users is very straightforward and is accomplished with the DROP USER command. The
only parameters are the username to be dropped and the CASCADE option; any objects owned by
the user must be explicitly dropped or moved to another schema if the CASCADE option is not
used. In the following example, the user QUEENB is dropped, and if there are any objects owned
by QUEENB, they are automatically dropped as well:

SQL> drop user queenb cascade;
User dropped.

FIGURE 10-3. Copying users with Cloud Control

10-ch10.indd 316 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 317

If any other schema objects, such as views or packages, rely on objects dropped when the
user is dropped, the other schema objects are marked INVALID and must be recoded to use other
objects and then recompiled. In addition, any object privileges that were granted by the first user
to a second user via the WITH GRANT OPTION clause are automatically revoked from the
second user if the first user is dropped.

Becoming Another User
To debug an application, a DBA sometimes needs to connect as another user to simulate the
problem. Without knowing the actual plain-text password of the user, the DBA can retrieve the
encrypted password from the database, change the password for the user, connect with the changed
password, and then change back the password using an undocumented clause of the ALTER USER
command. It is assumed that the DBA has access to the DBA_USERS table, along with the ALTER
USER privilege. If the DBA has the DBA role, then these two conditions are satisfied.

The first step is to retrieve the encrypted password for the user, which is stored in the table
DBA_USERS:

SQL> select password from user$
 2 where username = 'KLYNNE';

PASSWORD

83C7CBD27A941428

1 row selected.

Save this password using cut and paste in a GUI environment, or save it in a text file to
retrieve later. The next step is to temporarily change the user’s password and then log in using the
temporary password:

SQL> alter user KLYNNE identified by temp_pass;
User altered.
SQL> connect KLYNNE/temp_pass@tettnang:1521/dw;
Connected.

At this point, you can debug the application from KLYNNE’s point of view. Once you are done
debugging, change the password back using the undocumented BY VALUES clause of ALTER
USER:

SQL> alter user KLYNNE identified by values '83C7CBD27A941428';
User altered.

Connecting with the KLYNNE user guarantees that you will see exactly what KLYNNE will see
when running the application. In some scenarios, however, you can avoid having to change
passwords by using the ALTER SESSION command with the CURRENT_SCHEMA option.

[oracle@yeb ~]$ sqlplus / as sysdba
SQL> alter session set current_schema=KLYNNE;
Session altered.
SQL> show user
USER is "SYS"

10-ch10.indd 317 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

318 Oracle Database 12c DBA Handbook

SQL> create table emp2
 2 (employee_id number,
 3 salary number);
Table created.
SQL> select owner,table_name from dba_tables where owner='KLYNNE';

OWNER TABLE_NAME
------------------------------ ------------------------------
KLYNNE EMP2

SQL>

All DML and SELECT commands will run in the context of the user specified by CURRENT_
SCHEMA parameter.

User-Related Data Dictionary Views
A number of data dictionary views contain information related to users and characteristics of
users. Table 10-2 lists the most common views and tables. The equivalent views in a multitenant
environment begin with CDB_ instead of DBA_.

Database Authorization Methods
Once a user is authenticated with the database, the next step is to determine what types of objects,
privileges, and resources the user is permitted to access or use. In this section, we’ll review how
profiles can control not only how passwords are managed but also how profiles can put limits on
various types of system resources.

In addition, we’ll review the two types of privileges in an Oracle database: system privileges
and object privileges. Both of these privileges can be assigned directly to users, or indirectly
through roles, another mechanism that can make a DBA’s job easier when assigning privileges
to users.

Data Dictionary View Description

DBA_USERS Contains usernames, encrypted passwords, account status, and
default tablespaces.

DBA_TS_QUOTAS Disk space usage and limits by user and tablespace, for users who
have quotas that are not UNLIMITED.

DBA_PROFILES Profiles that can be assigned to users with resource limits assigned
to the profiles.

USER_HISTORY$ Password history with usernames, encrypted passwords, and
datestamps. Used to enforce password reuse rules if you set the
initialization parameter RESOURCE_LIMIT to TRUE and limit
password reuse using the ALTER PROFILE parameters PASSWORD_
REUSE_*.

TABLE 10-2. User-Related Data Dictionary Views and Tables

10-ch10.indd 318 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 319

Managing profiles and privileges in a multitenant environment is similar to managing those in
a non-CDB environment with a few exceptions; see Chapter 11 for more details.

At the end of this section, we’ll cover the Virtual Private Database (VPD) features of Oracle
and how it can be used to provide more precise control over what parts of a table can be seen by
a user based on a set of DBA-defined credentials assigned to the user. To help make the concepts
clearer, we’ll step through an implementation of a VPD from beginning to end.

Profile Management
There never seems to be enough CPU power or disk space or I/O bandwidth to run a user’s query.
Because all these resources are inherently limited, Oracle provides a mechanism to control how
much of these resources a user can use. An Oracle profile is a named set of resource limits
providing this mechanism.

In addition, profiles can be used as an authorization mechanism to control how user passwords
are created, reused, and validated. For example, we may wish to enforce a minimum password
length, along with a requirement that at least one upper- and lowercase letter appear in the
password. In this section, we’ll look at how profiles manage passwords and resources.

The CREATE PROFILE Command
The CREATE PROFILE command does double duty; we can create a profile to limit the connect
time for a user to 120 minutes:

create profile lim_connect limit
 connect_time 120;

Similarly, we can limit the number of consecutive times a login can fail before the account is
locked:

create profile lim_fail_login limit
 failed_login_attempts 8;

Or, we can combine both types of limits in a single profile:

create profile lim_connectime_faillog limit
 connect_time 120
 failed_login_attempts 8;

How Oracle responds to one of the resource limits being exceeded depends on the type of limit.
When one of the connect time or idle time limits is reached (such as CPU_PER_SESSION), the
transaction in progress is rolled back, and the session is disconnected. For most other resource limits
(such as PRIVATE_SGA), the current transaction is rolled back, an error is returned to the user, and the
user has the option to commit or roll back the transaction. If an operation exceeds a limit for a single
call (such as LOGICAL_READS_PER_CALL), the operation is aborted, the current statement is rolled
back, and an error is returned to the user. The rest of the transaction remains intact; the user can then
roll back, commit, or attempt to complete the transaction without exceeding statement limits.

Oracle provides the DEFAULT profile, which is applied to any new user if no other profile is
specified. The following query against the data dictionary view DBA_PROFILES reveals the limits
for the DEFAULT profile.

10-ch10.indd 319 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

320 Oracle Database 12c DBA Handbook

SQL> select *
 2 from dba_profiles
 3 where profile = 'DEFAULT';

PROFILE RESOURCE_NAME RESOURCE LIMIT COM
------------ ----------------------------------- -------- --------------- ---
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED NO
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED NO
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED NO
DEFAULT CPU_PER_CALL KERNEL UNLIMITED NO
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED NO
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED NO
DEFAULT IDLE_TIME KERNEL UNLIMITED NO
DEFAULT CONNECT_TIME KERNEL UNLIMITED NO
DEFAULT PRIVATE_SGA KERNEL UNLIMITED NO
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10 NO
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180 NO
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED NO
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED NO
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL NO
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1 NO
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7 NO

16 rows selected.

SQL>

The only real restrictions in the DEFAULT profile limit the number of consecutive unsuccessful
login attempts (FAILED_LOGIN_ATTEMPTS) to ten before the account is locked and the number
of days before a password must be changed (PASSWORD_LIFE_TIME) to 180. In addition, no
password verification function is enabled.

Profiles and Password Control
Table 10-3 lists and describes the password-related profile parameters. All units of time are
specified in days (to specify any of these parameters in minutes, for example, divide by 1440):

SQL> create profile lim_lock limit password_lock_time 5/1440;
Profile created.

In this example, an account will only be locked for five minutes after the specified number of
login failures.

A parameter value of UNLIMITED means that there is no bound on how much of the given
resource can be used. DEFAULT means that this parameter takes its values from the DEFAULT
profile.

The parameters PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX must be used
together; setting one without the other has no useful effect. In the following example, we create a
profile that sets PASSWORD_REUSE_TIME to 20 days and PASSWORD_REUSE_MAX to 5:

create profile lim_reuse_pass limit
 password_reuse_time 20
 password_reuse_max 5;

10-ch10.indd 320 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 321

For users with this profile, their password can be reused after 20 days if the password has been
changed at least five times. If you specify a value for either of these, and UNLIMITED for the
other, a user can never reuse a password.

As with most other operations, profiles can easily be managed with Oracle Cloud Control.
Figure 10-4 shows an example of changing the DEFAULT profile to disconnect the user after only
15 minutes of inactivity.

If we wanted to provide tighter control over how passwords are created and reused, such as a
mixture of upper- and lowercase characters in every password, we need to enable the PASSWORD_
VERIFY_FUNCTION limit in each applicable profile. Oracle provides a template for enforcing
an organization’s password policy. It’s located in $ORACLE_HOME/rdbms/admin/utlpwdmg.sql.
Some key sections of this script follow:

CREATE OR REPLACE FUNCTION ora12c_verify_function
(username varchar2,
 password varchar2,
 old_password varchar2)
 RETURN boolean IS

Password Parameter Description

FAILED_LOGIN_ATTEMPTS The number of failed login attempts before the account
is locked.

PASSWORD_LIFE_TIME The number of days the password can be used
before it must be changed. If it is not changed within
PASSWORD_GRACE_TIME, the password must be
changed before logins are allowed.

PASSWORD_REUSE_TIME The number of days a user must wait before reusing a
password; this parameter is used in conjunction with
PASSWORD_REUSE_MAX.

PASSWORD_REUSE_MAX The number of password changes that have to occur
before a password can be reused; this parameter is used
in conjunction with PASSWORD_REUSE_TIME.

PASSWORD_LOCK_TIME How many days the account is locked after FAILED_
LOGIN_ATTEMPTS attempts. After this time period, the
account is automatically unlocked.

PASSWORD_GRACE_TIME The number of days after which an expired password
must be changed. If it is not changed within this time
period, the account is expired and the password must
be changed before the user can log in successfully.

PASSWORD_VERIFY_FUNCTION A PL/SQL script to provide an advanced password-
verification routine. If NULL is specified (the default),
no password verification is performed.

TABLE 10-3. Password-Related Profile Parameters

10-ch10.indd 321 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

322 Oracle Database 12c DBA Handbook

 n boolean;
 m integer;
 differ integer;
 isdigit boolean;
 ischar boolean;
 ispunct boolean;
 db_name varchar2(40);
 digitarray varchar2(20);

FIGURE 10-4. Changing password limits with Oracle Cloud Control

10-ch10.indd 322 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 323

 punctarray varchar2(25);
 chararray varchar2(52);
 i_char varchar2(10);
 simple_password varchar2(10);
 reverse_user varchar2(32);

BEGIN
 digitarray:= '0123456789';
 chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
. . .
 -- Check if the password is same as the username reversed
 FOR i in REVERSE 1..length(username) LOOP
 reverse_user := reverse_user || substr(username, i, 1);
 END LOOP;
 IF NLS_LOWER(password) = NLS_LOWER(reverse_user) THEN
 raise_application_error(-20003, 'Password same as username reversed');
 END IF;
. . .
 -- Everything is fine; return TRUE ;
 RETURN(TRUE);
END;
/

-- This script alters the default parameters for Password Management
-- This means that all the users on the system have Password Management
-- enabled and set to the following values unless another profile is
-- created with parameter values set to different value or UNLIMITED
-- is created and assigned to the user.

ALTER PROFILE DEFAULT LIMIT
PASSWORD_LIFE_TIME 180
PASSWORD_GRACE_TIME 7
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_LOCK_TIME 1 PASSWORD_VERIFY_FUNCTION ora12c_verify_function;

The script provides the following functionality for password complexity:

 ■ Ensures that the password is not the same as the username

 ■ Ensures that the password is at least four characters long

 ■ Checks to make sure the password is not a simple, obvious word, such as ORACLE or
DATABASE

 ■ Requires that the password contains one letter, one digit, and one punctuation mark

 ■ Ensures that the password is different from the previous password by at least three
characters

To use this policy, the first step is to make your own custom changes to this script. For example,
you may wish to have several different verify functions, one for each country or business unit,

10-ch10.indd 323 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

324 Oracle Database 12c DBA Handbook

to match the database password complexity requirements to that of the operating systems in use in a
particular country or business unit. Therefore, you can rename this function as VERIFY_FUNCTION_
US_MIDWEST, for example. In addition, you might want to change the list of simple words to
include names of departments or buildings at your company.

Once the function is successfully compiled, you can either alter an existing profile to use this
function with the ALTER PROFILE command, or create a new profile that uses this function. In the
following example, we’re changing the DEFAULT profile to use the function VERIFY_FUNCTION_
US_MIDWEST:

SQL> alter profile default limit
 2 password_verify_function verify_function_us_midwest;
Profile altered.

For all existing users who are using the DEFAULT profile, or for any new users who use the
DEFAULT profile, their password will be checked by the function VERIFY_FUNCTION_US_
MIDWEST. If the function returns a value other than TRUE, the password is not allowed, and the
user must specify a different password. If a user has a current password that does not conform to
the rules in this function, it is still valid until the password is changed, at which time the new
password must be validated by the function.

Profiles and Resource Control
The list of resource-control profile options that can appear after CREATE PROFILE profilename
LIMIT are explained in Table 10-4. Each of these parameters can either be an integer, UNLIMITED,
or DEFAULT.

As with the password-related parameters, UNLIMITED means that there is no bound on how
much of the given resource can be used. DEFAULT means that this parameter takes its values from
the DEFAULT profile.

The COMPOSITE_LIMIT parameter allows you to control a group of resource limits when the
types of resources typically used varies widely by type; it allows a user to use a lot of CPU time
but not much disk I/O during one session, and vice versa during another session, without being
disconnected by the policy.

By default, all resource costs are zero:

SQL> select * from resource_cost;

RESOURCE_NAME UNIT_COST
-------------------------------- ----------
CPU_PER_SESSION 0
LOGICAL_READS_PER_SESSION 0
CONNECT_TIME 0
PRIVATE_SGA 0

4 rows selected.

To adjust the resource cost weights, use the ALTER RESOURCE COST command. In this
example, we change the weightings so that CPU_PER_SESSION favors CPU usage over connect
time by a factor of 25 to 1; in other words, a user is more likely to be disconnected because of
CPU usage than connect time:

10-ch10.indd 324 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 325

SQL> alter resource cost
 2 cpu_per_session 50
 3 connect_time 2;
Resource cost altered.

SQL> select * from resource_cost;

RESOURCE_NAME UNIT_COST
-------------------------------- ----------
CPU_PER_SESSION 50
LOGICAL_READS_PER_SESSION 0
CONNECT_TIME 2
PRIVATE_SGA 0

4 rows selected.

Resource Parameter Description

SESSIONS_PER_USER The maximum number of sessions a user can
simultaneously have

CPU_PER_SESSION The maximum CPU time allowed per session,
in hundredths of a second

CPU_PER_CALL Maximum CPU time for a statement parse,
execute, or fetch operation, in hundredths of a
second

CONNECT_TIME Maximum total elapsed time, in minutes

IDLE_TIME Maximum continuous inactive time in a
session, in minutes, while a query or other
operation is not in progress

LOGICAL_READS_PER_SESSION Total number of data blocks read per session,
either from memory or disk

LOGICAL_READS_PER_CALL Maximum number of data blocks read for a
statement parse, execute, or fetch operation

COMPOSITE_LIMIT Total resource cost, in service units, as a
composite weighted sum of CPU_PER_
SESSION, CONNECT_TIME, LOGICAL_
READS_PER_SESSION, and PRIVATE_SGA

PRIVATE_SGA Maximum amount of memory a session can
allocate in the shared pool, in bytes, kilobytes,
or megabytes

TABLE 10-4. Resource-Related Profile Parameters

10-ch10.indd 325 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

326 Oracle Database 12c DBA Handbook

The next step is to create a new profile or modify an existing profile to use a composite limit:

SQL> create profile lim_comp_cpu_conn limit
 2 composite_limit 250;

Profile created.

As a result, users assigned to the profile LIM_COMP_CPU_CONN will have their session
resources limited using the following formula to calculate cost:

composite_cost = (50 * CPU_PER_SESSION) + (2 * CONNECT_TIME);

Table 10-5 provides some examples of resource usage to see if the composite limit of 250 is
exceeded.

The parameters PRIVATE_SGA and LOGICAL_READS_PER_SESSION are not used in this
particular example, so unless they are specified otherwise in the profile definition, they default to
whatever their value is in the DEFAULT profile. The goal of using composite limits is to give users
some leeway in the types of queries or DML they run. On some days, they may run a lot of
queries that perform numerous calculations but don’t access a lot of table rows; on other days,
they may do a lot of full table scans but not stay connected very long. In these situations, we don’t
want to limit a user by a single parameter, but instead by total resource usage weighted by the
availability of each resource on the server.

System Privileges
A system privilege is a right to perform an action on any object in the database, as well as other
privileges that do not involve objects at all, but rather things like running batch jobs, altering
system parameters, creating roles, and even connecting to the database itself. There are 237
system privileges in Release 1 of Oracle 12c (12.1.0.2). All of them can be found in the data
dictionary table SYSTEM_PRIVILEGE_MAP:

SQL> select * from system_privilege_map;

PRIVILEGE NAME PROPERTY
---------- -- ----------
 -3 ALTER SYSTEM 0
 -4 AUDIT SYSTEM 0
 -5 CREATE SESSION 0
 -6 ALTER SESSION 0
 -7 RESTRICTED SESSION 0

CPU (Seconds) Connect (Seconds) Composite Cost Exceeded?

0.05 100 (50*5) + (2*100) = 450 Yes

0.02 30 (50*2) + (2*30) = 160 No

0.01 150 (50*1) + (2*150) = 350 Yes

0.02 5 (50*2) + (2*5) = 110 No

TABLE 10-5. Resource Usage Scenarios

10-ch10.indd 326 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 327

 -10 CREATE TABLESPACE 0
 -11 ALTER TABLESPACE 0
 -12 MANAGE TABLESPACE 0
 -13 DROP TABLESPACE 0
 -15 UNLIMITED TABLESPACE 0
 -20 CREATE USER 0
 -21 BECOME USER 0
 -22 ALTER USER 0
 -23 DROP USER 0
. . .
 -318 INSERT ANY MEASURE FOLDER 0
 -319 CREATE CUBE BUILD PROCESS 0
 -320 CREATE ANY CUBE BUILD PROCESS 0
 -321 DROP ANY CUBE BUILD PROCESS 0
 -322 UPDATE ANY CUBE BUILD PROCESS 0
 -326 UPDATE ANY CUBE DIMENSION 0
 -327 ADMINISTER SQL MANAGEMENT OBJECT 0
 -350 FLASHBACK ARCHIVE ADMINISTER 0

237 rows selected.

Table 10-6 lists some of the more common system privileges, along with a brief description of
each.

Granting System Privileges
Privileges are granted to a user, role, or PUBLIC using the GRANT command; privileges are
revoked using the REVOKE command. PUBLIC is a special group that includes all database users,
and it’s convenient shorthand for granting privileges to everyone in the database.

To grant the user SCOTT the ability to create stored procedures and synonyms, you can use a
command like the following:

SQL> grant create procedure, create synonym to scott;
Grant succeeded.

Revoking privileges is just as easy:

SQL> revoke create synonym from scott;
Revoke succeeded.

If you wish to allow grantees the right to grant the same privilege to someone else, you
include WITH ADMIN OPTION when you grant the privilege. In the preceding example, we want
the user SCOTT to be able to grant the CREATE PROCEDURE privilege to other users. To
accomplish this, we need to re-grant the CREATE PROCEDURE privilege:

SQL> grant create procedure to scott with admin option;
Grant succeeded.

Now the user SCOTT may issue the GRANT CREATE PROCEDURE command. Note that if
SCOTT’s permission to grant his privileges to others is revoked, the users he granted the privileges
to retain the privileges.

10-ch10.indd 327 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

328 Oracle Database 12c DBA Handbook

System Privilege Capability

ALTER DATABASE Make changes to the database, such as changing
the state of the database from MOUNT to OPEN, or
recover a database.

ALTER SYSTEM Issue ALTER SYSTEM statements: Switch to the next
redo log group and change system-initialization
parameters in the SPFILE.

AUDIT SYSTEM Issue AUDIT statements.

CREATE DATABASE LINK Create database links to remote databases.

CREATE ANY INDEX Create an index in any schema; CREATE INDEX is
granted along with CREATE TABLE for the user’s schema.

CREATE PROFILE Create a resource/password profile.

CREATE PROCEDURE Create a function, procedure, or package in your own
schema.

CREATE ANY PROCEDURE Create a function, procedure, or package in any
schema.

CREATE SESSION Connect to the database.

CREATE SYNONYM Create a private synonym in your own schema.

CREATE ANY SYNONYM Create a private synonym in any schema.

CREATE PUBLIC SYNONYM Create a public synonym.

DROP ANY SYNONYM Drop a private synonym in any schema.

DROP PUBLIC SYNONYM Drop a public synonym.

CREATE TABLE Create a table in your own schema.

CREATE ANY TABLE Create a table in any schema.

CREATE TABLESPACE Create a new tablespace in the database.

CREATE USER Create a user account/schema.

ALTER USER Make changes to a user account/schema.

CREATE VIEW Create a view in your own schema.

SYSDBA Create an entry in the external password file, if
enabled; also, perform startup/shutdown, alter a
database, create a database, recover a database,
create an SPFILE, and connect when the database is in
RESTRICTED SESSION mode.

SYSOPER Create an entry in the external password file, if enabled;
also, perform startup/shutdown, alter a database,
recover a database, create an SPFILE, and connect
when the database is in RESTRICTED SESSION mode.

TABLE 10-6. Common System Privileges

10-ch10.indd 328 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 329

System Privilege Data Dictionary Views
Table 10-7 contains the data dictionary views related to system privileges (see Chapter 11 for the
equivalent views in a multitenant environment).

Object Privileges
In contrast to a system privilege, an object privilege is a right to perform a particular type of action
on a specific object, such as a table or a sequence, that is not in the user’s own schema. As with
system privileges, you use the grant and revoke commands to grant and revoke privileges on
objects.

As with system privileges, you can grant object privileges to PUBLIC or a specific user; a user
with the object privilege may pass it on to others by granting the object privilege with the WITH
GRANT OPTION clause.

CAUTION
Only grant object or system privileges to PUBLIC when the privilege is
truly required by all current and future users of the database.

Some schema objects, such as clusters and indexes, rely on system privileges to control
access. In these cases, the user can change these objects if they own the objects or have the
ALTER ANY CLUSTER or ALTER ANY INDEX system privilege.

A user with objects in their own schema automatically has all object privileges on those
objects and can grant any object privilege on these objects to any user or another role, with or
without the GRANT OPTION clause.

In Table 10-8 are the object privileges available for different types of objects; some privileges
are only applicable to certain types of objects. For example, the INSERT privilege only makes
sense with tables, views, and materialized views; the EXECUTE privilege, on the other hand, is
applicable to functions, procedures, and packages, but not tables.

It’s worth noting that DELETE, UPDATE, and INSERT privileges cannot be granted to materialized
views unless they are updatable. Some of these object privileges overlap with system privileges;
for example, if you don’t have the FLASHBACK object privilege on a table, you can still perform
flashback queries if you have the FLASHBACK ANY TABLE system privilege.

Data Dictionary View Description

DBA_SYS_PRIVS System privileges assigned to roles and users

SESSION_PRIVS All system privileges in effect for this user for the session,
granted directly or via a role

ROLE_SYS_PRIVS Current session privileges granted to a user via a role

TABLE 10-7. System Privilege Data Dictionary Views

10-ch10.indd 329 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

330 Oracle Database 12c DBA Handbook

In the following example, the DBA grants SCOTT full access to the table HR.EMPLOYEES, but
only allows SCOTT to pass on the SELECT object privilege to other users:

SQL> grant insert, update, delete on hr.employees to scott;
Grant succeeded.
SQL> grant select on hr.employees to scott with grant option;
Grant succeeded.

Note that if the SELECT privilege on the table HR.EMPLOYEES is revoked from SCOTT, the
SELECT privilege is also revoked from anyone he granted the privilege.

Table Privileges
The types of privileges that can be granted on a table fall into two broad categories: DML operations
and DDL operations. DML operations include DELETE, INSERT, SELECT, and UPDATE, whereas
DDL operations include adding, dropping, and changing columns in the table as well as creating
indexes on the table.

Object Privilege Capability

ALTER Can alter a table or sequence definition.

DELETE Can delete rows from a table, view, or materialized view.

EXECUTE Can execute a function or procedure, with or without a package.

DEBUG Allowed to view PL/SQL code in triggers defined on a table, or SQL
statements that reference a table. For object types, this privilege allows
access to all public and private variables, methods, and types defined
on the object type.

FLASHBACK Allows flashback queries on tables, views, and materialized views using
retained undo information.

INDEX Can create an index on a table.

INSERT Can insert rows into a table, view, or materialized view.

ON COMMIT REFRESH Can create a refresh-on-commit materialized view based on a table.

QUERY REWRITE Can create a materialized view for query rewrite based on a table.

READ Can read the contents of an operating system directory using an Oracle
DIRECTORY definition.

REFERENCES Can create a foreign key constraint that references another table’s
primary key or unique key.

SELECT Can read rows from a table, view, or materialized view, in addition to
reading current or next values from a sequence.

UNDER Can create a view based on an existing view.

UPDATE Can update rows in a table, view, or materialized view.

WRITE Can write information to an operating system directory using an Oracle
DIRECTORY definition.

TABLE 10-8. Object Privileges

10-ch10.indd 330 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 331

When granting DML operations on a table, it is possible to restrict those operations only to
certain columns. For example, we may want to allow SCOTT to see and update all the rows and
columns in the HR.EMPLOYEES table except for the SALARY column. To do this, we first need to
revoke the existing SELECT privilege on the table:

SQL> revoke update on hr.employees from scott;
Revoke succeeded.

Next, we will let SCOTT update all the columns except for the SALARY column:

SQL> grant update (employee_id, first_name, last_name, email,
 2 phone_number, hire_date, job_id, commission_pct,
 3 manager_id, department_id)
 4 on hr.employees to scott;

Grant succeeded.

SCOTT will be able to update all columns in the HR.EMPLOYEES table except for the SALARY
column:

SQL> update hr.employees set first_name = 'Steve' where employee_id = 100;
1 row updated.
SQL> update hr.employees set salary = 50000 where employee_id = 203;
update hr.employees set salary = 50000 where employee_id = 203
 *
ERROR at line 1:
ORA-01031: insufficient privileges

This operation is also easy to perform with the web-based Cloud Control, as demonstrated in
Figure 10-5.

View Privileges
Privileges on views are similar to those granted on tables. Rows in a view can be selected,
updated, deleted, or inserted, assuming that the view is updatable. To create a view, first you need
either the CREATE VIEW system privilege (to create a view in your own schema) or the CREATE
ANY VIEW system privilege (to create a view in any schema). Even to create the view, you must
also have at least SELECT object privileges on the underlying tables of the view, along with
INSERT, UPDATE, and DELETE, if you wish to perform those operations on the view and the view
is updatable. Alternatively, you can have the SELECT ANY TABLE, INSERT ANY TABLE, UPDATE
ANY TABLE, or DELETE ANY TABLE privileges if the underlying objects are not in your schema.

To allow others to use your view, you must also have permissions on the view’s base tables
with the GRANT OPTION, or you must have the system privileges with the ADMIN OPTION. For
example, if you are creating a view against the HR.EMPLOYEES table, you must have been
granted the SELECT object privilege WITH GRANT OPTION on HR.EMPLOYEES, or you must
have the SELECT ANY TABLE system privilege WITH ADMIN OPTION.

Procedure Privileges
For procedures, functions, and the packages that contain procedures and functions, the EXECUTE
privilege is the only object privilege that can be applied. Since Oracle8i, procedures and
functions can be run either from the perspective of the definer, the creator of the procedure or
function, or from the invoker, the user who is running the procedure or function.

10-ch10.indd 331 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

332 Oracle Database 12c DBA Handbook

A procedure with definer’s rights is run as if the definer was running the procedure, with all
privileges of the definer in effect against objects referenced in the procedure. This is a good way
to enforce restrictions on private database objects: Other users are granted EXECUTE permissions
on the procedure and no permissions on the referenced objects. As a result, the definer can control
how other users access the objects.

Conversely, an invoker’s rights procedure requires that the invoker have direct rights, such as
SELECT and UPDATE, to any objects referenced in the procedure. The procedure could reference
an unqualified table named ORDERS, and if all users of the database have an ORDERS table, the
same procedure could be used by any user who has their own ORDERS table. Another advantage
to using invoker’s rights procedures is that roles are enabled within them. Roles are discussed in
depth later in this chapter.

By default, a procedure is created with definer’s rights. To specify that a procedure uses
invoker’s rights, you must include the keywords AUTHID CURRENT_USER in the procedure
definition, as in the following example:

create or replace procedure process_orders (order_batch_date date)
authid current_user as
begin

FIGURE 10-5. Granting column privileges in Oracle Cloud Control

10-ch10.indd 332 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 333

 -- process user's ORDERS table here using invoker's rights,
 -- all roles are in effect
end;

To create a procedure, a user must have either the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. For the procedure to compile correctly, the user must have direct
privileges against all objects referenced in the procedure, even though roles are enabled at runtime
in an invoker’s rights procedure to obtain these same privileges. To allow other users to access a
procedure, you grant EXECUTE privileges on the procedure or package.

Object Privilege Data Dictionary Views
A number of data dictionary views contain information about object privileges assigned to users.
Table 10-9 lists the most important views containing object privilege information.

Creating, Assigning, and Maintaining Roles
A role is a named group of privileges, either system privileges or object privileges or a
combination of the two, that helps to ease the administration of privileges. Rather than granting
system or object privileges individually to each user, you can grant the group of system or object
privileges to a role, and in turn the role can be granted to the user instead. This reduces
tremendously the amount of administrative overhead involved in maintaining privileges for users.
Figure 10-6 shows how a role can reduce the number of grant commands (and ultimately revoke
commands) that need to be executed when roles are used to group privileges.

If the privileges for a group of people authorized by a role need to change, only the privileges
of the role need to be changed, and the capabilities of the users with that role automatically use
the new or changed privileges. Roles may selectively be enabled by a user; some roles may
automatically be enabled at login. In addition, passwords can be used to protect a role, adding
another level of authentication to the capabilities in the database.

In Table 10-10 are the most common roles that are automatically provided with the database,
along with a brief description of what privileges come with each role.

Data Dictionary View Description

DBA_TAB_PRIVS Table privileges granted to roles and users. Includes the user who
granted the privilege to the role or user, with or without GRANT
OPTION.

DBA_COL_PRIVS Column privileges granted to roles or users, containing the column
name and the type of privilege on the column.

SESSION_PRIVS All system privileges in effect for this user for the session, granted
directly or via a role.

ROLE_TAB_PRIVS For the current session, privileges granted on tables via roles.

TABLE 10-9. Object Privilege Data Dictionary Views

10-ch10.indd 333 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

334 Oracle Database 12c DBA Handbook

The roles CONNECT, RESOURCE, and DBA are provided mainly for compatibility with previous
versions of Oracle; they may not exist in future versions of Oracle. The DBA should create custom
roles using the privileges granted to these roles as a starting point.

Creating or Dropping a Role
To create a role, you use the CREATE ROLE command, and you must have the CREATE ROLE
system privilege. Typically, this is granted only to database administrators or application
administrators. Here’s an example:

SQL> create role hr_admin not identified;
Role created.

By default, no password or authentication is required to enable or use an assigned role; therefore,
the NOT IDENTIFIED clause is optional.

As with creating users, you can authorize use of a role by a password (database authorization
with IDENTIFIED BY password), by the operating system (IDENTIFIED EXTERNALLY), or by the
network or directory service (IDENTIFIED GLOBALLY).

In addition to these familiar methods, a role can be authorized by the use of a package: This is
known as using a secure application role. This type of role uses a procedure within the package to
enable the role. Typically, the role is enabled only under certain conditions: The user is connecting
via a web interface or from a certain IP address, or it’s a certain time of day. Here is a role that is
enabled using a procedure:

SQL> create role hr_clerk identified using hr.clerk_verif;
Role created.

The procedure HR.CLERK_VERIF need not exist when the role is created; however, it must be
compiled and valid when a user who is granted this role needs to enable it. Typically, with secure
application roles, the role is not enabled by default for the user. To specify that all roles are
enabled by default, except for the secure application role, use the following command:

SQL> alter user klynne default role all except hr_clerk;
User altered.

FIGURE 10-6. Using roles to manage privileges

10-ch10.indd 334 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 335

Role Name Privileges

CONNECT Previous to Oracle Database 10g Release 2: ALTER SESSION,
CREATE CLUSTER, CREATE DATABASE LINK, CREATE
SEQUENCE, CREATE SESSION, CREATE SYNONYM, CREATE
TABLE, CREATE VIEW. These privileges are typically those given
to a general user of the database, allowing them to connect
and create tables, indexes, and views. Oracle Database 10g
Release 2 and later: CREATE SESSION only.

RESOURCE CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR,
CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE,
CREATE TRIGGER, CREATE TYPE. These privileges are typically
used for application developers who may be coding PL/SQL
procedures and functions.

DBA All system privileges WITH ADMIN OPTION. Allows a person
with the DBA role to grant system privileges to others.

DELETE_CATALOG_ROLE Does not have any system privileges, but only object privileges
(DELETE) on SYS.AUD$ and FGA_LOG$. In other words, this
role allows a user to remove audit records from the audit trail
for regular or fine-grained auditing.

EXECUTE_CATALOG_ROLE Execute privileges on various system packages, procedures,
and functions, such as DBMS_FGA and DBMS_RLS.

SELECT_CATALOG_ROLE SELECT object privilege on 1638 data dictionary tables.

EXP_FULL_DATABASE EXECUTE_CATALOG_ROLE, SELECT_CATALOG_ROLE,
and system privileges such as BACKUP ANY TABLE and
RESUMABLE. Allows a user with this role to export all objects
in the database.

IMP_FULL_DATABASE Similar to EXP_FULL_DATABASE, with many more system
privileges, such as CREATE ANY TABLE, to allow the import of
a previously exported full database.

AQ_USER_ROLE Execute access for routines needed with Advanced Queuing,
such as DBMS_AQ.

AQ_ADMINISTRATOR_ROLE Manager for Advanced Queuing queues.

SNMPAGENT Used by the Cloud Control Intelligent Agent.

RECOVERY_CATALOG_OWNER Used to create a user who owns a recovery catalog for RMAN
backup and recovery.

HS_ADMIN_ROLE Provides access to the tables HS_* and the package DBMS_HS
for administering Oracle Heterogeneous Services.

SCHEDULER_ADMIN Provides access to the DBMS_SCHEDULER package, along
with privileges to create batch jobs.

TABLE 10-10. Predefined Oracle Roles

10-ch10.indd 335 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

336 Oracle Database 12c DBA Handbook

In this way, when the HR application starts, it can enable the role by performing a SET ROLE
HR_CLERK command, thus calling the procedure HR.CLERK_VERIF. The user need not know
about the role or the procedure that enables the role; therefore, no access to the objects and
privileges provided by the role are available to the user outside of the application.

Dropping a role is just as easy as creating a role:

SQL> drop role keypunch_operator;
Role dropped.

Any users assigned to this role will lose the privileges assigned to this role the next time they
connect to the database. If they are currently logged in, they will retain the privileges until they
disconnect from the database.

Granting Privileges to a Role
Assigning a privilege to a role is very straightforward; you use the GRANT command to assign the
privilege to a role, just as you would assign a privilege to a user:

SQL> grant select on hr.employees to hr_clerk;
Grant succeeded.
SQL> grant create table to hr_clerk;
Grant succeeded.

In this example, we’ve assigned an object privilege and a system privilege to the HR_CLERK
role. In Figure 10-7, we can use Cloud Control to add more object or system privileges to the role.

Assigning or Revoking Roles
Once we have the desired system and object privileges assigned to the role, we can assign the
role to a user, using familiar syntax:

SQL> grant hr_clerk to smavris;
Grant succeeded.

Any other privileges granted to the HR_CLERK role in the future will automatically be usable by
SMAVRIS because SMAVRIS has been granted the role.

Roles may be granted to other roles; this allows a DBA to have a hierarchy of roles, making
role administration easier. For example, we may have roles named DEPT30, DEPT50, and DEPT100,
each having object privileges to tables owned by each of those departments. An employee in
department 30 would be assigned the DEPT30 role, and so forth. The president of the company
would like to see tables in all departments; but rather than assigning individual object privileges
to the role ALL_DEPTS, we can assign the individual department roles to ALL_DEPTS:

SQL> create role all_depts;
Role created.
SQL> grant dept30, dept50, dept100 to all_depts;
Grant succeeded.
SQL> grant all_depts to KLYNNE;
Grant succeeded.

The role ALL_DEPTS may also contain individual object and system privileges that do not apply to
individual departments, such as object privileges on order entry tables or accounts receivable tables.

10-ch10.indd 336 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 337

Revoking a role from a user is very similar to revoking privileges from a user:

SQL> revoke all_depts from KLYNNE;
Revoke succeeded.

The privileges revoked will no longer be available to the user the next time they connect to the
database. However, it is worth noting that if another role contains privileges on the same objects as
the dropped role, or privileges on the objects are granted directly, the user retains these privileges
on the objects until these and all other grants are explicitly revoked.

Default Roles
By default, all roles granted to a user are enabled when the user connects. If a role is going to be
used only within the context of an application, the role can start out disabled when the user is
logged in; then it can be enabled and disabled within the application. If the user SCOTT has
CONNECT, RESOURCE, HR_CLERK, and DEPT30 roles, and we want to specify that HR_CLERK
and DEPT30 are not enabled by default, we can use something like the following:

SQL> alter user scott default role all
 2> except hr_clerk, dept30;
User altered.

FIGURE 10-7. Granting privileges to roles with Cloud Control

10-ch10.indd 337 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

338 Oracle Database 12c DBA Handbook

When SCOTT connects to the database, he automatically has all privileges granted with all
roles except for HR_CLERK and DEPT30. SCOTT may explicitly enable a role in his session by
using SET ROLE:

SQL> set role dept30;
Role set.

When he’s done accessing the tables for department 30, he can disable the role in his session:

SQL> set role all except dept30;
Role set.

NOTE
The initialization parameter MAX_ENABLED_ROLES is deprecated as of
Oracle 10g. It is retained for compatibility with previous versions only.

Password-Enabled Roles
To enhance security in the database, the DBA can assign a password to a role. The password is
assigned to the role when it’s created:

SQL> create role dept99 identified by d99secretpw;
Role created.
SQL> grant dept99 to scott;
Grant succeeded.
SQL> alter user scott default role all except hr_clerk, dept30, dept99;
User altered.

When the user SCOTT is connected to the database, either the application he is using will
provide or prompt for a password, or he can enter the password when he enables the role:

SQL> set role dept99 identified by d99secretpw;
Role set.

Role Data Dictionary Views
Table 10-11 lists and describes the data dictionary views related to roles.

Data Dictionary View Description

DBA_ROLES All roles and whether they require a password.

DBA_ROLE_PRIVS Roles granted to users or other roles.

ROLE_ROLE_PRIVS Roles granted to other roles.

ROLE_SYS_PRIVS System privileges that have been granted to roles.

ROLE_TAB_PRIVS Table and table column privileges that have been granted to roles.

SESSION_ROLES Roles currently in effect for the session. Available to every user session.

TABLE 10-11. Role-Related Data Dictionary Views

10-ch10.indd 338 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 339

The view DBA_ROLE_PRIVS is a good way to find out what roles are granted to a user as well
as whether they can pass this role to another user (ADMIN_OPTION) and whether this role is
enabled by default (DEFAULT_ROLE):

SQL> select * from dba_role_privs
 2 where grantee = 'SCOTT';

GRANTEE GRANTED_ROLE ADMIN_OPTION DEFAULT_ROLE
------------ -------------------- ------------ ------------
SCOTT DEPT30 NO NO
SCOTT DEPT50 NO YES
SCOTT DEPT99 NO YES
SCOTT CONNECT NO YES
SCOTT HR_CLERK NO NO
SCOTT RESOURCE NO YES
SCOTT ALL_DEPTS NO YES
SCOTT DELETE_CATALOG_ROLE NO YES

8 rows selected.

Similarly, we can find out which roles we assigned to the ALL_DEPTS role:

SQL> select * from dba_role_privs
 2> where grantee = 'ALL_DEPTS';

GRANTEE GRANTED_ROLE ADMIN_OPTION DEFAULT_ROLE
------------ -------------------- ------------ ------------
ALL_DEPTS DEPT30 NO YES
ALL_DEPTS DEPT50 NO YES
ALL_DEPTS DEPT100 NO YES

3 rows selected.

The data dictionary view ROLE_ROLE_PRIVS can also be used to get this information; it only
contains information about roles assigned to roles, and it does not have the DEFAULT_ROLE
information.

To find out privileges granted to users on a table or table columns, we can write two queries:
one to retrieve privileges granted directly, and another to retrieve privileges granted indirectly via
a role. Retrieving privileges granted directly is straightforward:

SQL> select dtp.grantee, dtp.owner, dtp.table_name,
 2 dtp.grantor, dtp.privilege, dtp.grantable
 3 from dba_tab_privs dtp
 4 where dtp.grantee = 'SCOTT';

GRANTEE OWNER TABLE_NAME GRANTOR PRIVILEGE GRANTABLE
------------ ---------- --------------- ------------ ------------ ----------
SCOTT HR EMPLOYEES HR SELECT YES
SCOTT HR EMPLOYEES HR DELETE NO
SCOTT HR EMPLOYEES HR INSERT NO

4 rows selected.

10-ch10.indd 339 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

340 Oracle Database 12c DBA Handbook

To retrieve table privileges granted via roles, we need to join DBA_ROLE_PRIVS and ROLE_
TAB_PRIVS. DBA_ROLE_PRIVS has the roles assigned to the user, and ROLE_TAB_PRIVS has the
privileges assigned to the roles:

SQL> select drp.grantee, rtp.owner, rtp.table_name,
 2 rtp.privilege, rtp.grantable, rtp.role
 3 from role_tab_privs rtp
 4 join dba_role_privs drp on rtp.role = drp.granted_role
 5 where drp.grantee = 'SCOTT';

GRANTEE OWNER TABLE_NAME PRIVILEGE GRANTABLE ROLE
---------- -------- --------------- ------------ ---------- ---------------
SCOTT HR EMPLOYEES SELECT NO HR_CLERK
SCOTT HR JOBS SELECT NO JOB_MAINT
SCOTT HR JOBS UPDATE NO JOB_MAINT
SCOTT SYS AUD$ DELETE NO DELETE_CATA
 LOG_ROLE
SCOTT SYS FGA_LOG$ DELETE NO DELETE_CATA
 LOG_ROLE

5 rows selected.

In the case of SCOTT’s privileges, notice that he has the SELECT privilege on the HR.EMPLOYEES
table both via a direct GRANT and via a role. Revoking either one of the privileges will still leave
him with access to the HR.EMPLOYEES table until both privileges have been removed.

Using a VPD to Implement Application Security Policies
A Virtual Private Database (VPD) combines server-enforced fine-grained access control with a
secure application context. The context-aware functions return a predicate—a WHERE clause—that
is automatically appended to all SELECT statements or other DML statements. In other words, a
SELECT statement on a table, view, or synonym controlled by a VPD will return a subset of rows
based on a WHERE clause generated automatically by the security policy function in effect by the
application context. The major component of a VPD is row-level security (RLS), also known as
fine-grained access control (FGAC).

Because a VPD generates the predicates transparently during statement parse, the security
policy is enforced consistently regardless of whether the user is running ad hoc queries, retrieving
the data from an application, or viewing the data from Oracle Forms. Because the Oracle server
applies the predicate to the statement at parse time, the application need not use special tables,
views, and so forth to implement the policy. As a result, Oracle can optimize the query using
indexes, materialized views, and parallel operations where it otherwise might not be able.
Therefore, using a VPD may incur less overhead than a query whose results are filtered using
applications or other means.

From a maintenance point of view, security policies can be defined within a policy function
that would be difficult to create using roles and privileges. Similarly, an Application Server
Provider (ASP) may only need to set up one database to service multiple customers for the same
application, with a VPD policy to ensure that employees of one customer can see only their data.
The DBA can maintain one larger database with a small number of VPD policies instead of an
individual database for each customer.

10-ch10.indd 340 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 341

Using column-level VPD, a DBA can restrict access to a particular column or columns in a
table. The query returns the same number of rows, but if the user’s context does not allow access
to the column or columns, NULL values are returned in the restricted column or columns.

VPD policies can be static, context sensitive, or dynamic. Static and context-sensitive policies
can improve performance dramatically because they do not need to call the policy function every
time a query is run, because it is cached for use later in the session. Before Oracle Database 10g,
all policies were dynamic; in other words, the policy function was run every time a SQL statement
containing the target VPD table was parsed. Static policies are evaluated once during login and
remain cached throughout the session, regardless of application context. With context-sensitive
policies, the policy function is called at statement parse time if the application context changes—
for example, a policy that enforces the business rule that “employees only see their own salary
history, but managers can see all the salaries of their employees.” If the employee executing the
statement has not changed, the policy function need not be called again, thus reducing the
amount of overhead due to VPD policy enforcement.

You create application contexts using the CREATE CONTEXT command, and the package
DBMS_RLS manages VPD policies. The function used to return the predicates to enforce the
policy is created like any other function, except that the function has two required parameters and
returns a VARCHAR2. Later in this chapter, I’ll go into more detail on these functions and we’ll
step through a VPD example using the sample schemas provided during the installation of the
Oracle database.

Application Context
Using the CREATE CONTEXT command, you can create the name of application-defined
attributes that will be used to enforce your security policy, along with the package name for the
functions and procedures used to set the security context for the user session. Here’s an example:

create context hr_security using vpd.emp_access;

create or replace package emp_access as
 procedure set_security_parameters;
end;

In this example, the context name is HR_SECURITY, and the package used to set up the
characteristics or attributes for the user during the session is called EMP_ACCESS. The procedure
SET_SECURITY_PARAMETERS will be called in the logon trigger. Because the context HR_
SECURITY is bound only to EMP_ACCESS, no other procedures can change the session attributes.
This ensures a secure application context that can’t be changed by the user or any other process
after connecting to the database.

In a typical package used to implement application context, you use the built-in context
USERENV to retrieve information about the user session itself. In Table 10-12 are a few of the
more common parameters in the USERENV context.

For example, the following calls to SYS_CONTEXT will retrieve the username and IP_
ADDRESS of the database session:

declare
 username varchar2(30);
 ip_addr varchar2(30);
begin
 username := SYS_CONTEXT('USERENV','SESSION_USER');

10-ch10.indd 341 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

342 Oracle Database 12c DBA Handbook

 ip_addr := SYS_CONTEXT('USERENV','IP_ADDRESS');
 -- other processing here
end;

Similarly, the SYS_CONTEXT function can be used within a SQL SELECT statement:

SQL> select SYS_CONTEXT('USERENV','SESSION_USER') username from dual;

USERNAME

KLYNNE

Using some combination of the USERENV context and authorization information in the
database, we use DBMS_SESSION.SET_CONTEXT to assign values to parameters in the application
context that we create:

dbms_session.set_context('HR_SECURITY','SEC_LEVEL','HIGH');

In this example, the application context variable SEC_LEVEL is set to HIGH in the HR_SECURITY
context. The value can be assigned based on a number of conditions, including a mapping table
that assigns security levels based on user ID.

To ensure that the context variables are set for each session, we can use a logon trigger to call
the procedure associated with the context. As mentioned earlier, the variables in the context can
only be set or changed within the assigned package. Here is a sample logon trigger that calls the
procedure to set up the context:

create or replace trigger vpd.set_security_parameters
 after logon on database
begin
 vpd.emp_access.set_security_parameters;
end;

In this example, the procedure SET_SECURITY_PARAMETERS would make the necessary calls to
DBMS_SESSION.SET_CONTEXT.

Parameter Return Value

CURRENT_SCHEMA The default schema for the session

DB_NAME The name of the database as specified in the initialization parameter
DB_NAME

HOST The name of the host machine from which the user connected

IP_ADDRESS The IP address from which the user connected

OS_USER The operating system account that initiated the database session

SESSION_USER The authenticated database user’s name

TABLE 10-12. Common USERENV Context Parameters

10-ch10.indd 342 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 343

Within Oracle Cloud Control, you can navigate to Application Contexts under the Security
dropdown to set up contexts and policy groups, as demonstrated in Figure 10-8.

Security Policy Implementation
Once the infrastructure is in place to set up the security environment, the next step is to define
the function or functions used to generate the predicate that will be attached to every SELECT
statement or DML command against the protected tables. The function used to implement the
predicate generation has two arguments: the owner of the object being protected, and the name
of the object within the owner’s schema. One function may handle predicate generation for just
one type of operation, such as SELECT, or may be applicable to all DML commands, depending
on how this function is associated with the protected table. The following example shows a
package body containing two functions—one that will be used to control access from SELECT
statements, and the other for any other DML statements:

create or replace package body get_predicates is

 function emp_select_restrict(owner varchar2, object_name varchar2)
 return varchar2 is
 ret_predicate varchar2(1000); -- part of WHERE clause
 begin
 -- only allow certain employees to see rows in the table
 -- . . . check context variables and build predicate

FIGURE 10-8. Oracle Policy Manager

10-ch10.indd 343 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

344 Oracle Database 12c DBA Handbook

 return ret_predicate;
 end emp_select_restrict;

 function emp_dml_restrict(owner varchar2, object_name varchar2)
 return varchar2 is
 ret_predicate varchar2(1000); -- part of WHERE clause
 begin
 -- only allow certain employees to make changes to the table
 -- . . . check context variables and build predicate
 return ret_predicate;
 end emp_dml_restrict;

end; -- package body

Each function returns a string containing an expression that is added to a WHERE clause for a
SELECT statement or a DML command. The user or application never sees the value of this WHERE
clause; it is automatically added to the command at parse time.

The developer must ensure that the functions always return a valid expression. Otherwise, any
access to a protected table will always fail, as in the following example:

SQL> select * from hr.employees;
select * from hr.employees
 *
ERROR at line 1:
ORA-28113: policy predicate has error

The error message does not say what the predicate is, and all users are locked out of the table
until the predicate function is fixed. Tips on how to debug a predicate function are presented later
in this chapter.

Using DBMS_RLS
The built-in package DBMS_RLS contains a number of subprograms that a DBA uses to maintain
the security policies associated with tables, views, and synonyms. In Table 10-13 are the
subprograms available in the DBMS_RLS package. Any user who needs to create or administer
policies must have EXECUTE privileges granted on the package SYS.DBMS_RLS.

In this chapter, we’ll cover the most commonly used subprograms, ADD_POLICY and
DROP_POLICY. The syntax of ADD_POLICY follows:

DBMS_RLS.ADD_POLICY
(
 object_schema IN varchar2 null,
 object_name IN varchar2,
 policy_name IN varchar2,
 function_schema IN varchar2 null,
 policy_function IN varchar2,
 statement_types IN varchar2 null,
 update_check IN boolean false,
 enable IN boolean true,
 static_policy IN boolean false,
 policy_type IN binary_integer null,

10-ch10.indd 344 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 345

 long_predicate IN in Boolean false,
 sec_relevant_cols IN varchar2,
 sec_relevant_cols_opt IN binary_integer null
);

Note that some of the parameters have BOOLEAN default values and that the less commonly
used parameters are near the end of the argument list. This makes the syntax for any particular
call to DBMS_RLS.ADD_POLICY easier to write and understand for the vast majority of cases. The
description and usage for each parameter are provided in Table 10-14.

Using the parameter sec_relevant_cols is handy when you don’t mind if users see part of a
row, just not the columns that might contain confidential information, such as a Social Security
Number or a salary. In our example later in this chapter, we’ll build on the first security policy we
define to filter out sensitive data for most employees of the company.

In the following example, we’re applying a policy named EMP_SELECT_RESTRICT to the table
HR.EMPLOYEES. The schema VPD owns the policy function GET_PREDICATES.EMP_SELECT_
RESTRICT. The policy explicitly applies to SELECT statements on the table; however, with
UPDATE_CHECK set to TRUE, UPDATE, or DELETE commands will also be checked when rows
are updated or inserted into the table.

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',

Subprogram Description

ADD_POLICY Adds a fine-grained access control policy to an object

DROP_POLICY Drops an FGAC policy from an object

REFRESH_POLICY Reparses all cached statements associated with the policy

ENABLE_POLICY Enables or disables an FGAC policy

CREATE_POLICY_GROUP Creates a policy group

ADD_GROUPED_POLICY Adds a policy to a policy group

ADD_POLICY_CONTEXT Adds the context for the current application

DELETE_POLICY_GROUP Deletes a policy group

DROP_GROUPED_POLICY Drops a policy from a policy group

DROP_POLICY_CONTEXT Drops a context for the active application

ENABLE_GROUPED_POLICY Enables or disables a group policy

DISABLE_GROUPED_POLICY Disables a group policy

REFRESH_GROUPED_
POLICY

Reparses all cached statements associated with the policy
group

TABLE 10-13. DBMS_RLS Package Subprograms

10-ch10.indd 345 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

346 Oracle Database 12c DBA Handbook

Parameter Description

object_schema The schema containing the table, view, or synonym to be protected
by the policy. If this value is NULL, the schema of the user calling the
procedure is used.

object_name The name of the table, view, or synonym to be protected by the policy.

policy_name The name of the policy to be added to this object. It must be unique for
each object being protected.

function_schema The schema that owns the policy function; if this value is NULL, the
schema of the user calling the procedure is used.

policy_function The name of the function that will generate the predicate for the policy
against the object_name. If the function is part of the package, the
package name must also be specified here to qualify the policy function
name.

statement_types The statement types to which the policy applies. The allowable values,
separated by commas, can be any combination of SELECT, INSERT,
UPDATE, DELETE, and INDEX. By default, all types are applied except
for INDEX.

update_check For INSERT or UPDATE types, this parameter is optional, and it defaults
to FALSE. If it is TRUE, the policy is also checked for INSERT or UPDATE
statements when a SELECT or DELETE operation is being checked.

enable This parameter defaults to TRUE and indicates if the policy is enabled
when it is added.

static_policy If this parameter is TRUE, the policy produces the same predicate string
for anyone accessing the object, except for the SYS user or any user with
the EXEMPT ACCESS POLICY privilege. The default is FALSE.

policy_type Overrides static_policy if this value is not NULL. Allowable values are
STATIC, SHARED_STATIC, CONTEXT_SENSITIVE, SHARED_CONTEXT_
SENSITIVE, and DYNAMIC.

long_predicate This parameter defaults to FALSE. If it is TRUE, the predicate string can
be up to 32,000 bytes long. Otherwise, the limit is 4000 bytes.

sec_relevant_cols Enforces column-level VPD, new as of Oracle 10g. Applies to tables and
views only. Protected columns are specified in a list with either commas
or spaces as delimiters. The policy is applied only if the specified
sensitive columns are in the query or DML statement. By default, all
columns are protected.

sec_relevant_cols_
opt

Allows rows in a column-level VPD filtered query to still appear in the
result set, with NULL values returned for the sensitive columns. The default
for this parameter is NULL; otherwise, you must specify DBMS_RLS.ALL_
ROWS to show all columns with NULLs for the sensitive columns.

TABLE 10-14. DBMS_RLS.ADD_POLICY Parameters

10-ch10.indd 346 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 347

 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE
);

Because we did not set static_policy, it defaults to FALSE, meaning that the policy is dynamic and
is checked every time a SELECT statement is parsed. This is the only behavior available before
Oracle Database 10g.

Using the subprogram ENABLE_POLICY is an easy way to disable the policy temporarily
without having to rebind the policy to the table later:

dbms_rls.enable_policy(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 enable => FALSE
);

If multiple policies are specified for the same object, an AND condition is added between
each predicate. If you need to have an OR condition between predicates for multiple policies
instead, the policy most likely needs to be revised. The logic for each policy needs to be
combined within a single policy with an OR condition between each part of the predicate.

Creating a VPD
In this section, we’ll step through a complete implementation of a VPD from beginning to end.
This example relies on the sample schemas installed with Oracle Database 12c. To be specific,
we are going to implement an FGAC policy on the HR.EMPLOYEES table to restrict access based
on manager status and the employee’s department number. If you are an employee, you can see
your own row in HR.EMPLOYEES; if you are a manager, you can see the rows for all the
employees who report directly to you.

TIP
If you do not have the sample schemas installed in your database, you
can create them using the scripts found in $ORACLE_HOME/demo/
schema.

Once the sample schemas are in place, we need to create some users in the database who
want to see rows from the table HR.EMPLOYEES.

create user smavris identified by smavris702;
grant connect, resource to smavris;

create user dgrant identified by dgrant507;
grant connect, resource to dgrant;

create user kmourgos identified by kmourgos622;
grant connect, resource to kmourgos;

The user KMOURGOS is the manager for all the stocking clerks, and DGRANT is one of
KMOURGOS’s employees. The user SMAVRIS is the HR representative for the company.

10-ch10.indd 347 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

348 Oracle Database 12c DBA Handbook

In the following three steps, we will grant SELECT privileges on the HR.EMPLOYEES table to
everyone in the database, and we will create a lookup table that maps employee ID numbers to
their database account. The procedure that sets the context variables for the user session will use
this table to assign the employee ID number to the context variable that will be used in the policy
function to generate the predicate.

grant select on hr.employees to public;

create table hr.emp_login_map (employee_id, login_acct)
 as select employee_id, email from hr.employees;

grant select on hr.emp_login_map to public;

Next, we will create a user account called VPD that has the privileges to create contexts and
maintain the policy functions:

create user vpd identified by vpd439;
grant connect, resource, create any context, create public synonym to vpd;

Connecting to the VPD schema, we will create a context called HR_SECURITY and define the
package and procedure used to set the context for the application:

connect vpd/vpd439@dw;

create context hr_security using vpd.emp_access;

create or replace package vpd.emp_access as
 procedure set_security_parameters;
end;

Remember that the procedures in the package VPD.EMP_ACCESS are the only procedures that
can set the context variables. The package body for VPD.EMP_ACCESS follows:

create or replace package body vpd.emp_access is

--
-- At user login, run set_security_parameters to
-- retrieve the user login name, which corresponds to the EMAIL
-- column in the table HR.EMPLOYEES.

--
-- context USERENV is pre-defined for user characteristics such
-- as username, IP address from which the connection is made,
-- and so forth.
--
-- for this procedure, we are only using SESSION_USER
-- from the USERENV context.
--

 procedure set_security_parameters is
 emp_id_num number;

10-ch10.indd 348 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 349

 emp_login varchar2(50);
 begin

 -- database username corresponds to email address in HR.EMPLOYEES
 emp_login := sys_context('USERENV','SESSION_USER');

 dbms_session.set_context('HR_SECURITY','USERNAME',emp_login);

 -- get employee id number, so manager rights can be established
 -- but don't restrict access for other DB users who are not in the
 -- EMPLOYEES table
 begin
 select employee_id into emp_id_num
 from hr.emp_login_map where login_acct = emp_login;

 dbms_session.set_context('HR_SECURITY','EMP_ID',emp_id_num);
 exception
 when no_data_found then
 dbms_session.set_context('HR_SECURITY','EMP_ID',0);
 end;

 -- Future queries will restrict rows based on emp_id

 end; -- procedure

end; -- package body

A few things are worth noting about this procedure. We retrieve the user’s schema by looking
in the USERENV context, which is enabled by default for all users, and assigning it to the variable
USERNAME in the newly created context HR_SECURITY. The other HR_SECURITY context
variable EMP_ID is determined by doing a lookup in the mapping table HR.EMP_LOGIN_MAP.
We don’t want the procedure to terminate with an error if the logged-in user is not in the mapping
table; instead, we assign an EMP_ID of 0, which will result in no access to the table HR.EMPLOYEES
when the predicate is generated in the policy function.

In the next steps, we grant everyone in the database EXECUTE privileges on the package, and
we create a synonym for it to save a few keystrokes any time we need to call it:

grant execute on vpd.emp_access to PUBLIC;
create public synonym emp_access for vpd.emp_access;

To ensure that the context is defined for each user when they log on, we will connect as
SYSTEM and create a logon trigger to set up the variables in the context:

connect system/nolongermanager@dw as sysdba;

create or replace trigger vpd.set_security_parameters
 after logon on database
begin
 vpd.emp_access.set_security_parameters;
end;

10-ch10.indd 349 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

350 Oracle Database 12c DBA Handbook

Because this trigger is fired for every user who connects to the database, it is vitally important that
the code be tested for every class of user, if not every user in the database! If the trigger fails with
an error, regular users cannot log in.

So far, we have our context defined, the procedure used to set up the context variables, and a
trigger that automatically calls the procedure. Logging in as one of our three users defined
previously, we can query the contents of the context:

SQL> connect smavris/smavris702@dw
Connected.

SQL> select * from session_context;

NAMESPACE ATTRIBUTE VALUE
------------------------ ------------------------- ---------------------
HR_SECURITY USERNAME SMAVRIS
HR_SECURITY EMP_ID 203

2 rows selected.

Notice what happens when SMAVRIS tries to impersonate another employee:

SQL> begin
 2 dbms_session.set_context('HR_SECURITY','EMP_ID',100);
 3 end;

begin
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SESSION", line 94
ORA-06512: at line 2

Only the package VPD.EMP_ACCESS is allowed to set or change variables in the context.
The final steps include defining the procedures that will generate the predicate and assigning

one or more of these procedures to the HR.EMPLOYEES table. As the user VPD, which already
owns the context procedures, we’ll set up the package that determines the predicates:

connect vpd/vpd439@dw;

create or replace package vpd.get_predicates as

 -- note -- security function ALWAYS has two parameters,
 -- table owner name and table name

 function emp_select_restrict
 (owner varchar2, object_name varchar2) return varchar2;

 -- other functions can be written here for INSERT, DELETE, and so forth.

end get_predicates;

10-ch10.indd 350 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 351

create or replace package body vpd.get_predicates is

 function emp_select_restrict
 (owner varchar2, object_name varchar2) return varchar2 is

 ret_predicate varchar2(1000); -- part of WHERE clause

 begin
 -- only allow employee to see their row or immediate subordinates
 ret_predicate := 'EMPLOYEE_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID') ||
 ' OR MANAGER_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID');
 return ret_predicate;
 end emp_select_restrict;

end; -- package body

Once we attach the function to a table with DBMS_RLS, it will generate a text string that can
be used in a WHERE clause every time the table is accessed. The string will always look
something like this:

EMPLOYEE_ID = 124 OR MANAGER_ID = 124

As with the packages that set up the context environment, we need to allow users access to
this package:

grant execute on vpd.get_predicates to PUBLIC;
create public synonym get_predicates for vpd.get_predicates;

Last, but certainly not least, we will attach the policy function to the table using the DBMS_
RLS.ADD_POLICY procedure (run by the SYS user):

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',
 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE
);

An employee can access the HR.EMPLOYEES table as before, but they will only see their row
and the rows of the employees who work for them, if any. Logging in as KMOURGOS, we try to
retrieve all the rows of the HR.EMPLOYEES table, but we only see KMOURGOS and the employees
who report directly to him:

SQL> connect kmourgos/kmourgos622@dw;
Connected.

10-ch10.indd 351 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

352 Oracle Database 12c DBA Handbook

SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 124 Kevin Mourgos KMOURGOS ST_MAN 5800 100
 141 Trenna Rajs TRAJS ST_CLERK 3500 124
 142 Curtis Davies CDAVIES ST_CLERK 3100 124
 143 Randall Matos RMATOS ST_CLERK 2600 124
 144 Peter Vargas PVARGAS ST_CLERK 2500 124
 196 Alana Walsh AWALSH SH_CLERK 3100 124
 197 Kevin Feeney KFEENEY SH_CLERK 3000 124
 198 Donald OConnell DOCONNEL SH_CLERK 2600 124
 199 Douglas Grant DGRANT SH_CLERK 2600 124

9 rows selected.

For the user DGRANT, it’s a different story:

SQL> connect dgrant/dgrant507@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

DGRANT gets to see only his own row, because he does not manage anyone else in the company.
In the case of SMAVRIS, we see similar results from the query:

SQL> connect smavris/smavris702@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ------------ ---------- ---------- ------- ----------
 203 Susan Mavris SMAVRIS HR_REP 6500 101

1 row selected.

But wait, SMAVRIS is in the HR department and should be able to see all rows from the table.
In addition, SMAVRIS should be the only person to see the salary information for all employees.
As a result, we need to change our policy function to give SMAVRIS and other employees in the
HR department full access to the HR.EMPLOYEES table; in addition, we can use column-level
restrictions in the policy assignment to return the same number of rows, but with the sensitive
data returned as NULL values.

10-ch10.indd 352 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 353

To facilitate access to the HR.EMPLOYEES table by HR department employees, we first need
to change our mapping table to include the JOB_ID column. If the JOB_ID column has a value of
HR_REP, the employee is in the HR department. We will first disable the policy in effect and
create the new mapping table:

SQL> begin
 2 dbms_rls.enable_policy(
 3 object_schema => 'HR',
 4 object_name => 'EMPLOYEES',
 5 policy_name => 'EMP_SELECT_RESTRICT',
 6 enable => FALSE
 7);
 8 end;
 9 /
PL/SQL procedure successfully completed.

SQL> drop table hr.emp_login_map;
Table dropped.

SQL> create table hr.emp_login_map (employee_id, login_acct, job_id)
 2 as select employee_id, email, job_id from hr.employees;
Table created.

SQL> grant select on hr.emp_login_map to public;
Grant succeeded.

The procedure we’re using to set up the context variables, VPD.EMP_ACCESS, needs another
context variable added that indicates the security level of the user accessing the table. We will
change the SELECT statement and make another call to DBMS_SESSION.SET_CONTEXT, as
follows:

. . .
 emp_job_id varchar2(50);
. . .
 select employee_id, job_id into emp_id_num, emp_job_id
 from hr.emp_login_map where login_acct = emp_login;

 dbms_session.set_context('HR_SECURITY','SEC_LEVEL',
 case emp_job_id when 'HR_REP' then 'HIGH' else 'NORMAL' end);
. . .

Whenever the employee has a job title of HR_REP, the context variable SEC_LEVEL is set to
HIGH instead of NORMAL. In our policy function, we need to check for this new condition as
follows:

create or replace package body vpd.get_predicates is

 function emp_select_restrict
 (owner varchar2, object_name varchar2) return varchar2 is

 ret_predicate varchar2(1000); -- part of WHERE clause

10-ch10.indd 353 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

354 Oracle Database 12c DBA Handbook

 begin
 -- only allow employee to see their row or immediate subordinates,
 -- unless they have high security clearance
 if sys_context('HR_SECURITY','SEC_LEVEL') = 'HIGH' then
 ret_predicate := ''; -- no restrictions in WHERE clause
 else
 ret_predicate := 'EMPLOYEE_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID') ||
 ' OR MANAGER_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID');
 end if;
 return ret_predicate;
 end emp_select_restrict;

end; -- package body

Because the policy is dynamic, the predicate is generated each time a SELECT statement is
executed, so we don’t have to do a policy refresh. When the user SMAVRIS, the HR representative,
runs the query now, she sees all rows in the HR.EMPLOYEES table:

SQL> connect smavris/smavris702@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ----------- ----------- ---------- ---------- ------- ----------
 100 Steven King KLYNNE AD_PRES 24000
 101 Neena Kochhar NKOCHHAR AD_VP 17000 100
. . .
 204 Hermann Baer HBAER PR_REP 10000 101
 205 Shelley Higgins SHIGGINS AC_MGR 12000 101
 206 William Gietz WGIETZ AC_ACCOUNT 8300 205

107 rows selected.

As you might expect, SMAVRIS’s security level within the HR_SECURITY context is HIGH:

SQL> connect smavris/smavris702
Connected.

SQL> select sys_context('HR_SECURITY','SEC_LEVEL') from dual;

SYS_CONTEXT('HR_SECURITY','SEC_LEVEL')
--
HIGH

SQL>

10-ch10.indd 354 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 355

However, DGRANT can still only see his row in the table because his security level within the
HR_SECURITY context is NORMAL:

SQL> connect dgrant/dgrant507@dw;
Connected.

SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

SQL> select sys_context('HR_SECURITY','SEC_LEVEL') from dual;

SYS_CONTEXT('HR_SECURITY','SEC_LEVEL')
--
NORMAL

To enforce the requirement that only HR employees can see salary information, we would
need to make a slight change to the policy function and enable the policy with column-level
restrictions. First, drop the current policy before creating the new one:

DBMS_RLS.DROP_POLICY (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT');

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',
 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE,
 sec_relevant_cols => 'SALARY',
 sec_relevant_cols_opt => dbms_rls.all_rows
);

The last parameter, SEC_RELEVANT_COLS_OPT, specifies the package constant DBMS_RLS
.ALL_ROWS to indicate that we still want to see all rows in our query results, but with the relevant
columns (in this case SALARY) returning NULL values. Otherwise, we would not see any rows
from queries that contain the SALARY column.

Debugging a VPD Policy
Even if you’re not getting an “ORA-28113: policy predicate has error” or an “ORA-00936: missing
expression,” it can be very useful to see the actual predicate being generated at statement parse

10-ch10.indd 355 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

356 Oracle Database 12c DBA Handbook

time. There are a couple of ways to debug your predicates, and both have their advantages and
disadvantages.

The first method uses the dynamic performance views V$SQLAREA and V$VPD_POLICY. As
the names imply, V$SQLAREA contains the SQL statements currently in the shared pool, along
with current execution statistics. The view V$VPD_POLICY lists all the policies currently being
enforced in the database, along with the predicate. Joining the two tables, as in the following
example, gives us the information we need to help debug any problems we’re having with the
query results:

SQL> select s.sql_text, v.object_name, v.policy, v.predicate
 2 from v$sqlarea s, v$vpd_policy v
 3 where s.hash_value = v.sql_hash;

SQL_TEXT OBJECT_NAM POLICY PREDICATE
------------------------- ---------- ------------------- -------------------
select employee_id, first EMPLOYEES EMP_SELECT_RESTRICT EMPLOYEE_ID = 199
_name, last_name, email, OR MANAGER_ID = 199
job_id, salary, manager_i
d from hr.employees

select employee_id, first EMPLOYEES EMP_SELECT_RESTRICT
_name, last_name, email,
job_id, salary, manager_i
d from hr.employees

SQL>

If we add a join to V$SESSION in this query, we can identify which user was running the SQL.
This is especially important in the second SQL statement: there is no predicate applied to the SQL
statement; therefore, all we can infer is that one of the HR employees ran the query. There is a
downside to this method: If the database is extremely busy, the SQL commands may be flushed
from the shared pool for other SQL commands before you get a chance to run this query.

The other method uses the ALTER SESSION command to generate a plain-text trace file
containing much of the information from the previous query. Here are the commands to set up
tracing:

SQL> begin
 2 dbms_rls.refresh_policy;
 3 end;
 4 /
PL/SQL procedure successfully completed.

SQL> alter session set events '10730 trace name context forever, level 12';
Session altered.

Event 10730 is defined for tracing RLS policy predicates. Other common events that can be
traced are 10029 and 10030 for session logon/logoff, 10710 to trace bitmap index access, and

10-ch10.indd 356 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 357

10253 for simulating write errors to the redo log, among others. Once the session is altered, the
user DGRANT runs his query:

SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ----------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

Here’s a look at the bottom part of the trace file located in the directory specified by the
initialization parameter DIAGNOSTIC_DEST in Oracle Database 11g and 12c, USER_DUMP_
DEST in Oracle Database 10g and earlier.

Trace file
/u01/app/oracle/diag/rdbms/dw/dw/trace/dw_ora_31128.trc
Oracle Database 12c Enterprise Edition
 Release 12.1.0.2.0 - Production
With the Partitioning, OLAP, Data Mining and
 Real Application Testing options
ORACLE_HOME = /u01/app/oracle/product/12.1.0.2/db_1
System name: Linux
Node name: dw
Release: 2.6.9-55.0.2.0.1.EL
Version: #1 Mon Jun 25 14:24:38 PDT 2014
Machine: i686
Instance name: dw
Redo thread mounted by this instance: 1
Oracle process number: 40
Unix process pid: 31128, image: oracle@dw (TNS V1-V3)

*** 2014-08-12 12:48:37.852
*** SESSION ID:(120.9389) 2014-08-12 12:48:37.852
*** CLIENT ID:() 2014-08-12 12:48:37.852
*** SERVICE NAME:(SYS$USERS) 2014-08-12 12:48:37.852
*** MODULE NAME:(SQL*Plus) 2014-08-12 12:48:37.852
*** ACTION NAME:() 2014-08-12 12:48:37.852

Logon user : DGRANT
Table/View : HR.EMPLOYEES
Policy name : EMP_SELECT_RESTRICT
Policy function: VPD.GET_PREDICATES.EMP_SELECT_RESTRICT
RLS view :
SELECT "EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER",
"HIRE_DATE","JOB_ID","SALARY","COMMISSION_PCT","MANAGER_ID",
"DEPARTMENT_ID" FROM "HR"."EMPLOYEES"
"EMPLOYEES" WHERE (EMPLOYEE_ID = 199 OR MANAGER_ID = 199)

10-ch10.indd 357 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

358 Oracle Database 12c DBA Handbook

The user’s original SQL statement plus the appended predicate are clearly shown in the trace
file. The downside to using this method is that while a user may be able to access dynamic
performance views, a developer might not normally have access to the user dump directory on
the server itself. As a result, the DBA may need to be involved when trying to debug predicate
problems.

Be sure to turn off tracing when you’re done debugging to reduce the overhead and disk
space associated with tracing operations (or just log off!):

SQL> alter session set events '10730 trace name context off';
Session altered.

Auditing
Oracle uses a number of different auditing methods to monitor what kinds of privileges are being
used as well as what objects are being accessed. Auditing does not prevent the use of these
privileges, but it can provide useful information to uncover abuse or misuse of privileges.

Table 10-15 summarizes the different types of auditing in an Oracle database.
In the next few sections, we’ll review how a DBA can manage audits of both system and

object privilege use. When the granularity is required, a DBA can use fine-grained auditing to
monitor access to certain rows or columns of a table, not just whether the table was accessed.

Auditing Locations
Audit records can be sent to either the SYS.AUD$ database table or an operating system file. To
enable auditing and specify the location where audit records are recorded, the initialization parameter
AUDIT_TRAIL is set to one of the following values:

Parameter Value Action

NONE, FALSE Disable auditing.

OS Enable auditing. Send audit records to an operating system file.

DB, TRUE Enable auditing. Send audit records to the SYS.AUD$ table.

DB_EXTENDED Enable auditing. Send audit records to the SYS.AUD$ table, and record
additional information in the CLOB columns SQLBIND and SQLTEXT.

XML Enable auditing and write all audit records in XML format.

EXTENDED Enable auditing and record all columns in the audit trail, including
SQLTEXT and SQLBIND values.

The parameter AUDIT_TRAIL is not dynamic; the database must be shut down and restarted
for a change in the AUDIT_TRAIL parameter to take effect. When auditing to the SYS.AUD$ table,
the size of the table should be carefully monitored so as not to impact the space requirements for
other objects in the SYS tablespace. It is recommended that the rows in SYS.AUD$ be periodically
archived and the table truncated. Oracle provides the role DELETE_CATALOG_ROLE to use with
a special account in a batch job to archive and truncate the audit table.

10-ch10.indd 358 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 359

As of Oracle Database 12c, system security administration is simplified by a unified audit data
trail. In previous releases, you would have to go to each of the following tables to get audit
information:

 ■ SYS.AUD$ Database audit trail

 ■ SYS.FGA_LOG$ Fine-grained auditing

 ■ DVSYS.AUDIT_TRAIL$ Database Vault audit trail

The new unified audit trail is named, not surprisingly, UNIFIED_AUDIT_TRAIL. This new audit
trail has its own schema as well: the AUDSYS schema is used exclusively for the unified audit trail.
In addition, two new roles, AUDIT_ADMIN and AUDIT_VIEWER, further refine separation of duties.

SQL> describe unified_audit_trail
 Name Null? Type
 --- -------- --------------------------
--
 AUDIT_TYPE VARCHAR2(64)
 SESSIONID NUMBER
 PROXY_SESSIONID NUMBER
 OS_USERNAME VARCHAR2(30)
 USERHOST VARCHAR2(128)
 TERMINAL VARCHAR2(30)
 INSTANCE_ID NUMBER
 DBID NUMBER
 AUTHENTICATION_TYPE VARCHAR2(1024)
 DBUSERNAME VARCHAR2(30)
. . .
RMAN_OPERATION VARCHAR2(20)
 RMAN_OBJECT_TYPE VARCHAR2(20)

Auditing Type Description

Statement auditing Audits SQL statements by the type of statement regardless of the
specific schema objects being accessed. One or more users can also
be specified in the database to be audited for a particular statement.

Privilege auditing Audits system privileges, such as CREATE TABLE or ALTER INDEX. As
with statement auditing, privilege auditing can specify one or more
particular users as the target of the audit.

Schema object
auditing

Audits specific statements operating on a specific schema object (for
example, UPDATE statements on the DEPARTMENTS table). Schema
object auditing always applies to all users in the database.

Fine-grained auditing Audits table access and privileges based on the content of the
objects being accessed. Uses the package DBMS_FGA to set up a
policy on a particular table.

TABLE 10-15. Auditing Types

10-ch10.indd 359 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

360 Oracle Database 12c DBA Handbook

 RMAN_DEVICE_TYPE VARCHAR2(5)
 DP_TEXT_PARAMETERS1 VARCHAR2(512)
 DP_BOOLEAN_PARAMETERS1 VARCHAR2(512)
 DIRECT_PATH_NUM_COLUMNS_LOADED NUMBER
SQL>

The columns in UNIFIED_AUDIT_TRAIL are much what you’d expect as an amalgam of the
existing individual audit tables. There is no CON_ID column as you might see for a data
dictionary view in a multitenant environment; however, auditing-related procedures such as
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL and FLUSH_UNIFIED_AUDIT_TRAIL let you
specify a single container or all containers when operating on the audit trail rows.

Statement Auditing
All types of auditing use the AUDIT command to turn on auditing and NOAUDIT to turn off
auditing. For statement auditing, the format of the AUDIT command looks something like the
following:

AUDIT sql_statement_clause BY {SESSION | ACCESS}
 WHENEVER [NOT] SUCCESSFUL;

The sql_statement_clause contains a number of different pieces of information, such as the type
of SQL statement we want to audit and who we are auditing.

In addition, we want to either audit the action every time it happens (BY ACCESS) or only
once (BY SESSION). The default is BY SESSION.

Sometimes we want to audit successful actions—statements that did not generate an error
message. For these statements, we add WHENEVER SUCCESSFUL. Other times we only care if
the commands using the audited statements fail, either due to privilege violations, running out of
space in the tablespace, or syntax errors. For these we use WHENEVER NOT SUCCESSFUL.

For most categories of auditing methods, we can specify ALL instead of individual statement
types or objects if we truly want all types of access to a table or any privileges by a certain user to
be audited.

The types of statements we can audit, with a brief description of what statements are covered
in each category, are listed in Table 10-16. If ALL is specified, any statement in this list is audited.
However, the types of statements in Table 10-17 do not fall into the ALL category when enabling
auditing; they must be explicitly specified in any AUDIT commands.

Some examples will help make all these options a lot clearer. In our sample database, the user
KLYNNE has privileges on all of the tables in the HR schema and other schemas. KLYNNE is
allowed to create indexes on some of these tables, but we want to know when the indexes are
created in case we have some performance issues related to execution plans changing. We can
audit index creation by KSHELTON with the following command:

SQL> audit index by klynne;
Audit succeeded.

Later that day, KLYNNE creates an index on the HR.JOBS table:

SQL> create index job_title_idx on hr.jobs(job_title);
Index created.

10-ch10.indd 360 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 361

Statement Option SQL Operations

ALTER SYSTEM All ALTER SYSTEM options such as dynamically altering
instance parameters, switching to the next log file group, and
terminating user sessions.

CLUSTER CREATE, ALTER, DROP, or TRUNCATE a cluster.

CONTEXT CREATE or DROP a CONTEXT.

DATABASE LINK CREATE or DROP a database link.

DIMENSION CREATE, ALTER, or DROP a dimension.

DIRECTORY CREATE or DROP a directory object.

INDEX CREATE, ALTER, or DROP an index.

MATERIALIZED VIEW CREATE, ALTER, or DROP a materialized view.

NOT EXISTS Failure of SQL statement due to nonexistent referenced
objects.

PROCEDURE CREATE or DROP FUNCTION, LIBRARY, PACKAGE,
PACKAGE BODY, or PROCEDURE.

PROFILE CREATE, ALTER, or DROP a profile.

PUBLIC DATABASE LINK CREATE or DROP a public database link.

PUBLIC SYNONYM CREATE or DROP a public synonym.

ROLE CREATE, ALTER, DROP, or SET a role.

ROLLBACK SEGMENT CREATE, ALTER, or DROP a rollback segment.

SEQUENCE CREATE or DROP a sequence.

SESSION Logons and logoffs.

SYNONYM CREATE or DROP synonyms.

SYSTEM AUDIT AUDIT or NOAUDIT of system privileges.

SYSTEM GRANT GRANT or REVOKE system privileges and roles.

TABLE CREATE, DROP, or TRUNCATE a table.

TABLESPACE CREATE, ALTER, or DROP a tablespace.

TRIGGER CREATE, ALTER (enable/disable), DROP triggers; ALTER
TABLE with either ENABLE ALL TRIGGERS or DISABLE ALL
TRIGGERS.

TYPE CREATE, ALTER, and DROP types and type bodies.

USER CREATE, ALTER, or DROP a user.

VIEW CREATE or DROP a view.

TABLE 10-16. Auditable Statements Included in the ALL Category

10-ch10.indd 361 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

362 Oracle Database 12c DBA Handbook

Checking the audit trail in the data dictionary view DBA_AUDIT_TRAIL, we see that
KSHELTON did indeed create an index at 5:15 p.m. on August 12th:

SQL> select username, to_char(timestamp,'MM/DD/YY HH24:MI') Timestamp,
 2 obj_name, action_name, sql_text from dba_audit_trail
 3 where username = 'KLYNNE';

USERNAME TIMESTAMP OBJ_NAME ACTION_NAME SQL_TEXT
---------- -------------- ---------------- ---------------- ----------------
KSHELTON 08/12/14 17:15 JOB_TITLE_IDX CREATE INDEX create index hr.
 job_title_idx on
 hr.jobs(job_title)

1 row selected.

Statement Option SQL Operations

ALTER SEQUENCE Any ALTER SEQUENCE command.

ALTER TABLE Any ALTER TABLE command.

COMMENT TABLE Add a comment to a table, view, materialized view, or any of
their columns.

DELETE TABLE Delete rows from a table or view.

EXECUTE PROCEDURE Execute a procedure, function, or any variables or cursors
within a package.

GRANT DIRECTORY GRANT or REVOKE a privilege on a DIRECTORY object.

GRANT PROCEDURE GRANT or REVOKE a privilege on a procedure, function, or
package.

GRANT SEQUENCE GRANT or REVOKE a privilege on a sequence.

GRANT TABLE GRANT or REVOKE a privilege on a table, view, or materialized
view.

GRANT TYPE GRANT or REVOKE a privilege on a TYPE.

INSERT TABLE INSERT INTO a table or view.

LOCK TABLE LOCK TABLE command on a table or view.

SELECT SEQUENCE Any command referencing the sequence’s CURRVAL or
NEXTVAL.

SELECT TABLE SELECT FROM a table, view, or materialized view.

UPDATE TABLE Execute UPDATE on a table or view.

TABLE 10-17. Explicitly Specified Statement Types

10-ch10.indd 362 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 363

NOTE
Starting with Oracle Database 11g, the columns SQL_TEXT and SQL_
BIND in DBA_AUDIT_TRAIL are populated only if the initialization
parameter AUDIT_TRAIL is set to DB_EXTENDED. By default, the
value of AUDIT_TRAIL is DB.

To turn off auditing for KLYNNE on the HR.JOBS table, we use the NOAUDIT command, as
follows:

SQL> noaudit index by klynne;
Noaudit succeeded.

We also may wish to routinely audit both successful and unsuccessful logins. This requires
two AUDIT commands:

SQL> audit session whenever successful;
Audit succeeded.
SQL> audit session whenever not successful;
Audit succeeded.

Reviewing the audit trail reveals one failed login attempt by the user RJB on August 10th:

SQL> select username, to_char(timestamp,'MM/DD/YY HH24:MI') Timestamp,
 2 obj_name, returncode, action_name, sql_text from dba_audit_trail
 3 where action_name in ('LOGON','LOGOFF')
 4 and username in ('SCOTT','RJB','KLYNNE')
 5 order by timestamp desc;

USERNAME TIMESTAMP OBJ_NAME RETURNCODE ACTION_NAME SQL_TEXT
---------- -------------- ---------- ---------- ---------------- ----------
KSHELTON 08/12/14 17:04 0 LOGON
SCOTT 08/12/14 16:10 0 LOGOFF
RJB 08/12/14 11:35 0 LOGON
RJB 08/12/14 11:35 0 LOGON
RJB 08/11/14 22:51 0 LOGON
RJB 08/11/14 22:51 0 LOGOFF
RJB 08/11/14 21:55 0 LOGOFF
RJB 08/11/14 21:40 0 LOGOFF
RJB 08/10/14 22:52 0 LOGOFF
RJB 08/10/14 22:52 0 LOGOFF
RJB 08/10/14 22:52 1017 LOGON
RJB 08/10/14 12:23 0 LOGOFF
SCOTT 08/03/14 04:18 0 LOGOFF

13 rows selected.

The RETURNCODE represents the ORA error message. An ORA-1017 message indicates that an
incorrect password was entered. Note that if we are just interested in logons and logoffs, we
could use the DBA_AUDIT_SESSION view instead.

Statement auditing also includes startup and shutdown operations. Although we can audit the
command SHUTDOWN IMMEDIATE in the SYS.AUD$ table, it is not possible to audit the startup

10-ch10.indd 363 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

364 Oracle Database 12c DBA Handbook

command in SYS.AUD$ because the database has to be started before rows can be added to this
table. For these cases, we can look in the directory specified in the initialization parameter
AUDIT_FILE_DEST to see a record of a startup operation performed by a system administrator (by
default this parameter contains $ORACLE_HOME/admin/dw/adump). Here is a text file created
when the database was started with the startup command:

Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - Production
With the Partitioning, OLAP, Data Mining
 and Real Application Testing options
ORACLE_HOME = /u01/app/oracle/product/12.1.0/db_1
System name: Linux
Node name: dw
Release: 2.6.9-55.0.2.0.1.EL
Version: #1 Mon Jun 25 14:24:38 PDT 2014
Machine: i686
Instance name: dw
Redo thread mounted by this instance: 1
Oracle process number: 44
Unix process pid: 28962, image: oracle@dw (TNS V1-V3)

Sun Aug 12 11:57:36 2014
ACTION : 'CONNECT'
DATABASE USER: '/'
PRIVILEGE : SYSDBA
CLIENT USER: oracle
CLIENT TERMINAL: pts/2
STATUS: 0

In this example, the database was started by a user connected as oracle on the host system
and connected to the instance with operating system authentication. We will cover additional
system administrator auditing issues in the next section.

Privilege Auditing
Auditing system privileges has the same basic syntax as statement auditing, except that system
privileges are specified in the sql_statement_clause instead of statements.

For example, we may wish to grant the ALTER TABLESPACE privilege to all our DBAs, but we
want to generate an audit record when this happens. The command to enable auditing on this
privilege looks similar to statement auditing:

SQL> audit alter tablespace by access whenever successful;
Audit succeeded.

Every time the ALTER TABLESPACE privilege is successfully used, a row is added to SYS.AUD$.
Special auditing is available for system administrators who use the SYSDBA and SYSOPER

privileges or connect with the SYS user. To enable this extra level of auditing, set the initialization
parameter AUDIT_SYS_OPERATIONS to TRUE. The audit records are sent to the same location as
the operating system audit records; therefore, this location is operating system dependent. All SQL
statements executed while using one of these privileges, as well as any SQL statements executed
as the user SYS, are sent to the operating system audit location.

10-ch10.indd 364 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 365

Schema Object Auditing
Auditing access to various schema objects looks similar to statement and privilege auditing:

AUDIT schema_object_clause BY {SESSION | ACCESS}
 WHENEVER [NOT] SUCCESSFUL;

The schema_object_clause specifies a type of object access and the object being accessed.
Fourteen different types of operations on specific objects can be audited; they are listed in Table
10-18.

If we wish to audit all INSERT and UPDATE commands on the HR.JOBS table, regardless of
who is doing the update, and every time the action occurs, we can use the AUDIT command as
follows:

SQL> audit insert, update on hr.jobs by access whenever successful;
Audit successful.

The user KLYNNE decides to add two new rows to the HR.JOBS table:

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 2 values ('IN_CFO','Internet Chief Fun Officer', 7500, 50000);
1 row created.

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)

Object Option Description

ALTER Alters a table, sequence, or materialized view

AUDIT Audits commands on any object

COMMENT Adds comments to tables, views, or materialized views

DELETE Deletes rows from a table, view, or materialized view

EXECUTE Executes a procedure, function, or package

FLASHBACK Performs flashback operation on a table or view

GRANT Grants privileges on any type of object

INDEX Creates an index on a table or materialized view

INSERT Inserts rows into a table, view, or materialized view

LOCK Locks a table, view, or materialized view

READ Performs a read operation on the contents of a DIRECTORY object

RENAME Renames a table, view, or procedure

SELECT Selects rows from a table, view, sequence, or materialized view

UPDATE Updates a table, view, or materialized view

TABLE 10-18. Object Auditing Options

10-ch10.indd 365 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

366 Oracle Database 12c DBA Handbook

 2 values ('OE_VLD','Order Entry CC Validation', 5500, 20000);
1 row created.

Looking in the DBA_AUDIT_TRAIL view, we see the two INSERT commands in KLYNNE’s
session:

USERNAME TIMESTAMP OWNER OBJ_NAME ACTION_NAME
SQL_TEXT
---------- -------------- -------- ---------- ---------------

KLYNNE 08/12/14 22:54 HR JOBS INSERT
insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 values ('IN_CFO','Internet Chief Fun Officer', 7500, 50000);
KSHELTON 08/12/14 22:53 HR JOBS INSERT
insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 values ('OE_VLD','Order Entry CC Validation', 5500, 20000);
KSHELTON 08/12/14 22:51 LOGON

3 rows selected.

Fine-Grained Auditing
Introduced in Oracle9i, auditing became much more focused and precise with the introduction of
fine-grained object auditing, or FGA. FGA is implemented by a PL/SQL package called DBMS_FGA.

With standard auditing, you can easily find out what objects were accessed and by whom,
but you don’t know which columns or rows were accessed. Fine-grained auditing addresses this
problem by not only specifying a predicate, or WHERE clause, for which rows need to be
accessed, but also by specifying a column or columns in the table being accessed. This can
dramatically reduce the number of audit table entries by only auditing access to the table if it
accesses certain rows and columns.

The package DBMS_FGA has four procedures:

 ■ ADD_POLICY Adds an audit policy using a predicate and audit column

 ■ DROP_POLICY Drops the audit policy

 ■ DISABLE_POLICY Disables the audit policy but keeps the policy associated with the
table or view

 ■ ENABLE_POLICY Enables a policy

The user TAMARA usually accesses the HR.EMPLOYEES table on a daily basis to look up
employee e-mail addresses. The system administrators suspect that TAMARA is viewing salary
information for managers, so they set up an FGA policy to audit any access to the SALARY
column for anyone who is a manager:

begin
 dbms_fga.add_policy(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',

10-ch10.indd 366 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 367

 policy_name => 'SAL_SELECT_AUDIT',
 audit_condition => 'instr(job_id,''_MAN'') > 0',
 audit_column => 'SALARY'
);
end;

Audit records for fine-grained auditing can be accessed with the data dictionary view DBA_
FGA_AUDIT_TRAIL. If you typically need to see both standard audit rows and FGA rows, the data
dictionary view DBA_COMMON_AUDIT_TRAIL combines rows from both types of audits.

To continue our example, the user TAMARA runs two SQL queries as follows:

SQL> select employee_id, first_name, last_name, email from hr.employees
 2 where employee_id = 114;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
----------- -------------------- ------------------------- --------------
 114 Den Raphaely DRAPHEAL

1 row selected.

SQL> select employee_id, first_name, last_name, salary from hr.employees
 2 where employee_id = 114;

EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY
----------- -------------------- ------------------------- ----------
 114 Den Raphaely 11000

1 row selected.

The first query accesses a manager, but not the SALARY column. The second query is the
same as the first, but does access the SALARY column and therefore triggers the FGA policy, thus
generating one, and only one, row in the audit trail:

SQL> select to_char(timestamp,'mm/dd/yy hh24:mi') timestamp,
 2 object_schema, object_name, policy_name, statement_type
 3 from dba_fga_audit_trail
 4 where db_user = 'TAMARA';

TIMESTAMP OBJECT_SCHEMA OBJECT_NAME POLICY_NAME STATEMENT_TYPE
-------------- -------------- -------------- ---------------- --------------
08/12/14 18:07 HR EMPLOYEES SAL_SELECT_AUDIT SELECT

1 row selected.

Because we set up fine-grained access control in our VPD example earlier in this chapter to
prevent unauthorized use of the SALARY column, we need to double-check our policy functions
to make sure that SALARY information is still being restricted correctly. Fine-grained auditing,
along with standard auditing, is a good way to ensure that our authorization policies are set up
correctly in the first place.

10-ch10.indd 367 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

368 Oracle Database 12c DBA Handbook

Auditing-Related Data Dictionary Views
Table 10-19 contains the data dictionary views related to auditing.

Protecting the Audit Trail
The audit trail itself needs to be protected, especially if non-system users must access the table
SYS.AUD$. The built-in role DELETE_ANY_CATALOG is one of the ways that non-SYS users can
have access to the audit trail (for example, to archive and truncate the audit trail to ensure that it
does not impact the space requirements for other objects in the SYS tablespace).

To set up auditing on the audit trail itself, connect as SYSDBA and run the following
command:

SQL> audit all on sys.aud$ by access;
Audit succeeded.

Now, all actions against the table SYS.AUD$, including SELECT, INSERT, UPDATE, and
DELETE, will be recorded in SYS.AUD$ itself. But, you may ask, what if someone deletes the audit
records identifying access to the table SYS.AUD$? The rows in the table are deleted, but then
another row is inserted, recording the deletion of the rows. Therefore, there will always be some
evidence of activity, intentional or accidental, against the SYS.AUD$ table. In addition, if AUDIT_
SYS_OPERATIONS is set to TRUE, any sessions using AS SYSDBA, AS SYSOPER, or connecting as
SYS itself will be logged in the operating system audit location, which presumably even the

Data Dictionary View Description

AUDIT_ACTIONS Contains descriptions for audit trail action type codes, such as
INSERT, DROP VIEW, DELETE, LOGON, and LOCK.

DBA_AUDIT_OBJECT Audit trail records related to objects in the database.

DBA_AUDIT_POLICIES Fine-grained auditing policies in the database.

DBA_AUDIT_SESSION All audit trail records related to CONNECT and DISCONNECT.

DBA_AUDIT_STATEMENT Audit trail entries related to GRANT, REVOKE, AUDIT,
NOAUDIT, and ALTER SYSTEM commands.

DBA_AUDIT_TRAIL Contains standard audit trail entries. USER_AUDIT_TRAIL
contains audit rows for connected user only.

DBA_FGA_AUDIT_TRAIL Audit trail entries for fine-grained auditing policies.

DBA_COMMON_AUDIT_
TRAIL

Combines standard and fine-grained auditing rows into one
view.

DBA_OBJ_AUDIT_OPTS Auditing options in effect for database objects.

DBA_PRIV_AUDIT_OPTS Auditing options in effect for system privileges.

DBA_STMT_AUDIT_OPTS Auditing options in effect for statements.

TABLE 10-19. Auditing-Related Data Dictionary Views

10-ch10.indd 368 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 10: Database Security and Auditing 369

Oracle DBAs would not have access to. As a result, we have many safeguards in place to ensure
that we record all privileged activity in the database, along with any attempts to hide this activity!

Data Encryption Techniques
Data encryption can enhance security both inside and outside the database. A user may have a
legitimate need for access to most columns of a table, but if one of the columns is encrypted and
the user does not know the encryption key, the information is not usable. The same concern is
true for information that needs to be sent securely over a network. The techniques I presented so
far in this chapter, including authentication, authorization, and auditing, ensure legitimate access
to data from a database user but do not prevent access to an operating system user that may have
access to the operating system files that compose the database itself.

Users can leverage one of two methods for data encryption: using the package DBMS_
CRYPTO, an Oracle Database 10g replacement for the package DBMS_OBFUSCATION_
TOOLKIT found in Oracle9i, and transparent data encryption, which stores encryption keys
globally and includes methods for encrypting entire tablespaces.

DBMS_CRYPTO Package
Introduced in Oracle 10g, the package DBMS_CRYPTO replaces DBMS_OBFUSCATION_
TOOLKIT and includes the Advanced Encryption Standard (AES) encryption algorithm, which
replaces the Data Encryption Standard (DES).

Procedures within DBMS_CRYPTO can generate private keys for you, or you can specify and
store the key yourself. In contrast to DBMS_OBFUSCATION_TOOLKIT, which could only encrypt
RAW or VARCHAR2 datatypes, DBMS_CRYPTO can encrypt BLOB and CLOB types.

Transparent Data Encryption
Transparent data encryption is a key-based access control system that relies on an external
module for enforcing authorization. Each table with encrypted columns has its own encryption
key, which in turn is encrypted by a master key created for the database and stored encrypted
within the database; the master key is not stored in the database itself. The emphasis is on the
word transparent—authorized users do not have to specify passwords or keys when accessing
encrypted columns in a table or in an encrypted tablespace.

Although transparent data encryption has been significantly enhanced in Oracle Database
11g, there are still a few restrictions on its use; for example, you cannot encrypt columns using
foreign key constraints, since every table has a unique column encryption key. This should
typically not be an issue, since keys used in foreign key constraints should be system-generated,
unique, and unintelligent. Business keys and other business attributes of a table are more likely
candidates for encryption and usually do not participate in foreign key relationships with other
tables. Other database features and types are also not eligible for transparent data encryption:

 ■ Index types other than B-tree

 ■ Range-scan searching of indexes

 ■ BFILEs (external objects)

 ■ Materialized view logs

 ■ Synchronous Change Data Capture

10-ch10.indd 369 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

370 Oracle Database 12c DBA Handbook

 ■ Transportable tablespaces

 ■ Original import/export utilities (Oracle9i and earlier)

Alternatively, you can use DBMS_CRYPTO to manually encrypt these types and features.

NOTE
As of Oracle Database 11g, internal large objects such as BLOB and
CLOB types can now be encrypted.

Summary
Auditing database access effectively and efficiently is key to a secure and accountable database
environment. The database administrator (or security administrator in an enterprise with fine-
grained separation of duties) needs to know who accessed the database, when they accessed it,
and what they did. More importantly, the DBA must ensure that the wrong people can’t get into
the database in the first place.

If the database user has already authenticated with the operating system, the network, and the
firewall, then the database settings will determine if they are authorized to connect to the database
and access a particular schema, table, or column.

Permissions on the database can be as coarse as granting some users blanket permissions to
view or modify any table; however, you’ll more likely want those permissions to be much more
granular. Therefore, you can control access to database objects in an application schema with
literally hundreds of privileges and control over which columns a database user can see in a
table. To further refine (and audit) access to rows of a table, you can leverage Oracle’s Virtual
Private Database (VPD) and transparently limit and control access to sensitive data regardless of
how the table is accessed.

Once a user is authenticated and authorized to access a database object, you still might want
to know what they accessed and when. With each new feature of Oracle Database comes a new
auditing method and its associated audit trail location. Oracle Database 12c simplifies the
navigation of the plethora of audit trails by introducing a unified audit trail—one-stop shopping
for all your security auditing needs.

10-ch10.indd 370 13/05/15 10:01 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 371

CHAPTER
11

Multitenant Database
Architecture

11-ch11.indd 371 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

372 Oracle Database 12c DBA Handbook

Using a database appliance such as Oracle Exadata helps database administrators
consolidate dozens, if not hundreds, of databases in one server room rack. Managing
each of these databases separately, however, is still a challenge from a resource

management perspective. Instances for each of the databases may use their memory and CPU
resources inefficiently, preventing even more databases from being deployed to the server. With
pluggable databases (PDBs), introduced in Oracle Database 12c, you can leverage your database
resources more efficiently because many different databases (each consisting of a collection of
schemas) can coexist within a single container database (CDB). A CDB is also known as a
multitenant container database.

Pluggable databases make database administration simpler for a DBA. Performance metrics
are gathered for all PDBs as a whole. In addition, the DBA needs to manage only one SGA, and
not one for each PDB. Fewer database patches need to be applied as well: Only one CDB needs
to be patched instead of having to patch each PDB within the CDB. With PDBs, hardware is used
more efficiently, and the DBA can manage many more databases in the same amount of time.

Developers, network administrators, storage administrators, and database application users
will rarely interact with a PDB or know they are using a PDB. One day the PDB may be plugged
into container database CDB01 and the next day into container database CDB02, which is the
point: A CDB acts just like any other database except that it decreases the maintenance effort for
the DBA and provides generally higher availability for database users.

Even though the complexity of a CDB is higher than that of a traditional (pre-12c) database,
the tools to manage CDBs and PDBs keep up with the complexity. Enterprise Manager Cloud
Control 12c Release 3 fully supports the monitoring of CDBs and PDBs; Oracle SQL Developer
version 4.0 and newer have a DBA module to perform most if not all of the operations you’ll
typically perform in a CDB environment.

This chapter covers several high-level topics; specifically, it gives an overview of the multitenant
architecture and explains how PDBs are provisioned, how you manage security, and how you
perform backup and recovery using RMAN. Your first decision will be whether you want to create
a multitenant container at all—in most cases, you will. It’s easy to fix any mistakes you make by
over-provisioning a CDB: Just unplug one or more PDBs from the over-provisioned CDB and plug
it or them back into another CDB on the same or different server. In addition to moving a PDB to
another container, I’ll show you how to create a new one from a seed template and clone an
existing PDB.

The first part of the chapter sounds a lot like an introductory Oracle database administration
course. You will find out how to set up the connections to a database, start up and shut down a
database, and set the parameters for a database. The difference is that you’re doing those things
for the container (CDB) as a whole and differently for each PDB within the CDB. You’ll find out
that some database parameters apply only at the CDB level, whereas other parameters can be set
at the PDB level. Once you start up a CDB, you can have each PDB in a different state. Some PDBs
will remain in the MOUNT state while the rest can be OPEN as READ ONLY or READ WRITE.

Managing permanent and temporary tablespaces in a multitenant environment is similar to
managing those tablespace types in a non-CDB environment. The SYSTEM and SYSAUX tablespaces
exist in the CDB (CDB$ROOT) and in each PDB with some SYSTEM and SYSAUX objects shared
from the CDB to the individual PDBs. Otherwise, the CDB and each PDB can have its own segregated
permanent tablespaces. For temporary tablespaces, every PDB can use the temporary tablespace
in the CDB. However, if a particular PDB has specific temporary tablespace requirements that

11-ch11.indd 372 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 373

might not operate efficiently with the CDB’s shared temporary tablespace, then that PDB can have
its own temporary tablespace.

Security is important in any database environment, and a multitenant database environment is no
exception. A DBA in a multitenant environment must understand the distinction between common
and local users along with the roles and privileges assigned to each. Much like an application user
has no knowledge of whether a database is a PDB or a non-CDB, a DBA can have a local user
account in a PDB and manage that PDB with no privileges or visibility outside of the PDB.

In a multitenant environment, you still need to perform backups and recoveries, but you’ll use
the same tools as in a non-CDB environment and be able to back up more databases in less time
than in a non-CDB environment. As in any database environment, you need to back up and recover
a CDB or PDB. The methods you use to back up the entire CDB or just a PDB are slightly different
and, as you’d expect, have different impacts.

Understanding the Multitenant Architecture
In this section, I’ll expand on some of the concepts outlined in the chapter introduction and
demonstrate the mechanics of creating a new CDB using several different tools. Once the CDB
is in place, you can create a new PDB by cloning the seed database (PDB$SEED).

Databases created in Oracle 11g are not left out, though. You can either upgrade the pre-12c
database to 12.1 and then plug it into an existing CDB or use Data Pump export (expdp) on the
11g database and then use Data Pump import (impdp) on a new PDB.

In a multitenant environment, a database can be one of three types: a standalone database
(non-CDB), a container database, or a pluggable database. In the following sections, I’ll describe
the multitenant architecture in greater detail along with the many advantages of using a multitenant
environment.

Leveraging Multitenant Databases
Previous to Oracle Database 12c, the only type of database you could create was a non-CDB
(as it’s called now; the concept of a CDB or PDB had not yet been conceived then) either as a
standalone database or as part of a cluster (Real Applications Cluster). Even if you ran multiple
non-CDB instances on the same server, each instance would have its own memory structures
(SGA, PGA, and so forth) and database files (storage structures).

Even with the efficient management of memory and disk space within each database, there is
a duplication of memory structures and database objects. In addition, when upgrading a database
version, at least one software upgrade must be performed on each server containing an application.
With more efficient use of memory and disk via multitenant databases, more applications can be
consolidated onto a much smaller number of servers or even one server.

In addition to consolidating multiple data dictionaries into a single CDB, new databases can
be provisioned quickly within the container by copying a subset of objects specific to the PDB. If
you want to upgrade only one PDB to a new version of the database, you can unplug the database
from the current CDB and plug it into a new CDB that is at the correct version in the time it takes
to export and import the PDB’s metadata.

Using PDBs makes efficient use of resources while still maintaining a separation of duties and
application isolation.

11-ch11.indd 373 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

374 Oracle Database 12c DBA Handbook

NOTE
The multitenant architecture includes both the container database
and the pluggable databases that run inside the container database.
A non-CDB does not mean a pluggable database but instead a single
traditional Oracle database regardless of version, sometimes referred
to as a standalone database. Oracle’s documentation may refer to
a user container, which is the same as a PDB. A PDB can be either
plugged in or unplugged and will always be a PDB.

Understanding Multitenant Configurations
Given the multitenant architecture of Oracle Database 12c, you can leverage CDBs and PDBs in
a number of ways:

 ■ Multitenant configuration A single CDB that contains zero, one, or more PDBs at any
given time

 ■ Single-tenant configuration A single CDB with a single PDB (licensing for the
multitenant option is not required)

 ■ Non-CDB Oracle 11g architecture (standalone database and instance)

Figure 11-1 shows a sample of a multitenant configuration with one CDB and one non-CDB
instance. The CDB instance has three PDBs.

The following sections describe the three types of containers and databases: system containers
(CDBs), user containers (PDBs), and standalone databases (non-CDBs).

FIGURE 11-1. Multitenant architecture with a CDB and a non-CDB

PDB
Services

PDB

Non-CDB
Instance

Non-CDB

CDB

CDB
Instance 1prod

PRODDB

pdba

pdbb

pdbc

1cdb1

PDBA PDBB PDBC

CDB1

11-ch11.indd 374 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 375

System Container Database Architecture
Creating a system container (in other words, a CDB) is as easy as checking a radio button in the
Database Configuration Assistant (DBCA). The resulting database is only the container for new
databases that can be provisioned either by copying the seed database or by plugging in a database
that was previously a tenant of this CDB or unplugged from a different CDB. Figure 11-2 shows a
typical CDB configuration.

The single CDB in Figure 11-2 has three PDBs: DW, SALES, and HR. All three PDBs share a
single instance and its process structures. The root container has the control files and redo log files
shared by all PDBs along with datafiles that contain system metadata common to all databases.
The individual applications have their own datafiles isolated from all other PDBs within the container.
A SYS user is owned by the root container and can manage the root container and all PDBs.

As noted earlier, a CDB has a single database instance and set of related datafiles regardless of
the number of PDBs in the CDB. The definition and usage of tablespaces and objects in a non-CDB
or pre-12c database are mostly the same, with the following exceptions and qualifications:

 ■ Redo log files The redo log files are shared with the root container and all PDBs. Entries
in the redo log files identify the source of the redo (which PDB or the root container). All
user containers share the same ARCHIVELOG mode as well.

 ■ Undo tablespace All containers share the same undo tablespace.

 ■ Control files The control files are shared. Datafiles added from any PDB are recorded in
the common control file.

FIGURE 11-2. Typical container database

Instance

Process Structures

Multitenant Container Database CDB

System Global Area

Server

Single Instance

Multitenant
Container
Database Data�les

Data�les

DW

Data�les

SALES

Data�les

HR

Root

Control Files Redo Log Files

Single DB Shares:
• Background
 Processes
• Shared/Process
 Memory
• Oracle Metadata

11-ch11.indd 375 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

376 Oracle Database 12c DBA Handbook

 ■ Temporary tablespaces One temporary tablespace is required in the CDB and is the
initial default temporary tablespace for each PDB. However, based on application
requirements, each PDB may have its own temporary tablespace.

 ■ Data dictionary Each user container has its own data dictionary in its copy of the
SYSTEM tablespace (common objects have pointers to the SYSTEM tablespace in the
system container database) with its private metadata.

 ■ SYSAUX tablespace Each PDB has its own copy of the SYSAUX tablespace.

Tablespaces can be created within each PDB specific to the application. Each tablespace’s
datafile is identified in the CDB’s data dictionary with a container ID in the column CON_ID.
Further information about container metadata is presented later in the chapter.

User Container Databases
User containers (in other words, PDBs) have SYSTEM tablespaces just like non-CDBs do but have
links to the common metadata across the entire container. Only the user metadata specific to the
PDB is stored in the PDB’s SYSTEM tablespace. The object names are the same in a PDB as in a
non-CDB or the CDB, such as OBJ$, TAB$, and SOURCE$. Thus, the PDB appears to an application
as a standalone database. A DBA can be assigned to manage only that application with new roles
and privileges created in Oracle Database 12c (discussed later in “Leveraging CDB Security
Features”). The DBA for an application in a PDB is also not aware that there may be one or many
other PDBs sharing resources in the CDB.

Non-CDB Databases
Standalone (in other words, non-CDB) databases can still be created in Oracle Database 12c
(with the Oracle Database 11g architecture). The system metadata and user metadata are stored in
the same SYSTEM tablespace along with PL/SQL code and other user objects. A non-CDB can be
converted to a PDB using the DBMS_PDB package. If a non-CDB database is at Oracle Database
11g, it must be upgraded to 12c first and then converted using DBMS_PDB. Other options for
upgrading include Data Pump Export/Import or an ETL tool such as Oracle Data Integrator (ODI).

Provisioning in a Multitenant Environment
Once you create one or more container databases, you must decide which pluggable databases
will be created in each container. Initial resource consumption estimates may be wrong, but given
the flexibility of moving PDBs between containers. you will not incur as much downtime moving
a PDB to a new container as you would creating a new non-CDB database or using RMAN to
clone or move a database to another server.

CDBs and PDBs need to be dropped sometimes, as in a non-CDB environment. I’ll cover the
two-step process to remove a PDB from a CDB and free up the disk space allocated to the PDB.
Dropping CDBs may not happen as often, but when you do drop a CDB, you’ll be dropping all
PDBs within the CDB as well unless you unplug them first.

Understanding Pluggable Database Provisioning
In the previous section, I made the distinction between system containers (CDBs) and user containers
(PDBs). The system container is also known as the root container. When a new CDB is created, a
seed container is the template for a new PDB and makes it easy to create a new PDB within a CDB.

11-ch11.indd 376 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 377

Understanding Root Containers
The root container within a CDB contains global Oracle metadata only. This metadata includes
CDB users such as SYS, which is global to all current and future PDBs within the CDB. Once a
new PDB is provisioned, all user data resides in datafiles owned by the PDB. No user data resides
in the root container. The root container is named CDB$ROOT, and you’ll see where this metadata
is stored later in this chapter.

Leveraging Seed PDBs
When you create a new CDB, one PDB is created: the seed PDB. It has the structure or template
for a PDB that will contain the user data for a new application database. The seed database is
named PDB$SEED. This provisioning operation is fast because it primarily consists of creating a
couple of small tablespaces and empty tables for user metadata.

Using Intra-CDB Links
When databases are deployed as non-CDB databases in Oracle Database 11g or as a non-CDB
in Oracle Database 12c, you often have reasons to share data between databases, whether the
databases are on separate servers or even on the same server. In both Oracle Database 12c and
many previous versions of Oracle, you use database links to access tables in other databases. You
use database links to access tables from other PDBs within the same CDB as well. But since the
objects in two PDBs reside within the same container, you are using a fast version of a database
link under the covers. Remember that a PDB does not know where another PDB or non-CDB
database resides, so the definition and use of a database link are the same regardless of where
both databases reside.

Querying V$CONTAINERS
The system container’s dynamic performance view V$CONTAINERS has just about everything you
want to know about the user containers and the system container in your CDB. In the following
example, you view the available PDBs and then open the PDB DW_01 to make it available to users:

[oracle@kthanid ~]$. oraenv
ORACLE_SID = [orcl] ? qa
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@kthanid ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.2.0 Production on Fri Nov 14 10:08:00 2014
Copyright (c) 1982, 2014, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> select con_id,name,open_mode,total_size
 2 from v$containers;

 CON_ID NAME OPEN_MODE TOTAL_SIZE
---------- ------------------------------ ---------- ----------
 1 CDB$ROOT READ WRITE 975175680
 2 PDB$SEED READ ONLY 283115520

11-ch11.indd 377 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

378 Oracle Database 12c DBA Handbook

 3 CCREPOS MOUNTED 0
 4 DW_01 MOUNTED 0
 5 QA_2014 MOUNTED 0

SQL> alter pluggable database dw_01 open read write;

Pluggable database altered.
SQL> select con_id,name,open_mode,total_size
 2 from v$containers;

 CON_ID NAME OPEN_MODE TOTAL_SIZE
---------- ------------------------------ ---------- ----------
 1 CDB$ROOT READ WRITE 975175680
 2 PDB$SEED READ ONLY 283115520
 3 CCREPOS MOUNTED 0
 4 DW_01 READ WRITE 283115520
 5 QA_2014 MOUNTED 0
SQL>

A system container (in other words, a CDB) has one and only one seed database and one root
container; user containers are optional (but you will eventually have one or more). A CDB can
contain up to 253 user containers (in other words, PDBs), which includes the seed database. Both
the root container (CDB$ROOT) and the seed database (PDB$SEED) are displayed in V$CONTAINERS
along with the PDBs.

Leveraging CDB Security Features
The multitenant architecture necessarily requires new security objects and a new security hierarchy
because you must be able to maintain the same separation of duties and application partitioning
that existed when each application was stored in its own database.

To administer the entire CDB and all of the PDBs within the system container, you need one
“superuser” also known as the container database administrator (CDBA). Each PDB within a CDB
has DBA privileges within the CDB and is known as the pluggable database administrator (PDBA).
In a non-CDB, the DBA role works the same as in Oracle Database 11g.

Users (privileged or otherwise) are of two types in a multitenant environment: common or
local. As the name implies, a common user has access to all PDBs within a CDB, and a local user
has access only within a specific PDB. Privileges are granted the same way. Privileges can be
granted across all containers or local to only one PDB.

The new data dictionary table, CDB_USERS, contains users who exist in the data dictionary
table DBA_USERS across all PDBs. When you add a new common user to the CDB, the user also
shows up in the DBA_USERS table in each PDB. As with all other features of multitenant features,
the DBA_USERS table in each PDB contains only those users specific to that PDB, and those users
have the same characteristics as users created in non-CDB databases or pre-12c databases.

As you might expect, a common user can perform global operations such as starting up or shutting
down the CDB as well as unplugging or plugging in a PDB. To unplug a database, you must first
shut down the PDB and then issue the ALTER PLUGGABLE DATABASE command to create the XML
metadata file so that the PDB can be plugged in later to the current or another CDB:

SQL> alter pluggable database dw_01
 2 unplug into '/u01/app/oracle/plugdata/dw_01.xml';

11-ch11.indd 378 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 379

Pluggable database altered.

SQL>

In addition to new data dictionary views like CDB_USERS, a CDB contains corollaries to other
DBA_ views you would see in a non-CDB database, such as CDB_TABLESPACES and CDB_PDBS:

SQL> select con_id,tablespace_name,status
 2 from cdb_tablespaces;

 CON_ID TABLESPACE_NAME STATUS
---------- ------------------------------ ---------
 1 SYSTEM ONLINE
 1 SYSAUX ONLINE
 1 UNDOTBS1 ONLINE
 1 TEMP ONLINE
 1 USERS ONLINE
 2 SYSTEM ONLINE
 2 SYSAUX ONLINE
 2 TEMP ONLINE
 5 SYSTEM ONLINE
 5 SYSAUX ONLINE
 5 TEMP ONLINE

11 rows selected.

SQL>

From a PDB local user’s perspective, all of the DBA_ views behave just as they would in a
non-CDB database.

Configuring and Creating a CDB
Creating a multitenant container database has many uses and many configurations. Compared to
previous versions of Oracle Database, the flexibility of grouping or consolidating databases using
the multitenant architecture (compared to using RAC or multiple non-CDB databases on the same
server) has increased dramatically while at the same time not increasing the complexity of managing
multiple databases within a CDB. In fact, managing multiple PDBs within a CDB not only makes
more efficient use of memory and CPU resources but makes it easier to manage multiple databases.
As mentioned in previous chapters, you’ll be able to do things like perform upgrades on the CDB,
which in turn automatically upgrades the PDBs that reside in the CDB.

Container databases can be used by developers, by testers, and of course in a production
environment. For a new application, you can clone an existing database or create a new database
using the seed database in a fraction of the time it takes to create a new standalone database. For
testing applications in new hardware and software environments, you can easily unplug a database
from one CDB and plug it into another CDB on the same or different server.

In the following sections, I’ll show you how to create a new CDB using either SQL*Plus or
the Database Configuration Assistant (DBCA). To view and manage the diagnostic information
in a multitenant environment, I’ll review how the Automatic Diagnostic Repository (ADR) is
structured. To close out this section, you’ll get a recap of the new data dictionary views available
at the container level.

11-ch11.indd 379 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

380 Oracle Database 12c DBA Handbook

Creating a CDB Using Different Methods
As with many Oracle features, you have many tools at your disposal to create and maintain objects,
which in this case means CDBs and PDBs. What tool you use depends on the level of control you
need when creating these objects as well as whether you need to script the operation in a batch
environment. Table 11-1 shows the tools you can use to perform various operations on CDBs
and PDBs.

To create a new CDB, you have three options: SQL*Plus, the Database Configuration Assistant,
and the Oracle Universal Installer (OUI). Enterprise Manager Database Express (EMDE) cannot
create a CDB or browse the CDB or PDB architecture. However, EMDE can view any PDB as if it
were a standalone database (non-CDB).

Using SQL*Plus to Create a CDB Using SQL*Plus to create a CDB is similar in many ways to
creating a new standalone database instance. The differences are apparent when you use some of
the new keywords available with the CREATE DATABASE command such as ENABLE PLUGGABLE
DATABASE and SEED FILE_NAME_CONVERT. Once the initial CDB is created, you run the same
post-creation scripts as you would in an Oracle 11g database or non-CDB 12c database.

The steps to create the CDB are as follows:

1. Create an init.ora file with the typical parameters for any instance, such as DB_NAME,
CONTROL_FILES, and DB_BLOCK_SIZE, plus the new parameter ENABLE_PLUGGABLE_
DATABASE.

2. Set the ORACLE_SID environment variable.

3. Create the CDB using the CREATE DATABASE command with the ENABLE PLUGGABLE
DATABASE keywords.

4. Set a special session parameter to indicate that this is a new CDB:

alter session set "_oracle_script"=true;

5. Close and open the seed PDB.

6. Run the post-creation scripts, including the following:

?/rdbms/admin/catalog.sql
?/rdbms/admin/catblock.sql
?/rdbms/admin/catproc.sql

Operation/Tool SQL*Plus OUI DBCA
EM Cloud
Control 12c

SQL
Developer DBUA EMDE

Create new CDB
or PDB

✔ ✔ ✔ ✔
(PDB only)

✔
(PDB only)

Browse CDB
or PDB

✔ ✔ ✔ ✔
(PDB
only)

Upgrade 12.1
non-CDB to CDB

✔ ✔

TABLE 11-1. CDB- and PDB-Compatible Oracle Tools

11-ch11.indd 380 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 381

?/rdbms/admin/catoctk.sql
?/rdbms/admin/owminst.plb
?/sqlplus/admin/pupbld.sql

Using SQL*Plus to create a new CDB is the ultimate in control, but as you can see, it can
be quite convoluted. Unless you want to create many databases at once with slight changes in
parameters or the same set of databases on several servers, then using DBCA (discussed in the
next section) might be an easier and less error-prone method for creating a CDB.

Using DBCA to Create a CDB
The Database Configuration Assistant tool is likely the tool you’ll use to create a new CDB. In fact,
it gives you the options to create a non-CDB database (much like a pre-12.1 database), just a CDB,
or a CDB with a new PDB. In Figure 11-3, I am using the “express” method to create a new container
database called CDB58, which will reside in the existing Automatic Storage Management (ASM)
disk group +DATA. The recovery files will reside in +RECOV. An initial PDB called RPTQA10 will
be created along with the container.

FIGURE 11-3. Creating a container database using DBCA

11-ch11.indd 381 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

382 Oracle Database 12c DBA Handbook

In the next window, you can review the summary of the CDB to be created. Note in Figure 11-4
that creating a CDB creates a PDB as well.

The Progress Page in Figure 11-5 shows the progress of creating the CDB and the initial PDB.
Once the installation completes, you can see the new CDB listed in /etc/oratab:

Multiple entries with the same $ORACLE_SID are not allowed.

+ASM:/u01/app/product/12.1.0/grid:N: # line added by Agent
complref:/u01/app/product/12.1.0/database:N: # line added by Agent
cdb58:/u01/app/product/12.1.0/database:N: # line added by Agent

FIGURE 11-4. Create Database – Summary page

11-ch11.indd 382 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 383

But where is the initial PDB? For clues you can check the listener:

[oracle@oel63 ~]$ lsnrctl status
LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 27-MAY-2013 20:47:02
. . .
Service "cdb58" has 1 instance(s).
 Instance "cdb58", status READY, has 1 handler(s) for this service...
. . .
Service "complrefXDB" has 1 instance(s).
 Instance "complref", status READY, has 1 handler(s) for this service...
Service "rptqa10" has 1 instance(s).
 Instance "cdb58", status READY, has 1 handler(s) for this service...
The command completed successfully
[oracle@oel63 ~]$

FIGURE 11-5. Container database Progress Page

11-ch11.indd 383 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

384 Oracle Database 12c DBA Handbook

The listener hands off any requests for service rptqa10 to the PDB with the same name in the
container database CDB58.

Using OUI to Create a CDB
Using the Oracle Universal Installer is much like one-stop shopping. You can install the Oracle
database files, create a new CDB, and create a new PDB all in one session. Since you’ll likely
install the database software only once on a server, using OUI to create a new container or PDB
happens only once per server. In Figure 11-6 I am launching OUI to install the database software,
create a CDB named CDB99, and create a single PDB called QAMOBILE. By default, OUI will
use ASM for database files if an ASM disk group is available on the server.

Understanding New Data Dictionary Views: The Sequel
Earlier in this chapter I presented a brief overview of the new data dictionary views available in a
multitenant environment. Remember that from the perspective of a local user, there is no distinction
between a non-CDB and a PDB. The local user still sees the container-related dynamic performance
views and data dictionary views, but the rows returned are filtered based on the privileges and
scope of the database user.

FIGURE 11-6. Installing Oracle Database software and container database using OUI

11-ch11.indd 384 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 385

For example, a common user with DBA privileges (particularly the SELECT ANY DICTIONARY
system privilege) can see all PDBs in the CDB:

[oracle@oel63 ~]$ sqlplus c##rjb/rjb@oel63/cdb01
SQL*Plus: Release 12.1.0.1.0 Production on Tue May 27 23:46:10 2014
Copyright (c) 1982, 2013, Oracle. All rights reserved.
Last Successful login time: Tue May 27 2014 23:15:45 -05:00
Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options
SQL> select pdb_id,pdb_name from cdb_pdbs;

 PDB_ID PDB_NAME
---------- -------------------------
 3 QATEST1
 2 PDB$SEED
 4 QATEST2

SQL>

A nonprivileged common user won’t even see that data dictionary view:

SQL> connect c##klh
Enter password:
Connected.
SQL> select pdb_id,pdb_name from cdb_pdbs;
select pdb_id,pdb_name from cdb_pdbs
 *
ERROR at line 1:
ORA-00942: table or view does not exist

SQL>

Local users, even with DBA privileges, will see data dictionary views like CDB_PDBS but
won’t see any PDBs:

[oracle@oel63 ~]$ sqlplus rjb/rjb@oel63/qatest1

SQL*Plus: Release 12.1.0.1.0 Production on Tue May 27 23:53:19 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Last Successful login time: Tue May 27 2014 23:37:44 -05:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

11-ch11.indd 385 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

386 Oracle Database 12c DBA Handbook

SQL> select pdb_id,pdb_name from cdb_pdbs;

no rows selected

SQL>

In previous versions of Oracle Database, the USER_ views show objects owned by the user
accessing the view, the ALL_ views show objects accessible to the user accessing the view, and
the DBA_ views show all objects in the database and are accessible to users with the SELECT
ANY DICTIONARY system privilege, which is usually granted via the DBA role. Whether the
database is a non-CDB, a CDB, or a PDB, the DBA_ views show the objects relative to where the
view is accessed. For example, in a PDB, the DBA_TABLESPACES view shows tablespaces that
exist only in that PDB.

If you are in the root container, DBA_USERS shows only common users, since in the root
container only common users exist. In a PDB, DBA_USERS shows both common and local users.

For databases created in Oracle Database 12c, the CDB_ data dictionary views show object
information across all PDBs and all of the CDB_ views even exist for non-CDBs. For local users
and non-CDBs, the CDB_ views show the same information as the equivalent DBA_ view: the
visibility does not go past the PDB or non-CDB even if the local user has the DBA role. Here are
some CDB_ data dictionary views, including the new data dictionary view CDB_PDBS:

 ■ CDB_PDBS All PDBs within the CDB

 ■ CDB_TABLESPACES All tablespaces within the CDB

 ■ CDB_DATA_FILES All datafiles within the CDB

 ■ CDB_USERS All users within the CDB (common and local)

Figure 11-7 shows the hierarchy of data dictionary views in a multitenant environment. At the
CDB_ view level, the main difference in the structure of the table is the new column CON_ID,
which is the container ID that owns the objects. The root container and the seed container are
containers as well, of course, and have their own CON_ID.

FIGURE 11-7. Multitenant data dictionary view hierarchy

DBA_xxx: All objects in the root or a pluggable database

CDB_xxx: All objects in the CDB (new column CON_ID)

ALL_xxx: Objects accessible by the current user in a PDB

USER_xxx: Objects owned by the current user in a PDB

11-ch11.indd 386 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 387

Note that even common users (whose names are prefixed with C##) cannot access the CDB_
views unless they have the SELECT ANY DICTIONARY system privilege or have that privilege
granted via a role such as the DBA role.

Creating PDBs
Once you have created the container database, you can add a new PDB regardless of whether or
not you created a new PDB when you created the CDB. There are four methods: creating a PDB
by cloning the seed PDB, cloning an existing PDB, plugging in a previously unplugged PDB, or
plugging in a non-CDB.

Using PDB$SEED to Create a New PDB
Every container database has a read-only seed database container called PDB$SEED that is used
for quickly creating a new pluggable database. When you create a new PDB from PDB$SEED,
the following things happen, regardless of whether you use SQL*Plus, SQL Developer, or Enterprise
Manager Cloud Control 12c. Each of these steps is performed with a CREATE PLUGGABLE
DATABASE statement, either manually or via DBCA:

 ■ Datafiles in PDB$SEED are copied to the new PDB.

 ■ Local versions of the SYSTEM and SYSAUX tablespaces are created.

 ■ Local metadata catalog is initialized (with pointers to common read-only objects in the
root container).

 ■ The common users SYS and SYSTEM are created.

 ■ A local user is created and is granted the local PDB_DBA role.

 ■ A new default service for the PDB is created and is registered with the listener.

Given the relatively small amount of data creation and movement in those steps, the creation
of the PDB is very fast.

Cloning a PDB to Create a New PDB
If you need a new database that’s similar to one that already exists, you can clone an existing
database within the CDB. The new PDB will be identical to the source except for the PDB name
and the DBID. In this example, you’ll use the DBA features of SQL Developer to clone the PDB.
No worries about what’s going on under the covers; each step of the way you can see the DDL
that SQL Developer runs to create the clone.

Before cloning an existing PDB, you must close it and reopen it in READ ONLY mode:

SQL> alter pluggable database qa_2014 close;

Pluggable database altered.
SQL> alter pluggable database qa_2014 open read only;

Pluggable database altered.

SQL>

11-ch11.indd 387 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

388 Oracle Database 12c DBA Handbook

You can browse the DBA connections for the container database CDB01 and its PDBs. Right-click
the QA_2014 PDB and select Clone Pluggable Database, as shown in Figure 11-8.

In the dialog box that opens, as shown in Figure 11-9, change the database name to QA_2015.
All other features and options of QA_2014 are retained for QA_2015.

FIGURE 11-8. Selecting a database to clone in SQL Developer

FIGURE 11-9. Specifying PDB clone characteristics

11-ch11.indd 388 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 389

The SQL tab shows the command that SQL Developer will run to clone the database:

CREATE PLUGGABLE DATABASE QA_2015 FROM QA_2014
 STORAGE UNLIMITED
 FILE_NAME_CONVERT=NONE;

Once you click the Apply button, the cloning operation proceeds and creates the new PDB. As
with the SQL*Plus method of creating a new PDB, you have to open the new PDB as READ WRITE:

SQL> alter pluggable database qa_2015 open read write;

Pluggable database altered.

SQL>

Finally, you need to open the QA_2014 database as READ WRITE again since it was set to
READ ONLY for the clone operation:

SQL> alter pluggable database qa_2014 close;

Pluggable database altered.

SQL> alter pluggable database qa_2014 open read write;

Pluggable database altered.

SQL>

Plugging a Non-CDB into a CDB
You may have a standalone (non-CDB) Oracle 12c database that you’d like to consolidate into an
existing CDB. If you have a pre-12c database, you must upgrade it to 12c first or use an alternate
method to move that database (see the “Unplugging a PDB Using Different Methods” section of
this chapter). For an existing non-CDB 12c database, it’s a straightforward process involving the
PL/SQL procedure DBMS_PDB.DESCRIBE.

Using DBMS_PDB.DESCRIBE, you can quickly export the metadata for a non-CDB to an XML
OS file. On the tettnang server, there are three instances, ASM, CDB01, and RPTQA12C:

 [oracle@tettnang ~]$ cat /etc/oratab
. . .

+ASM:/u01/app/oracle/product/12.1.0/grid:N:
cdb01:/u01/app/oracle/product/12.1.0/dbhome_1:N:
rptqa12c:/u01/app/oracle/product/12.1.0/dbhome_1:N:

Here is how you would export the metadata for the RPTQA12C database. Connect to the
target database (the database that will be assimilated into CDB01), change its status to READ
ONLY, and run the procedure:

SQL> startup mount
ORACLE instance started.

Total System Global Area 2622255104 bytes
Fixed Size 2685024 bytes

11-ch11.indd 389 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

390 Oracle Database 12c DBA Handbook

Variable Size 1644169120 bytes
Database Buffers 956301312 bytes
Redo Buffers 19099648 bytes
Database mounted.
SQL> alter database open read only;

Database altered.

SQL> exec dbms_pdb.describe('/tmp/rptqa12c.xml');

PL/SQL procedure successfully completed.

SQL>

The XML looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<PDB>
 <pdbname>rptqa12c</pdbname>
 <cid>0</cid>
 <byteorder>1</byteorder>
 <vsn>202375168</vsn>
 <dbid>1288637549</dbid>
 <cdbid>1288637549</cdbid>
 <guid>F754FCD8744A55AAE043E3A0080A3B17</guid>
 <uscnbas>3905844</uscnbas>
 <uscnwrp>0</uscnwrp>
 <rdba>4194824</rdba>
 <tablespace>
 <name>SYSTEM</name>
 <type>0</type>
 <tsn>0</tsn>
 <status>1</status>
 <issft>0</issft>
 <file>
 <path>+DATA/RPTQA12C/DATAFILE/system.261.845207525</path>
. . .
 </options>
 <olsoid>0</olsoid>
 <dv>0</dv>
 <ncdb2pdb>1</ncdb2pdb>
 <APEX>4.2.0.00.27:1</APEX>
 <parameters>
 <parameter>processes=300</parameter>
 <parameter>shared_pool_size=805306368</parameter>
 <parameter>sga_target=2634022912</parameter>
 <parameter>db_block_size=8192</parameter>
 <parameter>compatible=12.1.0.0.0</parameter>
 <parameter>shared_servers=0</parameter>
 <parameter>open_cursors=300</parameter>
 <parameter>star_transformation_enabled=TRUE</parameter>

11-ch11.indd 390 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 391

 <parameter>pga_aggregate_target=524288000</parameter>
 </parameters>
 <tzvers>
 <tzver>primary version:18</tzver>
 <tzver>secondary version:0</tzver>
 </tzvers>
 <walletkey>0</walletkey>
 </optional>
</PDB>

Next, connect to the container database CDB01 and import the XML for RPTQA12C:

[oracle@tettnang ~]$. oraenv
ORACLE_SID = [rptqa12c] ? cdb01
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@tettnang ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Wed May 28 12:40:34 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> create pluggable database rptqa12c using '/tmp/rptqa12c.xml';

Pluggable database created.

SQL>

The plugging operation may take as little as a minute or two if the datafiles for the non-CDB
database are in the same ASM disk group as the destination CDB. Some final cleanup and
configuration is needed before the plugged-in database can be used. The script noncdb_to_pdb
.sql cleans up unnecessary metadata in a multitenant environment. In addition, you must open
the newly plugged-in database just as you would with a clone operation:

SQL> alter session set container=rptqa12c;
SQL> @$ORACLE_HOME/rdbms/admin/noncdb_to_pdb.sql
. . .
 6 IF (sqlcode <> -900) THEN
 7 RAISE;
 8 END IF;
 9 END;
 10 END;
 11 /

PL/SQL procedure successfully completed.

11-ch11.indd 391 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

392 Oracle Database 12c DBA Handbook

SQL>
SQL> WHENEVER SQLERROR CONTINUE;
SQL> alter pluggable database rptqa12c open read write;

Pluggable database altered.

SQL>

Plugging an Unplugged PDB into a CDB
You may have several unplugged databases at any given time. Usually you’re in the process of
migrating a PDB from one container to another on the same or a different server. In any case, an
unplugged database can’t be opened outside of a CDB, so you’ll likely plug an unplugged database
(PDB) back into a CDB. In this example, the PDB CCREPOS is currently unplugged and has its
XML file located in /tmp/ccrepos.xml on the server. The steps to plug a currently unplugged PDB
into a CDB are both straightforward and finish quickly—just as most multitenant operations do!
All you have to do is run one command to plug it in and another command to open it. Connect
as a common user with the ALTER PLUGGABLE DATABASE privilege as follows (connecting as
SYSDBA to CDB01 with OS authentication works great):

SQL> create pluggable database ccrepos using '/tmp/ccrepos.xml' nocopy;

Pluggable database created.

SQL> alter pluggable database ccrepos open read write;

Pluggable database altered.

SQL>

Note that a PDB must be dropped, and not just unplugged, from a CDB before it can be
plugged back in. Using the NOCOPY option saves time if the PDB’s datafiles are already in the
correct location.

Unplugging and Dropping a PDB
Since a PDB is by nature highly mobile, it’s likely that you’ll move it to another CDB on the same
server or another server. You may just unplug it to make it unavailable to users (and prevent common
users from opening it inadvertently). You may also unplug it to drop it completely. There are a few
different ways to unplug and then drop a PDB.

Unplugging a PDB Using Different Methods
You can unplug a PDB using either SQL*Plus or SQL Developer. Both methods are easy and fast.
Which one you should use depends on your comfort level and which tool you happen to have
open at the time.

Unplugging a PDB Using SQL*Plus When you unplug a PDB from a CDB, you make the
PDB unavailable to users, but its status remains UNPLUGGED. To drop the PDB from the CDB,
see the next section, “Dropping a PDB.” Before you can unplug a PDB, you must first close it,

11-ch11.indd 392 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 393

as shown next. When you unplug it, you specify the location of an XML file for the PDB’s
metadata. This metadata will ensure that the PDB will be pluggable later, either into the same
or another CDB.

SQL> alter pluggable database ccrepos close;

Pluggable database altered.

SQL> alter pluggable database ccrepos unplug into '/tmp/ccrepos.xml';

Pluggable database altered.

SQL>

Unplugging a PDB Using SQL Developer Using SQL Developer to unplug a PDB is even
easier than using SQL*Plus. From the CDB’s connection in the DBA window, expand the Container
Database branch and right-click the PDB to be unplugged. Select Unplug Pluggable Database
from the context menu, as shown in Figure 11-10.

The Unplug dialog box gives you the opportunity to specify the name and location of the XML
file containing the PDB’s metadata, as you can see in Figure 11-11.

Dropping a PDB
As with most CDB and PDB operations, you can use both SQL*Plus and SQL Developer to drop
a PDB. In addition, you can use DBCA and Enterprise Manager Cloud Control 12c to drop a PDB.
When you drop a PDB, all references to the PDB are removed from the CDB’s control file. By default,

FIGURE 11-10. Unplugging a PDB from SQL Developer

11-ch11.indd 393 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

394 Oracle Database 12c DBA Handbook

the datafiles are retained; therefore, if you had previously unplugged that PDB, you can use the
XML file to plug that PDB back into the same or another CDB. In this example, you will drop
the QA_2014 PDB along with its datafiles. It will no longer be available to plug into another
database even if you still have the XML metadata.

SQL> alter pluggable database qa_2014 close;

Pluggable database altered.

SQL> drop pluggable database qa_2014 including datafiles;

Pluggable database dropped.

SQL>

If you have an RMAN backup of the QA_2014 PDB, you could restore it from there.
Otherwise, if you want to remove all remaining traces of QA_2014, you’ll have to manually
remove the backups of QA_2014 using RMAN.

NOTE
You can neither unplug, open, or drop the seed database PDB$SEED.

Migrating a Pre-12.1 Non-CDB Database to a CDB
Converting Oracle Database 12c non-CDBs to a PDB is fast and straightforward, but what if your
database is a previous version such as 11g or even 10g? You have a few options available depending
on whether you want to keep the original database intact for some length of time.

Using the Upgrade Method to Migrate a Non-CDB If your application is not sensitive or
dependent on the version of the database (which you should have verified by now), then your
cleanest option is to upgrade the non-CDB in place up to version 12c (12.1.0.1 or later) and then
plug it into the CDB using the methods mentioned earlier in this chapter. The biggest advantage to
this method is that you don’t need to allocate any extra space for the migration as you would for
the other two methods.

FIGURE 11-11. Specifying the location for the unplugged PDB’s XML file

11-ch11.indd 394 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 395

Using the Data Pump Method to Migrate a Non-CDB To use the Data Pump method, you’ll
use Data Pump Export/Import as you would in a non-CDB environment. Create a new PDB from
the seed database in the CDB and adjust the initialization parameters to be comparable to those
in the existing database.

One of the advantages with this method is that you can leave the current non-CDB in place to
ensure compatibility with Oracle Database 12c before dropping the original database.

Using the Database Link Method to Migrate a Non-CDB Using database links, you create a
new PDB from the seed database and copy over the application’s tables using database links. This
is the most labor-intensive option but is probably the easiest if the number of tables in an application
is small. A table migration would look like this:

SQL> insert into hr.employee_hist select * from employee_hist@HR11gDB;

Managing CDBs and PDBs
You connect to a PDB or CDB much like you connect to a non-CDB. You can connect to a CDB
via OS authentication and the common user SYS. Otherwise, you will connect to either a CDB or
one of the PDBs within the CDB using a service name. The service name is referenced either using
an EasyConnect string or within a tnsnames.ora entry. This method is the same whether you are
using SQL*Plus or SQL Developer.

By default a service name is created for each new, cloned, or plugged-in PDB. If that is not
sufficient in your environment, you’ll use the DBMS_SERVICE package to create additional
services for the PDB.

Understanding CDB and PDB Service Names
In a non-CDB environment, a database instance is associated with at least one service managed
by at least one listener. One listener can manage a combination of non-CDB and PDB services.
The database server oel63 has two databases: DBAHANDBOOK and CDB01. As you might suspect,
the database CDB01 is a multitenant database, and DBAHANDBOOK is a non-CDB, but they are
both Oracle Database version 12c and are managed by a single listener called LISTENER:

[oracle@oel63 ~]$ lsnrctl status

LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 02-JUL-2014 22:47:35

Copyright (c) 1991, 2013, Oracle. All rights reserved.
. . .
Services Summary...
Service "+ASM" has 1 instance(s).
 Instance "+ASM", status READY, has 1 handler(s) for this service...
Service "cdb01" has 1 instance(s).
 Instance "cdb01", status READY, has 1 handler(s) for this service...
Service "cdb01XDB" has 1 instance(s).
 Instance "cdb01", status READY, has 1 handler(s) for this service...
Service "dbahandbook" has 1 instance(s).
 Instance "dbahandbook", status READY, has 1 handler(s) for this service...
Service "dbahandbookXDB" has 1 instance(s).

11-ch11.indd 395 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

396 Oracle Database 12c DBA Handbook

 Instance "dbahandbook", status READY, has 1 handler(s) for this service...
Service "dw17" has 1 instance(s).
 Instance "cdb01", status READY, has 1 handler(s) for this service...
Service "qatest1" has 1 instance(s).
 Instance "cdb01", status READY, has 1 handler(s) for this service...
The command completed successfully
[oracle@oel63 ~]$

The container database CDB01 has two PDBs, DW17 and QATEST1, and the same listener
manages connections for both PDBs.

Every container in a CDB has its own service name. The CDB itself has the default service name,
which is the same as the container name plus the domain, if any. For each PDB created or cloned,
a new service is created and managed by the default listener unless otherwise specified. As you
might expect, the only exception to this rule is the seed container (PDB$SEED). Since it is read-only
and used only to create new PDBs, there is no reason to create a service and connect to it.

In addition to using the service name to connect to the CDB or any PDBs contained within, you
can use OS authentication and connect as SYSDBA just as you would with a non-CDB. You’ll be
connected as the SYS user—a common user with privileges to maintain all PDBs within the CDB.

The transparency of a PDB and how it appears as a non-CDB to nonprivileged users extends
to how you connect using entries in tnsnames.ora or using Oracle EasyConnect. As you may recall,
the format for an EasyConnect connect string is as follows:

<username>/<password>@<hostname>:<port_number>/<service_name>

Therefore, for connecting to the user RJB in the PDB named DW17 in the CDB named CDB01
on the server oel63, you would use the following when starting SQL*Plus:

[oracle@oel63 ~]$ sqlplus rjb/rjb@oel63:1521/dw17

SQL*Plus: Release 12.1.0.1.0 Production on Thu Jul 3 21:56:44 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL>

Notice that no reference to CDB01 is necessary. The PDB’s service name masks the existence
of the CDB or any other PDBs in the CDB.

Connecting to a CDB or PDB Using SQL Developer
Connecting to the root container or any PDB within a container using SQL Developer is just as
easy. You use the username (common or local), server name, port, and service name. In other
words, this is EasyConnect format. Figure 11-12 shows several connections to CDB01 plus a
connection to a non-CDB.

11-ch11.indd 396 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 397

Creating Services for CDBs or PDBs
If you’re using a standalone server environment with Oracle Restart or a clustered environment
using Oracle Clusterware, you’ll automatically get a new service created with every new or cloned
PDB or non-CDB (database instance). If you want additional services for a PDB, use the srvctl
command like this:

[oracle@oel63 ~]$ srvctl add service -db cdb01 -service dwsvc2 -pdb dw17
[oracle@oel63 ~]$ srvctl start service -db cdb01 -service dwsvc2
[oracle@oel63 ~]$ lsnrctl status
. . .
Service "dwsvc2" has 1 instance(s).
 Instance "cdb01", status READY, has 1 handler(s) for this service...
. . .
[oracle@oel63 ~]$

In a non-Oracle Restart or non-clustered environment, you can use the DBMS_SERVICE package
to create and start the service. To create the same new service as in the previous example with
srvctl but instead using DBMS_SERVICE, you would do the following:

SQL> begin
 2 dbms_service.create_service(
 3 service_name => 'dwsvc2',
 4 network_name => 'dwsvcnew');
 5 dbms_service.start_service(service_name => 'dwsvc2');
 6 end;

FIGURE 11-12. Connecting to CDBs and PDBs in SQL Developer

11-ch11.indd 397 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

398 Oracle Database 12c DBA Handbook

 7 /

PL/SQL procedure successfully completed.

SQL>

Note the slight difference in the example with DBMS_SERVICE: The actual service name is
still dwsvc2, but the service name exposed to end users is dwsvcnew and would be used in the
connection string for clients accessing this service.

Switching Connections Within a CDB
As you may infer from examples in previous chapters, you can switch containers within a session
if you either are a common user with the SET CONTAINER system privilege or have a local user
in each container and you connect using the service name:

[oracle@oel63 ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Sat Jul 5 22:09:41 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> show con_name

CON_NAME

CDB$ROOT
SQL> alter session set container=qatest1;

Session altered.

SQL> show con_name

CON_NAME

QATEST1
SQL> connect rjb/rjb@oel63/dw17
Connected.
SQL> show con_name

CON_NAME

DW17
SQL>

11-ch11.indd 398 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 399

You can have a pending transaction in the first PDB, switch to a different PDB, and then switch
back to the first PDB, and you still have the option to COMMIT or ROLLBACK the pending
transaction.

NOTE
Common users who have the SET CONTAINER system privilege or
local users who switch containers using CONNECT local_user@
PDB_NAME do not automatically commit pending transactions when
switching containers.

Starting Up and Shutting Down CDBs and PDBs
Starting up and shutting down a CDB or opening and closing a PDB will seem familiar to any
Oracle DBA who starts up and shuts down a non-CDB. The point that is often missed is that a
CDB is ultimately a single database instance, and each PDB shares the resources of the CDB’s
instance. This is to be expected since each PDB is logically partitioned from each other PDB
using the CON_ID column in every table that is shared among the root and each PDB. This
logical partitioning extends to user accounts and security as well; thus, it appears to non-common
users that the PDB has its own dedicated instance.

NOTE
As you might expect, in a clustered (RAC) environment a CDB has
one instance on each node of the cluster.

Since the CDB is a database instance, anything running within the CDB is shut down or
disconnected when the CDB is shut down. This means that a PDB is not open for users until the
CDB has been started and explicitly opened (either manually by the DBA or via a trigger), and
similarly the PDB is closed when the CDB instance is shut down.

In the following sections, I’ll show you how CDBs and PDBs are started up and shut down
as well as how to automate the process. You’ll also want to know how to change parameters that
are specific to a PDB as well as create PDB-specific versions of database objects such as temporary
tablespaces if the default global temporary tablespace does not meet the needs of the PDB’s
application.

CDB Instance Startup
The CDB instance is most like a traditional non-CDB instance. Figure 11-13 shows the five possible
states for CDBs and PDBs in a multitenant environment.

From the shutdown state, you can perform a STARTUP NOMOUNT (connecting AS SYSDBA
using OS authentication) to start a CDB instance by opening the SPFILE, creating the processes
and memory structures, but not yet opening the control file:

SQL> startup nomount
ORACLE instance started.

Total System Global Area 2622255104 bytes
Fixed Size 2291808 bytes
Variable Size 1140852640 bytes
Database Buffers 1459617792 bytes

11-ch11.indd 399 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

400 Oracle Database 12c DBA Handbook

Redo Buffers 19492864 bytes
SQL> select con_id,name,open_mode from v$pdbs;

no rows selected

SQL>

At this point in the startup process, the instance has no information about the PDBs within the
CDB yet. You would typically perform a STARTUP NOMOUNT when you need to re-create or
restore a missing control file for the CDB instance.

A lot of things happen when you move a CDB to the MOUNT state, as you can see in
Figure 11-13. Not only are the CDB’s control files opened for the instance, but both the
CDB$ROOT and all PDBs are changed to the MOUNT state:

SQL> alter database mount;

Database altered.

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED MOUNTED
 3 QATEST1 MOUNTED
 5 DW17 MOUNTED

SQL>

FIGURE 11-13. CDB and PDB states

PDBs opened RW,
except seed in RO

• Root opened
• PDBs still mounted,
 except seed in RO

• CDB control files
 opened for the instance
• Root mounted
• PDBs mounted

Instance
started

PDB OPEN

OPEN

MOUNT

NOMOUNT

SHUTDOWN

SQL> alter pluggable database pdb1 open;

SQL> alter pluggable database all open;

SQL> alter pluggable database all
 2 except pdb1, pdb2 open;

SQL> select name,open_mode
 2 from v$pdbs;

name open_mode
--------------- ----------
pdb$seed read only
pdb1 read write
pdb2 read write

11-ch11.indd 400 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 401

If any datafile operations are necessary (restore and recovery, for example), this is where you
would perform those, especially if those operations are required on the PDB’s SYSTEM tablespace.

The final step to make the root container available for opening PDBs is to change the CDB’s
state to OPEN. After CDB$ROOT is OPEN, it’s available for read and write operations. The PDBs
are still mounted with the seed database PDB$SEED mounted as READ ONLY:

SQL> alter database cdb01 open;

Database altered.

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- --------------- ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 5 DW17 READ WRITE

SQL>

Because I created a second service for the PDB named DW17 earlier in the chapter and
Oracle Restart is installed in this environment, DW17 is automatically opened in READ WRITE
mode. The seed database PDB$SEED is always opened READ ONLY.

Once the CDB is opened (in other words, the root’s datafiles are available along with the
global temporary tablespace and the online redo log files), the PDBs are mounted but not yet
open and available to users. Unless a PDB is opened with a trigger or via Oracle Restart, it
remains in the MOUNTED state.

At this point, the CDB instance behaves much like a non-CDB instance. In the next section,
you’ll see how individual PDBs are opened and closed.

Opening and Closing a PDB
Once you have the root (CDB$ROOT) container of a CDB open, you can perform all desired
operations on the PDBs within the CDB, including but not limited to cloning PDBs, creating a
new PDB from the seed, unplugging a PDB, or plugging in a previously unplugged PDB. Remember
that the seed container, PDB$SEED, is always open when CDB$ROOT is open but with an
OPEN_MODE of READ ONLY.

There are quite a few options when you want to open or close a PDB. You can use ALTER
PLUGGABLE DATABASE when connected as SYSDBA or SYSOPER, or if you’re connected as
SYSDBA within a PDB, you can use the same commands without having to specify the PDB
name. In addition, you can selectively open or close one or more PDBs with the ALL or EXCEPT
ALL option.

Using the ALTER PLUGGABLE DATABASE Command You can open or close a PDB from any
container by specifying the PDB name; alternatively, you can change the session context to a specific
PDB and perform multiple operations on that PDB without qualifying it, as in these examples.

11-ch11.indd 401 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

402 Oracle Database 12c DBA Handbook

Regardless of the current container, you can open and close any PDB by explicitly specifying the
PDB name:

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 5 DW17 READ WRITE

SQL> alter pluggable database dw17 close;

Pluggable database altered.

SQL> alter pluggable database dw17 open read only;

Pluggable database altered.

SQL> alter pluggable database qatest1 open;

Pluggable database altered.

SQL>

Alternatively, you can set the default PDB name at the session level:

SQL> alter session set container=dw17;

Session altered.

SQL> alter pluggable database close;

Pluggable database altered.

SQL> alter pluggable database open read write;

Pluggable database altered.

SQL>

To set the default container back to the root container, use CONTAINER=CDB$ROOT in the
ALTER SESSION command.

Selectively Opening or Closing PDBs Even if you configure the PDBs in your CDB to open
automatically with triggers, what if you have dozens of PDBs in your CDB and you want to open
all of them except for one? You can use ALL EXCEPT to accomplish this in one command:

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------

11-ch11.indd 402 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 403

 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 4 DEV2015 MOUNTED
 5 DW17 MOUNTED

SQL> alter pluggable database all except qatest1 open;

Pluggable database altered.

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 4 DEV2015 READ WRITE
 5 DW17 READ WRITE

SQL>

If you want to close all PDBs at once, just use ALL:

SQL> alter pluggable database all close;

Pluggable database altered.

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 4 DEV2015 MOUNTED
 5 DW17 MOUNTED

SQL>

Opening or closing all PDBs leaves the root container in its current state, and, as noted
earlier, the seed container PDB$SEED is always READ ONLY and is in the MOUNT state only
when the CDB is in the MOUNT state.

NOTE
For a specific PDB, you can use either SHUTDOWN or SHUTDOWN
IMMEDIATE. There is no PDB equivalent to the TRANSACTIONAL or
ABORT options for a CDB instance or a non-CDB instance.

When you close one or more PDBs, you can add the IMMEDIATE keyword to roll back any
pending transactions within the PDB. If you leave off the IMMEDIATE keyword, the PDB is not shut
down until all pending transactions have been either committed or rolled back, just as in a non-CDB

11-ch11.indd 403 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

404 Oracle Database 12c DBA Handbook

database instance, and all user sessions are disconnected by the user. If your session context is in
a specific PDB, you can also use the SHUTDOWN IMMEDIATE statement to close the PDB, but
note that this does not affect any other PDBs and that the root container’s instance is still running.

CDB Instance Shutdown When you are connected to the root container, you can shut down the
CDB instance and close all PDBs with one command, much like you would shut down a non-CDB
database instance:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

When specifying IMMEDIATE, the CDB instance does not wait for a COMMIT or ROLLBACK
of pending transactions, and all user sessions to any PDB are disconnected. Using TRANSACTIONAL
waits for all pending transactions to complete and then disconnects all sessions before terminating
the instance.

As described in the previous section, you can use the same command to shut down a specific
PDB, but only that PDB’s datafiles are closed, and its services will no longer accept connection
requests until it is opened again.

Automating PDB Startup There are new options available in database event triggers for a
multitenant environment. One of these triggers is persistent, while two others are not; the reason
for this will be clear shortly.

By default, after a CDB instance starts, all PDBs within the CDB are in MOUNT mode. If your
PDB is not automatically opened by any other method (such as Oracle Restart), you can create a
database trigger to start up all PDBs, just a few, or just one. In the container database CDB01, the
pluggable database DW17 starts up automatically via Oracle Restart; for the DEV2015 pluggable
database, you’ll create a trigger to change its status to OPEN READ WRITE when the container
database is open, as shown here:

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 4 DEV2015 MOUNTED
 5 DW17 READ WRITE

SQL> create trigger open_dev
 2 after startup on database
 3 begin
 4 execute immediate 'alter pluggable database dev2015 open';
 5 end;
 6 /

Trigger created.

SQL>

11-ch11.indd 404 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 405

Next, shut down and restart the container CDB01 and see what happens:

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> startup
ORACLE instance started.

Total System Global Area 2622255104 bytes
Fixed Size 291808 bytes
Variable Size 1140852640 bytes
Database Buffers 1459617792 bytes
Redo Buffers 19492864 bytes
Database mounted.
Database opened.
SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 MOUNTED
 4 DEV2015 READ WRITE
 5 DW17 READ WRITE

SQL>

The AFTER STARTUP ON DATABASE trigger is persistent unless you drop or disable it. Two
new database event triggers for Oracle Database 12c, AFTER CLONE and BEFORE UNPLUG, are
more dynamic. Both of those triggers must be specified with ON PLUGGABLE DATABASE; otherwise,
the trigger will be invalid and not fire.

You would use a trigger such as AFTER CLONE for a PDB that you’ll frequently clone in a
testing or development environment. The trigger itself exists in the source PDB and will persist
unless you explicitly drop it. However, when you create a new PDB by cloning the existing PDB
that contains this trigger, you can perform one-time initialization tasks in the cloned PDB right
after it is cloned. Once those tasks are completed, the trigger is deleted so that any clones of the
already cloned database won’t perform those initialization tasks.

Changing PDB Status In a non-CDB environment you often have reason to restrict access to a
database either for maintenance tasks or to prepare it for a transportable tablespace or database
operation. This is also true in a CDB environment. Previously in this chapter you saw how to open
a PDB as READ ONLY. For any PDB that you want restricted to users with SYSDBA privileges (granted
to either a global user or a local user), use the RESTRICTED clause just as you would in a non-CDB
environment:

SQL> alter pluggable database qatest1 close;

Pluggable database altered.

SQL> alter pluggable database qatest1 open restricted;

11-ch11.indd 405 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

406 Oracle Database 12c DBA Handbook

Pluggable database altered.

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ------------------------------ ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 RESTRICTED
 4 DEV2015 READ WRITE
 5 DW17 READ WRITE

SQL>

To turn off RESTRICTED mode, close and reopen the PDB without the RESTRICTED keyword.
There are several operations you can perform on a PDB that do not require restarting the PDB

in RESTRICTED mode:

 ■ Take PDB datafiles offline or bring them back online

 ■ Change the PDB’s default tablespace

 ■ Change the PDB’s default temporary tablespace (local tablespace)

 ■ Change the maximum size of a PDB:

alter pluggable database storage (maxsize 50g);

 ■ Change the name of a PDB

These dynamic settings help to maximize the availability of a PDB and allow you to make
changes to a PDB much more quickly because you would not have to shut down and restart the
database as in a non-CDB environment.

Changing Parameters in a CDB
Although the application developer or database user of a PDB will not see any difference in how
a PDB operates compared to a non-CDB, some of the differences require careful consideration by
the global and local DBAs. A subset of parameters can be changed at the PDB level, but for the most
part, a PDB inherits the parameter settings of the CDB. In addition, some ALTER SYSTEM commands
behave slightly differently depending on the context in which they are run by the DBA.

Understanding the Scope of Parameter Changes
Because a CDB is a database instance and PDBs share this instance, some of the CDB’s parameters
(stored in an SPFILE, of course) apply to the CDB and all PDBs and cannot be changed for any given
PDB. You can identify the parameters that can be changed at the PDB level by looking at the ISPDB_
MODIFIABLE column of V$PARAMETER. The data dictionary view PDB_SPFILE$ shows the non-
default values for specific parameters across all PDBs:

SQL> select pdb_uid,name,value$
 2 from pdb_spfile$
 3 where name='star_transformation_enabled';

 PDB_UID NAME VALUE$
---------- ----------------------------------- --------------------

11-ch11.indd 406 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 407

2557165657 star_transformation_enabled 'FALSE'
3994587631 star_transformation_enabled 'TRUE'

SQL>

The settings local to a PDB stay with the PDB even when the PDB has been cloned or unplugged.

Using ALTER SYSTEM in a Multitenant Environment
Many of the ALTER SYSTEM commands you would use in a non-CDB environment work as you’d
expect in a multitenant environment, with a few caveats and exceptions. Some of the ALTER SYSTEM
commands affect only the PDB or the CDB in which they are run. In contrast, some ALTER SYSTEM
commands can be run only in the root container.

Using PDB-Specific ALTER SYSTEM Commands Within a PDB (as a local DBA or a global DBA
with a PDB as the current container), the following ALTER SYSTEM commands affect objects,
parameters, or sessions specific to the PDB with no effect on any other PDBs or the root container:

 ■ ALTER SYSTEM FLUSH SHARED_POOL

 ■ ALTER SYSTEM FLUSH BUFFER_CACHE

 ■ ALTER SYSTEM ENABLE RESTRICTED SESSION

 ■ ALTER SYSTEM KILL SESSION

 ■ ALTER SYSTEM SET <parameter>

As you might expect, if flushing the shared pool in a PDB affected the shared pool of any
other PDB, the side effects would be dramatic and unacceptable!

Understanding ALTER SYSTEM Commands with Side Effects in a PDB There are a few
ALTER SYSTEM commands that you can run at the PDB level but affect the entire CDB. For
example, running ALTER SYSTEM CHECKPOINT affects datafiles across the entire container
unless the datafiles belong to a PDB that is opened as READ ONLY or are OFFLINE.

Using CDB-Specific ALTER SYSTEM Commands Some ALTER SYSTEM commands are valid
only for the entire container and must be run by a common user with SYSDBA privileges in the
root container. For example, running ALTER SYSTEM SWITCH LOGFILE switches to the next online
redo log file group. Since the online redo log files are common to all containers, this is the expected
behavior.

Manage Permanent and Temporary
Tablespaces in CDB and PDBs
In a multitenant environment, tablespaces and the datafiles that comprise them belong to either
the root container or one of the PDBs within the CDB. Of course, some objects are shared across
all PDBs, and these objects are stored in the root container’s tablespaces and shared with the PDB
via database links. There are some syntax changes to the CREATE DATABASE command as well as
behavior changes to CREATE TABLESPACE and other tablespace-related commands within a PDB.

Using CREATE DATABASE
The CREATE DATABASE statement for a CDB is nearly identical to that for a non-CDB, with a
couple of exceptions. Oracle recommends that you use the DBCA to create a new CDB, but if

11-ch11.indd 407 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

408 Oracle Database 12c DBA Handbook

you must use a CREATE DATABASE command (for example, to create dozens of CDBs in a script),
you will use the USER_DATA TABLESPACE clause to specify a default tablespace for user objects
for all PDBs created in this CDB. This tablespace is not used in the root container.

Using CREATE TABLESPACE
Creating a new tablespace in a CDB (root) container with CREATE TABLESPACE looks the same
as creating a tablespace in any PDB. If you are connected to CDB$ROOT, then the tablespace is
visible and usable only in the root container; similarly, a tablespace created when connected to
a PDB is visible only to that PDB and cannot be used by any other PDB unless connected with a
database link.

For ease of management, Oracle recommends using separate directories to store datafiles for
each PDB and the CDB. Even better, if you use ASM, you’ll automatically get your datafiles and
other database objects segregated into separate directories by container ID. Here is how the datafiles
for the container database CDB01 are stored in an ASM disk group:

SQL> select con_id,name,open_mode from v$pdbs;

 CON_ID NAME OPEN_MODE
---------- ----------------------------------- ----------
 2 PDB$SEED READ ONLY
 3 QATEST1 READ WRITE
 4 DEV2015 READ WRITE
 5 DW17 READ WRITE

SQL> quit
Disconnected from Oracle Database 12c Enterprise Edition
 Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options
[oracle@oel63 ~]$. oraenv
ORACLE_SID = [cdb01] ? +ASM
The Oracle base has been changed from /u01/app/oracle to /u01/app
[oracle@oel63 ~]$ asmcmd
ASMCMD> ls
DATA/
RECOV/
ASMCMD> cd data
ASMCMD> ls
ASM/
CDB01/
DBAHANDBOOK/
orapwasm
ASMCMD> cd cdb01
ASMCMD> ls
CONTROLFILE/
DATAFILE/
DD7C48AA5A4404A2E04325AAE80A403C/
EA128C7783417731E0434702A8C08F56/
EA129627ACA47C9DE0434702A8C0836F/

11-ch11.indd 408 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 409

FAE6382E325C40D8E0434702A8C03802/
FD8E768DE1094F9AE0434702A8C03E94/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/
spfilecdb01.ora
ASMCMD> cd datafile
ASMCMD> ls
SYSAUX.272.830282801
SYSTEM.273.830282857
UNDOTBS1.275.830282923
USERS.274.830282921
ASMCMD>

The container’s datafiles are stored in the DATAFILE subdirectory; each of the PDBs has its
own set of datafiles in one of those subdirectories with the long string of hexadecimal digits. You
use Oracle Managed Files (OMF) with ASM in this scenario; you don’t need to know or care what
those hexadecimal characters are since the locations of the datafiles are managed automatically.

Changing the Default Tablespace in a PDB
Changing the default tablespace in a CDB or PDB is identical to changing the default tablespace in
a non-CDB. For both CDBs and PDBs, you use the ALTER DATABASE DEFAULT TABLESPACE
command. If you’re changing the default tablespace for a PDB, you should add the PLUGGABLE
keyword because the ALTER DATABASE command within a PDB will be deprecated in a
future release. In this example, you set the container to QATEST1, create a new tablespace
within QATEST1, and change the default tablespace to be the tablespace you just created:

SQL> alter session set container=qatest1;

Session altered.

SQL> create tablespace qa_dflt datafile size 100m
 2 autoextend on next 100m maxsize 1g;

Tablespace created.

SQL> alter pluggable database
 2 default tablespace qa_dflt;

Pluggable database altered.

SQL>

Going forward, any new local users within QATEST1 that don’t have a specific default
permanent tablespace will use the tablespace QA_DFLT.

Using Local Temporary Tablespaces
For any CDB, you can have one default temporary tablespace or temporary tablespace group
defined at the CDB level that can be used for all PDBs as their temporary tablespace. You can,
however, create a temporary tablespace for a PDB that is used only by that PDB. In this example,

11-ch11.indd 409 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

410 Oracle Database 12c DBA Handbook

you create a new temporary tablespace called QA_DFLT_TEMP in the PDB QATEST1 and make it
the default temporary tablespace for QATEST1:

SQL> create temporary tablespace qa_dflt_temp
 2 tempfile size 100m autoextend on
 3 next 100m maxsize 500m;

Tablespace created.

SQL> alter pluggable database
 2 default temporary tablespace qa_dflt_temp;

Pluggable database altered.

SQL>

A temporary tablespace created within a PDB stays with that PDB when it’s unplugged and
plugged back into the same or a different CDB. If a user is not assigned a specific temporary
tablespace, then that user is assigned the default temporary tablespace for the PDB. If there is no
default temporary tablespace for the PDB, then the default temporary tablespace for the CDB applies.

Multitenant Security
As described earlier in the chapter, in a multitenant environment, there are two types of users:
common users and local users. A common user in a CDB (root container) has visibility and an
account available in the root container and automatically in each PDB within the CDB. Common
users do not automatically have the same privileges in every PDB; this flexibility simplifies your
authentication processes but makes it easy to fine-tune the authorization in each PDB.

Managing Common and Local Users
The names of common users start with C##, which makes it easy to distinguish a common user
from a local user in each PDB. Creating a local user is exactly like creating a user in a non-CDB.
You can create a local user either with a common user or with another local user with the CREATE
USER privileges:

SQL> alter session set container=qatest1;

Session altered.

SQL> create user qa_fnd1 identified by qa901;

User created.

SQL> grant create session to qa_fnd1;

Grant succeeded.

SQL> connect qa_fnd1/qa901@oel63:1521/qatest1
Connected.
SQL>

11-ch11.indd 410 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 411

The root container (CDB$ROOT) cannot have local users, only common users. Common
users have the same identity and password in the root container and every PDB, both current and
future. Having a common user account doesn’t automatically mean you have the same privileges
across every PDB including the root container. The accounts SYS and SYSTEM are common users
who can set any PDB as their default container. For new common users, the username must begin
with C## or c##, although creating a username with lowercase letters by using double quotation
marks around the username is highly discouraged.

When you create a common user with the CREATE USER command, you typically add
CONTAINER=ALL to the command, as in this example:

SQL> create user c##secadmin identified by sec404 container=all;

User created.

SQL> grant dba to c##secadmin;

Grant succeeded.

SQL>

If you are connected to the root container and have the CREATE USER privilege,
the CONTAINER=ALL clause is optional. The same applies to a local user and the
CONTAINER=CURRENT clause. The C##SECADMIN user now has DBA privileges in the
root container. This user has an account set up in each PDB but no privileges in any PDB
unless explicitly assigned:

SQL> connect c##secadmin/sec404@oel63:1521/cdb01
Connected.
SQL> alter session set container=qatest1;
ERROR:
ORA-01031: insufficient privileges

SQL>

To allow the user C##SECADMIN to at least connect to the QATEST1 database, grant the
appropriate privileges as follows:

SQL> grant create session, set container to c##secadmin;

Grant succeeded.

SQL> connect c##secadmin/sec404@oel63:1521/cdb01
Connected.
SQL> alter session set container=qatest1;

Session altered.

SQL>

11-ch11.indd 411 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

412 Oracle Database 12c DBA Handbook

When using CREATE USER, you can optionally specify the default tablespace, the default
temporary tablespace, and the profile. These three attributes must exist in each PDB; otherwise,
those values will be set to the PDB defaults for those items.

What if a common user is created while one of the PDBs is currently not OPEN, in RESTRICTED
mode, or in READ ONLY mode? The new common user’s attributes are synced the next time the
other PDBs are opened.

Managing Common and Local Privileges
Common and local privileges apply to common and local users. If a privilege is granted across all
containers to a common user, it’s a common privilege. Similarly, a privilege granted in the context
of a single PDB is a local privilege regardless of whether the user is local or common.

In the previous section, the user C##SECADMIN, a common user, was granted the CREATE
SESSION privilege but only on the QATEST1 container. If C##SECADMIN needs access to all
PDBs by default, use the CONTAINER=ALL keyword to grant that privilege across all current and
new PDBs in the CDB:

SQL> connect / as sysdba
Connected.
SQL> show con_id

CON_ID

1
SQL> grant create session to c##secadmin container=all;

Grant succeeded.

SQL> connect c##secadmin/sec404@oel63:1521/dw17
Connected.
SQL>

From a security perspective, you can grant common users privileges in the root container but
no other containers. Remember that only common users can connect to the root container
regardless of the privileges granted; for a common user to connect to the root container, the user
will need the CREATE SESSION privilege in the context of the root container, as you can see in
this example:

SQL> connect / as sysdba
Connected.
SQL> alter session set container=cdb$root;

Session altered.

SQL> create user c##rootadm identified by adm580;

User created.

SQL> connect c##rootadm/adm580@oel63:1521/cdb01
ERROR:

11-ch11.indd 412 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 413

ORA-01045: user C##ROOTADM lacks CREATE SESSION privilege; logon denied

Warning: You are no longer connected to ORACLE.
SQL>

To fix this issue for C##ROOTADM, you need to grant the CREATE SESSION privilege in the
context of the root container:

SQL> grant create session to c##rootadm container=current;

Grant succeeded.

SQL> connect c##rootadm/adm580@oel63:1521/cdb01
Connected.
SQL>

You revoke privileges from users and roles using the REVOKE command as in previous
releases and non-CDBs. The key difference of using GRANT and REVOKE in a multitenant
environment is the addition of the CONTAINER clause where you specify the context of the
GRANT or REVOKE. Here are some examples of the CONTAINER clause:

 ■ CONTAINER=QATEST1 (privileges valid only in the PDB QATEST1)

 ■ CONTAINER=ALL (privileges valid across all PDBs, current and future)

 ■ CONTAINER=CURRENT (privileges granted or revoked in the current container)

To grant a privilege with CONTAINER=ALL, the grantor must have the SET CONTAINER
privilege along with the GRANT ANY PRIVILEGE system privilege.

Managing Common and Local Roles
Roles, just like system and object privileges, work much the same in a multitenant environment as
they do in a non-CDB environment. Common roles use the same conventions as common users
and start with C##; a common role can have the same privileges across all containers or specific
privileges or no privileges in a subset of containers. You use the CONTAINER clause to specify the
context of the role:

SQL> connect / as sysdba
Connected.
SQL> create role c##mv container=all;

Role created.

SQL> alter session set container=dw17;

Session altered.

SQL> create user dw_repl identified by dw909;

User created.

11-ch11.indd 413 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

414 Oracle Database 12c DBA Handbook

SQL> grant c##mv to dw_repl;

Grant succeeded.

SQL>

Note in the example that a common role (C##MV) was granted to a local user (DW_REPL) in
DW17. The user DW_REPL inherits all the privileges in the role C##MV but only in the DW17
PDB. The reverse is also possible: A common user (such as C##RJB) can be granted a local role
(such as LOCAL_ADM) in a specific PDB (such as QATEST1), and therefore the privileges granted
via LOCAL_ADM are available only in QATEST1 for C##RJB.

Enabling Common Users to Access Data in Specific PDBs
Just as in a non-CDB environment, you may want to share objects with users in other PDBs. By
default, any tables created by a common or local user are nonshared and are accessible only in
the PDB where they were created.

Shared tables, on the other hand, have some restrictions. Only Oracle-supplied common
users (such as SYS or SYSTEM) can create shared tables; common users that the DBA creates
(even with DBA privileges such as CREATE USER, DROP ANY TABLE, and so forth) cannot create
shared tables.

The two types of shared objects are “links”: Object Links and Metadata Links. Object Links
connect every PDB to a table in the root container, and each PDB sees the same rows. A good
example of this is Automatic Workload Repository (AWR) data in tables like DBA_HIST_ACTIVE_
SESS_HISTORY, which has the column CON_ID so you can identify which container the row in
DBA_HIST_ACTIVE_SESSION_HISTORY applies to.

In contrast, Metadata Links allow access to tables in the root container plus their own private
copies of the data. Most of the DBA_ views use this method. For example, looking at the DBA_
USERS view in the PDB QATEST1, there is no CON_ID column from the PDB perspective:

SQL> select username, common from dba_users;

USERNAME COMMON
------------------------------ ----------
C##KLH YES
PDBADMIN NO
AUDSYS YES
GSMUSER YES
SPATIAL_WFS_ADMIN_USR YES
C##RJB YES
SPATIAL_CSW_ADMIN_USR YES
APEX_PUBLIC_USER YES
RJB NO
SYSDG YES
DIP YES
QA_FND1 NO

11-ch11.indd 414 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 415

However, from the same table in the root container, you can look at CDB_USERS and see the
local and common users across all containers:

SQL> select con_id,username,common from cdb_users
 2 order by username,con_id;

 CON_ID USERNAME COMMON
---------- ------------------------------ ----------
 1 ANONYMOUS YES
. . .
 5 AUDSYS YES
 1 C##KLH YES
 3 C##KLH YES
 4 C##KLH YES
 5 C##KLH YES
 1 C##RJB YES
 3 C##RJB YES
 4 C##RJB YES
 5 C##RJB YES
 1 C##ROOTADM YES
 3 C##ROOTADM YES
. . .
 4 DVSYS YES
 5 DVSYS YES
 5 DW_REPL NO
 1 FLOWS_FILES YES
 2 FLOWS_FILES YES
. . .
 5 OUTLN YES
 3 PDBADMIN NO
 3 QAFRED NO
 3 QA_FND1 NO
 3 RJB NO
 4 RJB NO
 5 RJB NO
 1 SI_INFORMTN_SCHEMA YES
 2 SI_INFORMTN_SCHEMA YES
. . .
198 rows selected.

SQL>

The common users such as C##RJB exist for every PDB (other than the seed database). Users
such as QAFRED exist only in the PDB with CON_ID=3 (QATEST1). Note also that the common
users you create must start with C##; Oracle-supplied common users do not need this prefix.

By default, common users cannot see information about specific PDBs. This follows the
principle of least privilege required to accomplish a task; a common user won’t automatically be
able to connect to a specific PDB nor see metadata about any PDB unless explicitly granted.

To leverage the granularity of data dictionary views by common users, you’ll use the ALTER
USER command to specify a common user, what container data they can access, and what

11-ch11.indd 415 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

416 Oracle Database 12c DBA Handbook

container they can access it from. For example, you may want only the common user C##RJB to
see rows in V$SESSION for the PDB DW17 when connected to the PDB QATEST1. You would use
the following command to accomplish this:

SQL> alter user c##rjb
 2 set container_data=(cdb$root,dw17)
 3 for v$session container=current;

User altered.

SQL>

To view the list of users and the container objects accessible to them, look in DBA_
CONTAINER_DATA:

SQL> select username,owner,object_name,
 2 all_containers,container_name
 3 from dba_container_data
 4 where username='C##RJB';

USERNAME OWNER OBJECT_NAME A CONTAINER_NAME
------------ ------------ --------------- - -------------------------
C##RJB SYS V$SESSION N DW17
C##RJB SYS V$SESSION N CDB$ROOT

SQL>

The common user C##RJB will be able to see only rows in V$SESSION for the container DW17.

Backup and Recovery in Multitenant Environments
There are several backup and recovery options for a CDB or a PDB. Using ARCHIVELOG mode
enhances the recoverability of a database, but in a multitenant environment you can enable
ARCHIVELOG mode only at the CDB level since the redo log files are only at the CDB level.
Otherwise, you can still back up your database in much the same way as in a non-CDB environment.
You can back up the entire CDB, a single PDB, a tablespace, a datafile, or even a single block
anywhere in the container.

The Data Recovery Advisor works much the same way as it did in previous releases of Oracle
Database: When a failure occurs, the Data Recovery Advisor gathers failure information into the
Automatic Diagnostic Repository (ADR). The Data Recovery Advisor also has proactive features to
check for failures before they are detected by a user session.

You can also easily duplicate a PDB using RMAN. Using RMAN gives you more flexibility
when copying a PDB compared to using the CREATE PLUGGABLE DATABASE . . . FROM . . .
option. For example, you can use the RMAN DUPLICATE command to copy all PDBs within its
CDB to a new CDB with the same PDBs plus the root and seed databases.

Performing Backups of a CDB and All PDBs
For multitenant databases, the RMAN syntax has been modified and new clauses have been added.
At the OS level, the environment variable ORACLE_SID was previously set at the instance level,

11-ch11.indd 416 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 417

but now that all databases within a CDB are running in the same database instance, you can connect
to a single PDB with RMAN using the service name and not the instance name. Here’s an example:

[oracle@tettnang ~]$ echo $ORACLE_SID
cdb01
[oracle@tettnang ~]$ rman target rjb/rjb@tettnang/tool

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 07:50:06 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN>

As in previous releases, you can connect to the CDB with RMAN using the syntax you’re
familiar with:

[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 07:52:33 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN>

Note, however, that the target database is displayed as CDB01 in both cases. How else would
you know that you’re connected to a specific PDB instead of the CDB? To find out, just use the
REPORT SCHEMA command:

[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 10:00:38 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN> report schema;

using target database control file instead of recovery catalog
Report of database schema for database with db_unique_name CDB01

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 790 SYSTEM *** +DATA/CDB01/DATAFILE/system.268.845194003
3 1460 SYSAUX *** +DATA/CDB01/DATAFILE/sysaux.267.845193957

11-ch11.indd 417 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

418 Oracle Database 12c DBA Handbook

4 735 UNDOTBS1 *** +DATA/CDB01/DATAFILE/undotbs1.270.845194049
5 250 PDB$SEED:SYSTEM *** +DATA/CDB01/
DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/system.277.845194085
6 5 USERS *** +DATA/CDB01/DATAFILE/users.269.845194049
7 590 PDB$SEED:SYSAUX *** +DATA/CDB01/
DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/sysaux.276.845194085
18 260 TOOL:SYSTEM *** +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/system.286.848743627
. . .
27 5 CCREPOS:USERS *** +DATA/CDB01/
F751E0E9988D6064E043E3A0080A6DC5/DATAFILE/users.283.845194257
28 100 UNDOTBS1 *** +DATA/CDB01/DATAFILE/undotbs1.263.848922747
29 100 TOOL:PROCREPO *** +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/procrepo.257.849257047

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 521 TEMP 32767 +DATA/CDB01/TEMPFILE/temp.275.845194083
2 20 PDB$SEED:TEMP 32767 +DATA/CDB01/
DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/pdbseed_temp01.dbf
3 20 CCREPOS:TEMP 32767 +DATA/CDB01/
F751E0E9988D6064E043E3A0080A6DC5/TEMPFILE/temp.282.848755025
4 20 TOOL:TEMP 32767 +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/TEMPFILE/temp.299.848743629
6 20 QA_2015:TEMP 32767 +DATA/CDB01/
FA787E0038B26FFBE043E3A0080A1A75/TEMPFILE/temp.291.848745313
7 60 RPTQA12C:TEMP 32767 +DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/TEMPFILE/temp.300.848752943
8 100 TEMP 1000 +DATA/CDB01/TEMPFILE/temp.258.848922745

RMAN> quit

Recovery Manager complete.

Note that connecting to the CDB shows all tablespaces, including those of the seed and root
containers. Connecting to an individual PDB returns different (but expected) results for the REPORT
SCHEMA command:

[oracle@tettnang ~]$ rman target rjb/rjb@tettnang/tool

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 10:00:50 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

11-ch11.indd 418 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 419

RMAN> report schema;

using target database control file instead of recovery catalog
Report of database schema for database with db_unique_name CDB01

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
18 260 SYSTEM *** +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/system.286.848743627
19 620 SYSAUX *** +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/sysaux.303.848743627
29 100 PROCREPO *** +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/procrepo.257.849257047

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
4 20 TEMP 32767 +DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/TEMPFILE/temp.299.848743629

RMAN>

The RMAN BACKUP, RESTORE, and RECOVER commands have been enhanced to include
the PLUGGABLE keyword when operating on one or more PDBs:

RMAN> backup pluggable database rptqa12c;

In addition, you can qualify a tablespace backup with a PDB name to back up one specific
tablespace within the PDB:

[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 08:44:15 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN> backup tablespace tool:procrepo;

Starting backup at 03-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=258 device type=DISK

11-ch11.indd 419 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

420 Oracle Database 12c DBA Handbook

channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00029 name=+DATA/CDB01
 /FA782A61F8447D03E043E3A0080A9E54
 /DATAFILE/procrepo.257.849257047
channel ORA_DISK_1: starting piece 1 at 03-JUN-14
channel ORA_DISK_1: finished piece 1 at 03-JUN-14
piece handle=+RECOV/CDB01
 /FA782A61F8447D03E043E3A0080A9E54
 /BACKUPSET/2014_06_03/nnndf0_tag20140603t084425_0.256.849257065
tag=TAG20140603T084425 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
Finished backup at 03-JUN-14

Starting Control File and SPFILE Autobackup at 03-JUN-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_06_03/s_849257066.257.849257067
comment=NONE
Finished Control File and SPFILE Autobackup at 03-JUN-14

RMAN>

Without any qualification, when connected to the CDB, any RMAN commands operate on
the root container and all PDBs. To back up just the root container, use the name CDB$ROOT,
which as you know from Chapter 11 is the name of the root container within the CDB.

Backing Up CDBs
As mentioned in the previous section, you can back up the entire CDB as a full backup, a single
PDB within the CDB, or individual tablespaces in any of the PDBs or root container. To run RMAN
and back up a container, the user must have a common account with either the SYSDBA or
SYSBACKUP privilege in the root container. To accommodate separation of duties, Oracle
recommends assigning only the SYSBACKUP privilege to a database user who is responsible only
for database backups and recovery.

Since a CDB is most similar to a pre-12c database (non-CDB), your backups will look similar
to RMAN backups you created in Oracle Database 11g. You can create backupsets or image copies
along with the control file, SPFILE, and optionally the archived redo log files.

Backing up the CDB (and all PDBs) with the container open requires ARCHIVELOG mode as
in previous releases; if the CDB is in NOARCHIVELOG mode, then the container must be open in
MOUNT mode (and therefore no PDBs are open as well). Here is an example:

[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 12:13:26 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN> backup database;

11-ch11.indd 420 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 421

Starting backup at 03-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=6 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1021 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1281 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=1025 device type=DISK
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00003 name=+DATA/CDB01/DATAFILE/sysaux.267.845193957
channel ORA_DISK_1: starting piece 1 at 03-JUN-14
channel ORA_DISK_2: starting compressed full datafile backup set
channel ORA_DISK_2: specifying datafile(s) in backup set
input datafile file number=00023 name=+DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/DATAFILE/sysaux.302.848752939
channel ORA_DISK_2: starting piece 1 at 03-JUN-14
channel ORA_DISK_3: starting compressed full datafile backup set
channel ORA_DISK_3: specifying datafile(s) in backup set
input datafile file number=00004 name=+DATA/CDB01/DATAFILE/undotbs1.270.845194049
input datafile file number=00028 name=+DATA/CDB01/DATAFILE/undotbs1.263.848922747
. . .
channel ORA_DISK_2: backup set complete, elapsed time: 00:00:00
channel ORA_DISK_3: finished piece 1 at 03-JUN-14
piece handle=+RECOV/CDB01/F751E0E9988D6064E043E3A0080A6DC5/
BACKUPSET/2014_06_03/nnndf0_tag20140603t121337_0.280.849269683
tag=TAG20140603T121337 comment=NONE
channel ORA_DISK_3: backup set complete, elapsed time: 00:00:01
Finished backup at 03-JUN-14

Starting Control File and SPFILE Autobackup at 03-JUN-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_06_03/s_849269683.281.849269683
comment=NONE
Finished Control File and SPFILE Autobackup at 03-JUN-14

RMAN>

Note the references to tablespaces and datafiles like this:

name=+DATA/CDB01/F754FCD8744A55AAE043E3A0080A3B17/
 DATAFILE/sysaux.302.848752939

It’s the datafile for the SYSAUX tablespace in one of the PDBs. To find out which one, you
can look in the dynamic performance view V$PDBS at the column GUID. The globally unique

11-ch11.indd 421 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

422 Oracle Database 12c DBA Handbook

identifier (GUID) value is a long hexadecimal string that uniquely identifies the container even
when it’s unplugged from one CDB and plugged back into another.

SQL> select con_id,dbid,guid,name from v$pdbs;

 CON_ID DBID GUID NAME
-------- ---------- -------------------------------- --------------------
 2 4087805696 F751D8C27D475B57E043E3A0080A2A47 PDB$SEED
 3 1248256969 F751E0E9988D6064E043E3A0080A6DC5 CCREPOS
 4 1258510409 FA782A61F8447D03E043E3A0080A9E54 TOOL
 6 2577431197 FA787E0038B26FFBE043E3A0080A1A75 QA_2015
 7 1288637549 F754FCD8744A55AAE043E3A0080A3B17 RPTQA12C

SQL>

In this case, the SYSAUX datafile belongs to the RPTQA12C PDB.
If you want to perform a partial CDB backup, you connect to the container (CDB) with RMAN

and back up one or more containers in a single command along with the root container using the
PLUGGABLE DATABASE clause, as in this example:

RMAN> backup pluggable database tool,rptqa12c,"CDB$ROOT";

In a recovery scenario, you can restore and recover the TOOL PDB separately from the
RPTQA12C PDB or just the root container.

Backing Up PDBs
Backing up a PDB is also similar to backing up a non-CDB in Oracle Database 12c or previous
releases. Note that backing up a PDB is identical to backing up part of a CDB but without the root
container (CDB$ROOT). For separation of duties, you can have a user with SYSBACKUP privileges
in only one PDB. They will connect only to the PDB and then back it up as if it were a non-CDB.
This example shows a backup administrator connecting to only the CCREPOS PDB as a local user
and performing a full RMAN backup:

[oracle@tettnang ~]$ rman target rjb/rjb@tettnang/ccrepos

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 21:00:27 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN> backup database;

Starting backup at 03-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=1027 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1283 device type=DISK

11-ch11.indd 422 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 423

allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1028 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=13 device type=DISK
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00026 name=+DATA/CDB01/
F751E0E9988D6064E043E3A0080A6DC5
 /DATAFILE/sysaux.281.845194249
channel ORA_DISK_1: starting piece 1 at 03-JUN-14
channel ORA_DISK_2: starting compressed full datafile backup set
channel ORA_DISK_2: specifying datafile(s) in backup set
input datafile file number=00025 name=+DATA/CDB01/
F751E0E9988D6064E043E3A0080A6DC5
 /DATAFILE/system.280.845194249
channel ORA_DISK_2: starting piece 1 at 03-JUN-14
channel ORA_DISK_3: starting compressed full datafile backup set
channel ORA_DISK_3: specifying datafile(s) in backup set
input datafile file number=00027 name=+DATA/CDB01/
F751E0E9988D6064E043E3A0080A6DC5
 /DATAFILE/users.283.845194257
channel ORA_DISK_3: starting piece 1 at 03-JUN-14
channel ORA_DISK_3: finished piece 1 at 03-JUN-14
piece handle=+RECOV/CDB01/F751E0E9988D6064E043E3A0080A6DC5
 /BACKUPSET/2014_06_03/nnndf0_tag20140603t210035_0.284.849301235
tag=TAG20140603T210035 comment=NONE
channel ORA_DISK_3: backup set complete, elapsed time: 00:00:01
channel ORA_DISK_2: finished piece 1 at 03-JUN-14
piece handle=+RECOV/CDB01/F751E0E9988D6064E043E3A0080A6DC5
 /BACKUPSET/2014_06_03/nnndf0_tag20140603t210035_0.285.849301235
tag=TAG20140603T210035 comment=NONE
channel ORA_DISK_2: backup set complete, elapsed time: 00:00:07
channel ORA_DISK_1: finished piece 1 at 03-JUN-14
piece handle=+RECOV/CDB01/F751E0E9988D6064E043E3A0080A6DC5
 /BACKUPSET/2014_06_03/nnndf0_tag20140603t210035_0.283.849301235
tag=TAG20140603T210035 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:25
Finished backup at 03-JUN-14

Starting Control File and SPFILE Autobackup at 03-JUN-14
piece handle=+RECOV/CDB01/F751E0E9988D6064E043E3A0080A6DC5
 /AUTOBACKUP/2014_06_03/s_849301260.286.849301261 comment=NONE
Finished Control File and SPFILE Autobackup at 03-JUN-14

RMAN>

Note that you do not need to specify the PLUGGABLE keyword since you’re doing the backup
from the perspective of a single PDB. Even though you’re backing up a single PDB, the control file
is included in the full backup despite the fact that the control file is shared across the entire container
along with the SPFILE.

11-ch11.indd 423 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

424 Oracle Database 12c DBA Handbook

Recovering from PDB Datafile Loss
As with non-CDB databases, both PDBs and a CDB can suffer from instance failure or media
failure requiring some kind of recovery operation. The recovery can occur at the CDB level, the
PDB level, a tablespace within a PDB, a datafile, or even an individual block. The one major
difference is instance recovery: Since all PDBs and the CDB share a single instance, all PDBs go
down if the CDB goes down, and thus crash recovery for the instance occurs only at the CDB
level. Similarly, any objects that are global and exist at the CDB level, such as the control files,
redo log files, or datafiles from the root’s SYSTEM or UNDO tablespaces, require media recovery
at the CDB level only.

In the following sections, I’ll review the types of media failure and how to recover from them.
Many of the scenarios have the same recovery solution as a non-CDB, and in the case of a single
PDB, the recovery of that PDB can occur with little or no disruption to other PDBs that may be
open at the time.

Tempfile Recovery
Recall from earlier in this chapter that a temporary tablespace (with one or more tempfiles) exists
at the CDB level, but each PDB can have its own temporary tablespace if the application has
different requirements. If a PDB’s DML or SELECT statements require the TEMP tablespace at the
CDB level and it is suddenly lost because of media failure, the statement will fail. In this example,
one of the ASM administrators accidentally deletes one of the tempfiles belonging to the CDB:

[oracle@tettnang ~]$ asmcmd
ASMCMD> cd +data/cdb01/tempfile
ASMCMD> ls -l
Type Redund Striped Time Sys Name
TEMPFILE UNPROT COARSE JUN 03 08:00:00 Y TEMP.258.848922745
TEMPFILE UNPROT COARSE JUN 03 08:00:00 Y TEMP.275.845194083
ASMCMD> rm TEMP.258.848922745
ASMCMD> quit
[oracle@tettnang ~]$

The easy but draconian solution to fix the problem would be to restart the entire CDB.
Instead, you can just add another tempfile to the TEMP tablespace and drop the one that no
longer exists:

SQL> alter tablespace temp add tempfile '+DATA'
 2 size 100m autoextend on next 100m maxsize 2g;

Tablespace altered.

SQL> alter tablespace temp drop tempfile
 2 '+DATA/CDB01/TEMPFILE/temp.258.848922745';

Tablespace altered.

SQL>

As with non-CDBs, if a temporary tablespace (at either the CDB or PDB level) is missing at
container startup, it is re-created automatically.

11-ch11.indd 424 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 425

Recovering from Control File Loss
Losing one or all control files is just as serious as losing a control file in a non-CDB. Oracle best
practices dictate that you have at least three copies of the control file available. If you lose all
copies of the control file, you can get them from the latest RMAN autobackup. In this example,
the copy of the control file in the +RECOV disk group is missing, and the CDB will not start (and
as a result, none of the PDBs can start):

[oracle@tettnang ~]$. oraenv
ORACLE_SID = [+ASM] ? cdb01
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@tettnang ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Tue Jun 3 23:03:52 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to an idle instance.

SQL> startup
ORACLE instance started.

Total System Global Area 5027385344 bytes
Fixed Size 2691952 bytes
Variable Size 1241517200 bytes
Database Buffers 3774873600 bytes
Redo Buffers 8302592 bytes
ORA-00205: error in identifying control file, check alert log for more info

SQL>

Shut down the instance and recover the control file from the last RMAN backup:

SQL> shutdown immediate
ORA-01507: database not mounted

ORACLE instance shut down.
SQL> quit
Disconnected from Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 -
64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options
[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Tue Jun 3 23:07:30 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database (not started)

11-ch11.indd 425 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

426 Oracle Database 12c DBA Handbook

RMAN> startup nomount;

Oracle instance started

Total System Global Area 5027385344 bytes

Fixed Size 2691952 bytes
Variable Size 1241517200 bytes
Database Buffers 3774873600 bytes
Redo Buffers 8302592 bytes

RMAN> restore controlfile from autobackup;

Starting restore at 03-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=1021 device type=DISK

recovery area destination: +RECOV
database name (or database unique name) used for search: CDB01
channel ORA_DISK_1: AUTOBACKUP +RECOV/CDB01/AUTOBACKUP/2014_06_03
/s_849308463.289.849308463 found in the recovery area
AUTOBACKUP search with format "%F" not attempted because DBID was not set
channel ORA_DISK_1: restoring control file from AUTOBACKUP +RECOV/CDB01/AUTOBA
CKUP/2014_06_03/s_849308463.289.849308463
channel ORA_DISK_1: control file restore from AUTOBACKUP complete
output file name=+DATA/CDB01/CONTROLFILE/current.271.849308871
output file name=+RECOV/CDB01/CONTROLFILE/current.260.845194075
Finished restore at 03-JUN-14

RMAN>

Even though only one copy of the control file was lost, the RMAN recovery operation restores
both copies; the remaining control file is almost certainly out of sync with the autobackup version:

RMAN> alter database mount;

Statement processed
released channel: ORA_DISK_1

RMAN> recover database;

Starting recover at 03-JUN-14
Starting implicit crosscheck backup at 03-JUN-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=1021 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=260 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=514 device type=DISK

11-ch11.indd 426 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 427

allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=769 device type=DISK
Crosschecked 25 objects
Finished implicit crosscheck backup at 03-JUN-14

Starting implicit crosscheck copy at 03-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
Finished implicit crosscheck copy at 03-JUN-14

searching for all files in the recovery area
cataloging files...
cataloging done

List of Cataloged Files
=======================
File Name: +RECOV/CDB01/AUTOBACKUP/2014_06_03/s_849308463.289.849308463

using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

starting media recovery

archived log for thread 1 with sequence 215 is already on disk as file +DATA/
CDB01/ONLINELOG/group_2.273.845194077
archived log file name=+DATA/CDB01/ONLINELOG/group_2.273.845194077 thread=1
sequence=215
media recovery complete, elapsed time: 00:00:00
Finished recover at 03-JUN-14

RMAN> alter database open resetlogs;

Statement processed

RMAN> alter pluggable database all open;

Statement processed

RMAN>

Data loss will not occur unless you have objects defined in the recovered control file that
were created after the last RMAN autobackup of the control file.

Recovering from Redo Log File Loss
Redo log files are only at the CDB level and therefore are recovered in much the same way as in a
non-CDB. Redo log files should be multiplexed with at least two copies. If one copy of a redo log

11-ch11.indd 427 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

428 Oracle Database 12c DBA Handbook

group is lost or corrupted, the database writes to the remaining log group members, and an alert
is issued. No database recovery is required, but the missing or corrupted redo log group member
should be replaced as soon as possible to avoid possible data loss.

If all members of a redo log file group go missing or become corrupted, the database shuts
down, and media recovery will likely be required since there are committed transactions in the
lost redo log file group that have not yet been written to the datafiles. If the entire log file group
was on a disk that was temporarily offline, just changing the status of the log file group to ONLINE
will trigger an automatic instance recovery, and no data should be lost.

Recovering from Root Datafile Loss
Losing the critical SYSTEM or UNDO tablespace datafiles is just as serious as losing them in a
non-CDB. If the instance does not shut down automatically, you’ll have to shut down the CDB
and perform media recovery. The media recovery will also affect any PDBs that were open at the
time of datafile loss or corruption.

The recovery process is the same as in a non-CDB for the loss of SYSTEM or UNDO. Losing a
noncritical tablespace (such as an application-specific tablespace) does allow the CDB to remain
open along with all PDBs while you perform media recovery.

Recovering the SYSTEM or UNDO Tablespace
As an example, suppose the datafiles for the CDB’s SYSTEM tablespace are accidentally deleted
while the CDB is down. Starting it up gives the expectedly ominous message:

[oracle@tettnang ~]$. oraenv
ORACLE_SID = [+ASM] ? cdb01
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@tettnang ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Wed Jun 4 07:37:25 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to an idle instance.

SQL> startup
ORACLE instance started.

Total System Global Area 5027385344 bytes
Fixed Size 2691952 bytes
Variable Size 1241517200 bytes
Database Buffers 3774873600 bytes
Redo Buffers 8302592 bytes
Database mounted.
ORA-01157: cannot identify/lock data file 1 - see DBWR trace file
ORA-01110: data file 1: '+DATA/CDB01/DATAFILE/system.268.845194003'

SQL>

11-ch11.indd 428 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 429

Since you’re in ARCHIVELOG mode and you did a recent full backup, you can restore and
recover the CDB’s SYSTEM tablespace up to the point in time when the CDB was shut down last.
Stop the instance and initiate recovery as you would with a non-CDB:

SQL> shutdown immediate
ORA-01109: database not open

Database dismounted.
ORACLE instance shut down.
SQL> quit
Disconnected from Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 -
64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options
[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Jun 4 07:39:44 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database (not started)

RMAN> startup mount

Oracle instance started
database mounted

Total System Global Area 5027385344 bytes

Fixed Size 2691952 bytes
Variable Size 1241517200 bytes
Database Buffers 3774873600 bytes
Redo Buffers 8302592 bytes

RMAN> restore tablespace system;

Starting restore at 04-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
. . .
channel ORA_DISK_1: restoring datafile 00001 to +DATA/CDB01/DATAFILE/
system.268.845194003
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
BACKUPSET/2014_06_04/nnndf0_tag20140604t073433_0.302.849339275
channel ORA_DISK_1: piece handle=+RECOV/CDB01/BACKUPSET
 /2014_06_04/nnndf0_tag20140604t073433_0.302.849339275
tag=TAG20140604T073433
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:25
Finished restore at 04-JUN-14

11-ch11.indd 429 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

430 Oracle Database 12c DBA Handbook

RMAN> recover tablespace system;

Starting recover at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

starting media recovery
media recovery complete, elapsed time: 00:00:00

Finished recover at 04-JUN-14

RMAN> alter database open;

Statement processed

RMAN> alter pluggable database all open;

Statement processed

RMAN>

Note that in Oracle Database 12c, nearly all commands you would run in SQL*Plus are now
available in RMAN without having to qualify them with the SQL keyword.

Recovering the SYSAUX or Other Root Tablespace
Restoring and recovering a missing noncritical root container tablespace other than SYSTEM or
UNDO (such as SYSAUX) is even easier; there is no need to shut down the database (if it’s not
down already). You merely have to take the tablespace with the missing datafiles offline, perform
a tablespace restore and recovery, and then bring the tablespace online. All PDBs and the root
container can remain online during this operation since root-specific tablespaces other than
SYSTEM, TEMP, and UNDO are not shared with any PDB (other than TEMP if the PDB does not
have its own TEMP tablespace). The series of commands looks something like this:

RMAN> alter tablespace sysaux offline immediate;
RMAN> restore tablespace sysaux;
RMAN> recover tablespace sysaux;
RMAN> alter tablespace sysaux online;

Recovering PDB Datafiles
Since all PDBs operate independently as if they were a non-CDB, any failure or datafile loss in a
PDB has no effect on the root container or other PDBs unless the datafiles in the PDB’s SYSTEM
tablespace are lost or damaged. Otherwise, restoring/recovering datafiles in a PDB is much the
same as restoring and recovering datafiles in a CDB or non-CDB.

PDB SYSTEM Datafile Loss The loss of the SYSTEM tablespace in an open PDB is one of the few
cases where the entire CDB must be shut down to recover the PDB’s SYSTEM tablespace. Otherwise,
if the PDB is closed and won’t open because of a damaged or missing SYSTEM datafile, the CDB
and other PDBs can remain open during the PDB’s restore and recovery operation.

11-ch11.indd 430 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 431

In this example, the SYSTEM datafile for the PDB CCREPOS is accidentally dropped while
CCREPOS is closed. Trying to open CCREPOS fails as expected:

SQL> alter pluggable database ccrepos open;
alter pluggable database ccrepos open
*
ERROR at line 1:
ORA-01157: cannot identify/lock data file 30 - see DBWR trace file
ORA-01110: data file 30:
'+DATA/CDB01/FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981'
SQL>

Next, start RMAN and initiate a recovery on the SYSTEM tablespace. Be sure to qualify the
tablespace name with the PDB name in the RESTORE command:

RMAN> restore tablespace ccrepos:system;

Starting restore at 04-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=774 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1028 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1279 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=9 device type=DISK

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00030 to +DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85
 /BACKUPSET/2014_06_04/nnndf0_tag20140604t084003_0.316.849343205
channel ORA_DISK_1: piece handle=+RECOV/CDB01/FB03AEEBB6F60995E043E3A0080AEE85
 /BACKUPSET/2014_06_04/nnndf0_tag20140604t084003_0.316.849343205
tag=TAG20140604T084003
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:07
Finished restore at 04-JUN-14

RMAN> recover tablespace ccrepos:system;

Starting recover at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

starting media recovery

11-ch11.indd 431 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

432 Oracle Database 12c DBA Handbook

media recovery complete, elapsed time: 00:00:00

Finished recover at 04-JUN-14

RMAN> alter pluggable database ccrepos open;

Statement processed

RMAN>

PDB Non-SYSTEM Datafile Loss Recovering a non-SYSTEM datafile in a PDB uses the same
steps as recovering a non-SYSTEM datafile or tablespace in a CDB: offline the tablespace and
then restore and recover. The only difference is that you qualify the tablespace name with the
PDB name, like this:

RMAN> restore tablespace tool:fishinv;
RMAN> recover tablespace tool:fishinv;
. . .
SQL> connect rjb/rjb@tettnang/tool
SQL> alter tablespace fishinv online;

Using the Data Recovery Advisor
The Data Recovery Advisor (DRA) can both proactively and reactively analyze failures. In both
scenarios, it does not automatically fix problems it finds but instead provides one or more possible
fixes and gives you the option and the commands to perform the fix. As of Oracle Database 12c
release 1 (12.1.0.1), only non-CDBs and single-instance CDBs are supported (non-RAC environments).

In previous releases of Oracle RMAN, you could perform proactive checks of the database’s
datafiles with the VALIDATE command. In a CDB environment, the VALIDATE command has been
enhanced to analyze individual PDBs or the entire CDB.

Data Failures
In one of the scenarios presented earlier, the SYSTEM tablespace’s datafiles of the CCREPOS PDB
were lost. You might come to that conclusion after viewing the alert log or, more likely, after a
user submits a help-desk ticket saying she can’t get into the CCREPOS database. You suspect that
there might be more failures, so you start RMAN and use the DRA commands LIST FAILURE,
ADVISE FAILURE, and REPAIR FAILURE to fix one or more issues.

To view and repair any issues with the CDB containing the CCREPOS PDB, start RMAN from
the root container and run the LIST FAILURE DETAIL command:

RMAN> list failure detail;

using target database control file instead of recovery catalog
Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/

11-ch11.indd 432 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 433

FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing
 Impact: Database cannot be opened

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1542 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981' is missing
 Impact: Database cannot be opened

RMAN>

It looks like the SYSTEM datafile was lost once already (and recovered) earlier in the chapter!
But the failure was not cleared from RMAN, so use CHANGE FAILURE to clear the earlier event:

RMAN> change failure 1542 closed;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1542 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981' is missing

Do you really want to change the above failures (enter YES or NO)? yes
closed 1 failures

RMAN>

Next, let’s see what RMAN recommends to fix the problem:

RMAN> advise failure 1562;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=774 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1028 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1276 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=10 device type=DISK

11-ch11.indd 433 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

434 Oracle Database 12c DBA Handbook

analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file +DATA/CDB01/FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395
was unintentionally renamed or moved, restore it
2. Automatic repairs may be available if you shut down the database and restart it in
mount mode

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 30
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /u01/app/oracle/diag/rdbms/cdb01/cdb01/hm/reco_461168804.hm

RMAN>

The repair script generated by RMAN is as follows:

 # restore and recover datafile
 sql 'CCREPOS' 'alter database datafile 30 offline';
 restore (datafile 30);
 recover datafile 30;
 sql 'CCREPOS' 'alter database datafile 30 online';

The script is generated to run as is in RMAN. Knowing that the CCREPOS PDB is closed,
however, means you can skip the first and last commands and just run the RESTORE and
RECOVER commands:

RMAN> restore (datafile 30);

Starting restore at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00030 to +DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/BACKUPSET/2014_06_04/nnndf0_tag2014060
4t084003_0.316.849343205
channel ORA_DISK_1: piece handle=+RECOV/CDB01/FB03AEEBB6F60995E043E3A0080AEE85/
BACKUPSET/2014_06_04/nnndf0_tag20140604t084003_0.316.849343205 tag=TAG20140604T084003
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:07
Finished restore at 04-JUN-14

11-ch11.indd 434 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 435

RMAN> recover datafile 30;

Starting recover at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

starting media recovery
media recovery complete, elapsed time: 00:00:01

Finished recover at 04-JUN-14

RMAN>

Finally, open the PDB and see whether all is well:

RMAN> alter pluggable database ccrepos open;
Statement processed
RMAN>

Since CCREPOS starts fine now, you can clear the failure in RMAN:

RMAN> change failure 1562 closed;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing

Do you really want to change the above failures (enter YES or NO)? yes
closed 1 failures

RMAN>

PITR Scenarios
There are occasions where you want to roll the entire database back to a point in time before a
logical corruption occurred. If the flashback retention is not sufficient to rewind back as far as you
would like, then you have to resort to restoring the entire database and applying incremental
backups and archived redo logs to a point in time right before the logical corruption occurred (for
example, dropping several large tables or updating hundreds of tables with the wrong date).

Therefore, point-in-time recovery (PITR) is a good solution for a PDB tablespace or the entire
PDB. As you might expect, all other PDBs and the CDB are unaffected when performing PITR for
a PDB. As with a non-CDB PITR, when you perform an incomplete recovery, you have to open
the PDB with RESETLOGS. For a tablespace within the PDB, the PDB remains open for the duration
of the tablespace PITR.

11-ch11.indd 435 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

436 Oracle Database 12c DBA Handbook

In the following example, in the PDB named TOOL, you have a series of routine transactions
and a logically consistent database as of SCN 4759498:

SQL> select current_scn from v$database;

CURRENT_SCN

 4759498
SQL>

Later in the day, at SCN=4767859, all of the rows in the table BIG_IMPORT are accidentally
deleted, and neither the flashback data for that table nor UNDO data is available. The only viable
option is to recover the tablespace USERS to SCN=4759498 using PITR:

RMAN> recover tablespace tool:users until scn 4759498
2> auxiliary destination '+RECOV';
. . .
SQL> alter tablespace tool:users online;

If this PDB did not use a flash recovery area, the AUXILIARY DESTINATION clause would
specify the location to hold temporary files for the auxiliary instance, including the datafiles,
control files, and online log files.

Using Flashback CDB
If you do have enough space for flashback logs for a specific recovery window across all PDBs in
a CDB, then using Flashback CDB is another good option for recovery when doing a full CDB
restore and recovery operation would take significantly longer. Even if you have plenty of disk
space for flashback logs, the flashback operation is across all PDBs and the CDB. If an individual
PDB needs to be flashed back, you would instead use PDB PITR and leave the rest of the PDBs
and CDB at their current SCN.

To configure the fast recovery area, enable ARCHIVELOG mode, set your flashback retention
target, and turn on flashback:

SQL> alter system set db_flashback_retention_target=4000;

System altered.

SQL> alter database flashback on;

Database altered.

SQL>

One other caveat to using Flashback CDB is that you won’t be able to flash back the CDB to a
point in time earlier than any PDB that has been rewound with database PITR.

Identifying Block Corruption
The RMAN VALIDATE command works in a CDB environment much like it did in previous releases
of Oracle with the expected granularity in Oracle Database 12c to validate individual PDBs, the
root container, or the entire CDB. Connecting to the root container in RMAN, you can use the

11-ch11.indd 436 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 11: Multitenant Database Architecture 437

VALIDATE command as in this example to check the existence of all datafiles in the TOOL and
CCREPOS PDBs as well as check for any block corruptions:

[oracle@tettnang ~]$ rman target /

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Jun 4 21:09:02 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)

RMAN> validate pluggable database tool,ccrepos;

Starting validate at 04-JUN-14
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=1276 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=517 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1277 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=1025 device type=DISK
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
input datafile file number=00033 name=+DATA/CDB01/
FA782A61F8447D03E043E3A0080A9E54/DATAFILE/users.283.849369565
. . .
channel ORA_DISK_3: validation complete, elapsed time: 00:00:01
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
31 OK 0 20112 80685 4769786
 File Name: +DATA/CDB01/FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/
sysaux.282.849342981
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 14367
 Index 0 7673
 Other 0 38488

Finished validate at 04-JUN-14

RMAN>

Duplicating PDBs Using RMAN
Earlier in this chapter I showed you how to clone a PDB using the CREATE PLUGGABLE DATABASE
. . . FROM command. RMAN gives you more flexibility and scalability when duplicating one or
more PDBs within a CDB or the entire CDB.

11-ch11.indd 437 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

438 Oracle Database 12c DBA Handbook

As in any RMAN DUPLICATE operation, you must create an auxiliary instance for the destination
CDB and PDBs. Even when duplicating a PDB, the auxiliary instance must be started with the
initialization parameter ENABLE_PLUGGABLE_DATABASE=TRUE, and therefore the target is a
complete CDB with the root container (CDB$ROOT) and the seed database (PDB$SEED).

To duplicate a single PDB called TOOL to a new CDB called NINE, the RMAN DUPLICATE
command would look like this:

RMAN> duplicate database to nine pluggable database tool;

If you want to copy two or more PDBs, you just add them to the end of the DUPLICATE
command:

RMAN> duplicate database to nine pluggable database qa_2015,tool;

Exclusions are allowed in the DUPLICATE command. If you want to clone an entire CDB but
without the CCREPOS PDB, do this:

RMAN> duplicate database to nine skip pluggable database ccrepos;

Finally, you can duplicate not only PDBs but also individual tablespaces to a new CDB:

RMAN> duplicate database to nine
2> pluggable databases qa_2015,ccrepos tablespace tool:users;

In this example you want a new CDB with a new PDB called QA_2015_CCREPOS with only
the USERS tablespace from the existing PDB called TOOL.

Summary
Oracle’s multitenant architecture, new to Oracle Database 12c, gives the database administrator
an entire range of new capabilities to simplify and reduce maintenance activities as well as
respond to changing resource needs and maximize utilization of existing infrastructure.

Creating a new database or even cloning an existing database occurs in a fraction of the time
as in previous releases of Oracle: One reason is that the shared resources in a container database,
such as the base data dictionary, make up the bulk of the metadata in a new database and do not
need to be copied for each individual pluggable database. The temporary and undo tablespaces
are already in place along with the online redo log files—a PDB can, however, have its own
temporary tablespace if desired to accommodate a specific application workload that might be
different from that of other PDBs sharing the same CDB.

Moving a PDB to another container either on the same server or on a different server is as
easy as shutting down the database, creating an XML file with the PDB’s metadata, and moving
the database files themselves to a location where the new CDB can access them.

The best part of using this feature is that you can use the same tools you used before. You’ll
still use RMAN to back up and recover a PDB, the initialization parameters will for the most part
behave as they did in previous releases, and users will not have to make any changes to their
applications to run efficiently in a multitenant environment.

11-ch11.indd 438 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 /
Blind folio 439

PART
III

High Availability

12-ch12.indd 439 13/05/15 10:02 AM

This page intentionally left blank

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 441

CHAPTER
12

Real Application Clusters

12-ch12.indd 441 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

442 Oracle Database 12c DBA Handbook

Chapter 4 presented an overview of Automatic Storage Management (ASM) and Oracle
Managed Files (OMF) and how they can ease administration, enhance performance, and
improve availability. You can add one or more disk volumes to a rapidly growing database

without bringing down the instance.

Chapter 6 discussed bigfile tablespaces and how they not only allow the total size of the
database to be much larger than in previous versions of Oracle, but also ease administration by
moving the maintenance point from the datafile to the tablespace. Chapter 17 will focus on Oracle
Net, providing you with the basics for ensuring that your clients can reach the database servers in
an efficient and prompt manner. Chapter 16 will expand our coverage of bigfile tablespaces in
addition to presenting other tools to make large database management easier, such as partitioned
table support, transportable tablespaces, and Oracle Data Pump introduced in Oracle Database 10g.

As your databases get larger, and the number of users increases, the need for availability
becomes even more critical. Real Application Clusters (RAC) will tie together OMF, bigfile
tablespaces, a robust network infrastructure, and ASM into key elements of the RAC architecture.
In this chapter, we will revisit many of these database features, but with an emphasis on how they
can be leveraged in a RAC environment.

This chapter focuses on some key RAC topics, including the differences between the hardware,
software, and network configuration in a RAC environment compared to a single-server database
environment. I’ll also touch upon how a single SPFILE controls the initialization parameters for
one, many, or all instances in your RAC database. Finally, I’ll give some examples of how RAC
can give you scalability and availability features not available in most single-database environments.

During the installation of a RAC, you can configure the Enterprise Manager agent and Enterprise
Manager Cloud Control 12c to manage your cluster. Cloud Control 12c extends the functionality
available to manage a single instance by providing a cluster-aware layer; you can manage both
the Oracle instances and the underlying cluster configuration from a single web interface.

Subsequent chapters present other ways to ensure high database availability and recoverability:
Chapter 15 will give a detailed look at Oracle Data Guard for near-real-time failover capabilities,
and Chapter 19 will cover Oracle Streams for advanced replication. In Chapter 16, we’ll finish up
our discussion on Oracle Flashback options started in Chapter 7 by examining how to perform
Flashback Drop and Flashback Database as well as how to use LogMiner to undo individual
transactions.

Overview of Real Application Clusters
A Real Application Cluster is highly available and scalable. The failure of one node in the cluster
does not affect client sessions or the availability of the cluster itself until the last node in the
cluster fails; the only impact a lost node has on the cluster is a slight degradation in response time,
depending on the total number of nodes in the cluster.

A RAC database has a few disadvantages. Licensing costs are higher, because each node in
the cluster has to have its own Oracle license plus the license for the RAC option. The close
physical proximity of the nodes in the cluster due to the high-speed requirements of the cluster
interconnect means that a natural disaster can take out the entire cluster; using a remote standby
database can help alleviate some of these concerns. You will have to weigh the cost of high
availability (or the lack thereof) compared to the increased cost and slight increase in
maintenance of a RAC.

12-ch12.indd 442 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 12: Real Application Clusters 443

NOTE
A stretch cluster, or a cluster using RAC technology over a wide-area
network (WAN), protects against the loss of an entire data center, but
it increases the cost of the infrastructure, since the already-redundant
storage systems must be duplicated across the sites and the network
bandwidth must be high enough to keep up with synchronization
tasks during peak transaction periods.

In the next few sections, I’ll cover some of the hardware and software requirements for a RAC
database as well as detail the network configuration and disk storage requirements to build a
successful cluster.

Hardware Configuration
A complete discussion of all possible RAC hardware configurations is beyond the scope of this
book. You want to have at least two and preferably three nodes for a RAC, each with redundant
power supplies, network cards, dual CPUs, and error-correcting memory; these are desirable
characteristics for any type of server, not just an Oracle server! The higher the number of nodes
configured in the cluster, the lower the performance hit you will take when one of the cluster’s
nodes fails.

The shared disk subsystem should also have hardware redundancy built in—multiple power
supplies, RAID-enabled disks (or just leverage an engineered system such as Oracle Exadata!),
and so forth. You will balance the redundancy built into the shared disk with the types of disk
groups you will create for the RAC. The higher redundancy built into the disk subsystem hardware
can potentially reduce the amount of software redundancy you specify when you create the
database’s disk groups.

Software Configuration
Although Oracle clustering solutions have been available since version 6, not until version 10g
has there been a native clusterware solution that more tightly couples the database to the volume
management solution. Cluster Ready Services (CRS) is the clustering solution that can be used on
all major platforms instead of an OS vendor or third-party clusterware.

CRS is installed before the RDBMS and must be in its own home directory, referred to as the
CRS_HOME. If you are only using a single instance in the near future but plan to cluster at a later
date, it is useful to install CRS first so that the components of CRS that are needed for ASM and
RAC are in the RDBMS directory structure. If you do not install CRS first, you will have to perform
some extra steps later to remove the CRS-related process executables from the RDBMS home
directory.

After CRS is installed, you install the database software in the home directory, referred to as
the ORACLE_HOME. On some platforms, such as Microsoft Windows, this directory can be a
directory common to all nodes, whereas other platforms, such as Linux, require OCFS version 2.x
or later. Otherwise, each node will have its own copy of the binary executables.

Network Configuration
Each node in a RAC has a minimum of three IP addresses: one for the public network, one for the
private network interconnect, and a virtual IP address to support faster failover in the event of a
node failure. As a result, a minimum of two physical network cards are required to support RAC;

12-ch12.indd 443 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

444 Oracle Database 12c DBA Handbook

additional network cards are used to provide redundancy on the public network and thus an
alternate network path for incoming connections. For the private network, additional network cards
can boost performance by providing more total bandwidth for interconnect traffic. Figure 12-1
shows a two-node RAC with one network card on each node for the private interconnect and
one network card on each node to connect to the public network.

The public network is used for all routine connections to and from the server; the interconnect
network, or private network, supports communication between the nodes in the cluster, such as
node status information and the actual data blocks shared between the nodes. This interface
should be as fast as possible, and no other types of communication between the nodes should
occur on the private interface; otherwise, the performance of the RAC may suffer.

The virtual IP address is the address assigned to the Oracle listener process and supports rapid
connect-time failover, which is able to switch the network traffic and Oracle connection to a different
instance in the RAC much faster than a third-party, high-availability solution.

Disk Storage
The shared disk drive may or may not be a RAID device to support redundancy; more importantly,
the disk controllers and connections to the shared storage should be multiplexed to ensure high
availability. If the disks in the shared drive are not mirrored, you can use the mirroring capabilities
of ASM to provide performance and availability benefits.

RAC Characteristics
A RAC instance is different in many ways from a standalone instance; in this section, I will review
some of the initialization parameters that are specific to a RAC database. In addition, I’ll show
you some of the data dictionary views and dynamic performance views that are either unique to
a RAC or have columns that are only populated when the instance is part of a RAC.

FIGURE 12-1. RAC network configuration

12-ch12.indd 444 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 12: Real Application Clusters 445

Server Parameter File Characteristics
The server parameter file (SPFILE) typically resides on an ASM disk group and therefore is shared
by each node in the cluster. Within the SPFILE, you can assign different values for given parameters
on an instance-by-instance basis; in other words, the value for an initialization parameter can differ
between instances. If an initialization parameter is the same for all nodes in the cluster, it is prefixed
with “*.”; otherwise, it is prefixed with the node name.

In this example, the physical memory on the cluster server oc2 is temporarily reduced due to
other applications that are currently running on the server (ideally, though, you have no other
applications running on the server except for Oracle!). Therefore, to reduce the demands of the
instance on the server, you will change the value of MEMORY_TARGET for the instance rac2:

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 17179869184

SQL> alter system set memory_target = 12g sid='rac2';

System altered.

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 17179869184
rac2 memory_target 12884901888

Depending on your hardware and the amount of memory you’re allocating or deallocating,
the memory resize operation might take a few seconds or possibly a few minutes depending on
the current system load. Once the memory issue has been resolved, you can restore the size of
the SGA on the rac2 instance as follows:

SQL> alter system set memory_target = 16g sid='rac2';

System altered.
SQL>

Alternatively, and usually more simply, you want to reset the value to the same value for the
rest of the cluster; in this situation, you can use the RESET option of the ALTER SYSTEM command:

SQL> alter system reset memory_target sid = 'rac2';

System altered.

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

12-ch12.indd 445 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

446 Oracle Database 12c DBA Handbook

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 17179869184

SQL>

RAC-Related Initialization Parameters
A number of initialization parameters are used only in a RAC environment. Although these
initialization parameters exist in any instance, in a single-instance environment they are either
null or have a value of 1 (for example, INSTANCE_NUMBER). Table 12-1 provides an overview of
some of the key RAC-related initialization parameters.

Dynamic Performance Views
In a single-instance environment, all dynamic performance views that begin with V$ have a
corresponding view beginning with GV$, with the additional column INST_ID always set to 1. For
a RAC environment with two nodes, the GV$ views have twice as many rows as the corresponding
V$ views; for a three-node RAC, there are three times as many rows, and so forth. In the sections
that follow, we’ll review some of the V$ dynamic performance views that show the same contents
regardless of the node you are connected to, along with some of the GV$ views that can show you
the contents of the V$ views on each node without connecting to each node explicitly.

Common Database File Views
Some dynamic performance views are the same whether you’re in a RAC environment or a single-
instance environment; the ASM configuration is a perfect example of this. In this query run on any
database instance in the cluster, you want to verify that all your database files are stored in one of
the two ASM disk groups, +DATA1 or +RECOV1:

SQL> select name from v$datafile union
 2 select name from v$tempfile union
 3 select member from v$logfile union

Initialization Parameter Description

INSTANCE_NUMBER Unique number identifying this instance in the cluster.

INSTANCE_NAME The unique name of this instance within the cluster;
typically the cluster name with a numeric suffix.

CLUSTER_DATABASE This parameter is TRUE if this instance is participating
in a RAC environment.

CLUSTER_DATABASE_INSTANCES The number of instances configured for this cluster,
whether each instance is active or not. If INSTANCE_
TYPE is ASM, then this parameter has a value of 4.

CLUSTER_INTERCONNECTS Specifies the network used for the cluster’s IPC traffic.

TABLE 12-1. RAC-Related Initialization Parameters

12-ch12.indd 446 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 12: Real Application Clusters 447

 4 select name from v$controlfile union
 5 select name from v$flashback_database_logfile;

NAME

+DATA1/rac/controlfile/current.260.631034951
+DATA1/rac/datafile/example.264.631035151
+DATA1/rac/datafile/sysaux.257.631034659
+DATA1/rac/datafile/system.256.631034649
+DATA1/rac/datafile/undotbs1.258.631034665
+DATA1/rac/datafile/undotbs2.265.631035931
+DATA1/rac/datafile/undotbs3.266.631035935
+DATA1/rac/datafile/users.259.631034665
+DATA1/rac/onlinelog/group_1.261.631034959
+DATA1/rac/onlinelog/group_2.262.631034973
+DATA1/rac/onlinelog/group_3.269.631036295
+DATA1/rac/onlinelog/group_4.270.631036303
+DATA1/rac/onlinelog/group_5.267.631036273
+DATA1/rac/onlinelog/group_6.268.631036281
+DATA1/rac/tempfile/temp.263.631035129
+RECOV1/rac/controlfile/current.256.631034953
+RECOV1/rac/onlinelog/group_1.257.631034965
+RECOV1/rac/onlinelog/group_2.258.631034977
+RECOV1/rac/onlinelog/group_3.261.631036301
+RECOV1/rac/onlinelog/group_4.262.631036307
+RECOV1/rac/onlinelog/group_5.259.631036277
+RECOV1/rac/onlinelog/group_6.260.631036285

22 rows selected.

SQL> show parameter spfile

NAME TYPE VALUE
--------------------- ----------- --------------------------
spfile string +DATA1/rac/spfilerac.ora
SQL>

Cluster-Aware Dynamic Performance Views
The GV$ views make it easy to view each instance’s characteristics in a single SELECT statement,
while at the same time filtering out nodes that you do not want to see; these views also make it
easier to aggregate totals from some or all of the nodes in the cluster, as in this example:

SQL> select nvl(to_char(inst_id),'TOTAL') INST#,
 2 count(inst_id) sessions from gv$session
 3 group by rollup(inst_id)
 4 order by inst_id;

INST# SESSIONS
-------- ----------
1 48

12-ch12.indd 447 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

448 Oracle Database 12c DBA Handbook

2 48
3 44
TOTAL 140

4 rows selected.

From this query, you can see the number of sessions per instance and the total number of
instances for the cluster using the view GV$SESSION.

RAC Maintenance
Most of the maintenance operations you perform on a single-node instance apply directly to a
multiple-node RAC environment. In this section, I will review the basics for maintaining a RAC—
including how to start up a RAC and how redo logs and undo tablespaces work—and then work
through an example of an instance failure scenario using Transparent Application Failover (TAF).

Starting Up a RAC
Starting up a RAC is not much different from starting up a standalone instance; the nodes in a RAC
can start up in any order, and they can be shut down and started up at any time with minimal
impact to the rest of the cluster. During database startup, first the ASM instance starts and mounts
the shared disk groups; next, the RDBMS instance starts and joins the cluster.

On Linux, the file /etc/oratab can be modified to auto-start the instances (both the ASM
instance and the RDBMS instance) on each cluster:

This file is used by ORACLE utilities. It is created by root.sh
and updated by the Database Configuration Assistant when creating
a database.

A colon, ':', is used as the field terminator. A new line terminates
the entry. Lines beginning with a pound sign, '#', are comments.

Entries are of the form:
$ORACLE_SID:$ORACLE_HOME:<N|Y>:

The first and second fields are the system identifier and home
directory of the database respectively. The third field indicates
to the dbstart utility that the database should , "Y", or should not,
"N", be brought up at system boot time.

Multiple entries with the same $ORACLE_SID are not allowed.

+ASM1:/u01/app/oracle/product/11.1.0/db_1:Y
rac:/u01/app/oracle/product/11.1.0/db_1:Y

Redo Logs in a RAC Environment
As with a single-node instance, online redo logs are used for instance recovery in a RAC environment;
each instance in a RAC environment has its own set of online redo log files that are used to roll

12-ch12.indd 448 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 12: Real Application Clusters 449

forward all information in the redo logs and then roll back any uncommitted transactions initiated
on that node using the undo tablespace.

Even before the failed instance has restarted, one of the surviving instances detects the instance
failure and uses the online redo log files to ensure that no committed transactions are lost; if this
process completes before the failed instance restarts, the restarted instance does not need instance
recovery. Even if more than one instance fails, all that is required for instance recovery is one
remaining node. If all instances in a RAC fail, the first instance that starts up will perform instance
recovery for the database using the online redo log files from all instances in the cluster.

If media recovery is required and the entire database must be recovered, all instances except
for one must be shut down and media recovery is performed from a single instance. If you are
recovering noncritical database files, all nodes may be up as long as the tablespaces containing
the files to be recovered are marked as OFFLINE.

Undo Tablespaces in a RAC Environment
As with redo logs, each instance in a RAC environment must have its own undo tablespace on a
shared drive or disk group. This undo tablespace is used for rolling back transactions during normal
transactional operations or during instance recovery. In addition, the undo tablespace is used by
other nodes in the cluster to support read consistency for transactions that are reading rows from
a table on node rac2 while a data-entry process on node rac1 makes updates to the same table
and has not yet committed the transaction. The user on rac2 needs to see the before-image data
stored in rac1’s undo tablespace. This is why all undo tablespaces must be visible to all nodes in
the cluster.

Failover Scenarios and TAF
If you have configured your client correctly and the instance to which the client is connected to
fails, the client connection is rapidly switched to another instance in the cluster and processing
can continue with only a slight delay in response time.

Here is the tnsnames.ora entry for the service racsvc:

racsvc =
 (description =
 (address = (protocol = tcp)(host = voc1)(port = 1521))
 (address = (protocol = tcp)(host = voc2)(port = 1521))
 (address = (protocol = tcp)(host = voc3)(port = 1521))
 (load_balance = yes)
 (connect_data =
 (server = dedicated)
 (service_name = racsvc.world)
 (failover_mode =
 (type = select)
 (method = basic)
 (retries = 180)
 (delay = 5)
)
)
)

12-ch12.indd 449 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

450 Oracle Database 12c DBA Handbook

This will show you what happens and how you will know if a session is connected to the
cluster and its instance fails. First, you connect to the cluster via racsvc and find out the node and
instance that you are connected to:

SQL> connect rjb/rjb@racsvc;
Connected.
SQL> select instance_name, host_name, failover_type,
 2 failover_method, failed_over
 3 from v$instance
 4 cross join
 5 (select failover_type, failover_method, failed_over
 6 from v$session
 7 where username = 'RJB');

INSTANCE_NAME HOST_NAME FAILOVER_TYPE FAILOVER_METHOD FAILED_OVER
------------- --------- ------------- --------------- -----------
rac1 oc1 SELECT BASIC NO

SQL>

You are using the columns from V$INSTANCE to give you the instance name and host name
that you are connected to and then joining this to V$SESSION and retrieving the columns related to
failover, which are only populated in a RAC environment. In this case, the session has not yet failed
over, and the failover type is BASIC, as specified when the service was created.

Next, you will shut down instance rac1 from another session while you are still connected to
the first session:

SQL> connect system@rac1 as sysdba
Connected.
SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

Back at your user session, you rerun the query to find out what node you are connected to:

SQL> select instance_name, host_name, failover_type,
 2 failover_method, failed_over
 3 from v$instance
 4 cross join
 5 (select failover_type, failover_method, failed_over
 6 from v$session
 7 where username = 'RJB');

INSTANCE_NAME HOST_NAME FAILOVER_TYPE FAILOVER_METHOD FAILED_OVER
------------- --------- ------------- --------------- -----------
rac3 oc3 SELECT BASIC YES

SQL>

12-ch12.indd 450 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 12: Real Application Clusters 451

If you were running a query at the time the instance was shut down, your query would pause
for a brief moment and then continue as if nothing happened. If your result set is quite large and
you already retrieved most of the result set, the pause will be slightly longer since the first part of
the result set must be re-queried and discarded.

Tuning a RAC Node
The first step in tuning a RAC is to tune the instance. If an individual instance is not tuned correctly,
the performance of the entire RAC will not be optimal. You can use the Automatic Workload
Repository (AWR) to tune an instance as if it was not part of a cluster.

Using Cloud Control 12c, you can further leverage the statistics from the AWR to produce
reports on a RAC-wide basis. In Figure 12-2, you can see how Cloud Control 12c makes it easy
to analyze the performance of the shared global cache as well as the cache performance on an
instance-by-instance basis, even comparing the cluster-wide performance for a given day to a
similar time period in the past.

Summary
In this chapter I provided a brief but informative summary of Oracle’s primary availability and
scalability solution: Real Application Clusters. Managing the components of RAC is much the
same as managing a single-instance database: you use many of the same tools to manage users,
tablespaces, and other server resources. Using RAC makes it easier for the users too: in virtually
all cases, a failure of any node in the cluster is completely transparent to any user who is running
a query or DML statement. The processing for that SQL statement continues to completion
without the user having to resubmit the statement.

FIGURE 12-2. Cloud Control 12c RAC cache statistics

12-ch12.indd 451 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 452

12-ch12.indd 452 13/05/15 10:02 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 453

CHAPTER
13

Backup and Recovery
Options

13-ch13.indd 453 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

454 Oracle Database 12c DBA Handbook

Oracle provides a variety of backup procedures and options that help protect an Oracle
database. If they are properly implemented, these options will allow you to effectively
back up your databases and recover them easily and efficiently.

Oracle’s backup capabilities include logical and physical backups, both of which have a
number of options available. This chapter will not detail every possible option and recovery
scenario; rather, I will focus on using the best options in the most effective manner possible.
You will see how to best integrate the available backup procedures with each other and with the
operating system backups. You will also see details on the options for Data Pump Export and
Import, which were introduced in Oracle Database 10g.

Backup Capabilities
There are three standard methods of backing up an Oracle database: exports, offline backups, and
online backups. An export is a logical backup of the database; the other two backup methods are
physical file backups. In the following sections, you will see each of these options described. The
standard (and preferred) tool for physical backups is Oracle’s Recovery Manager (RMAN) utility;
see Chapter 14 for details on the implementation and usage of RMAN.

A robust backup strategy includes both physical and logical backups. In general, production
databases rely on physical backups as their primary backup method, and logical backups serve as
the secondary method. For development databases and for some small data movement processing,
logical backups offer a viable solution. You should understand the implications and uses of both
physical and logical backups in order to develop the most appropriate solution for your applications.

Logical Backups
A logical backup of a database involves reading a set of database records and writing them to a
file. These records are read independently of their physical location. In Oracle, the Data Pump
Export utility performs this type of database backup. To recover using the file generated from a
Data Pump Export, you use Data Pump Import.

NOTE
The Import utility (imp) of Oracle’s original Import and Export utilities,
available prior to Oracle Database 10g, is still provided as part of the
Oracle 12c installation to read dump files created in previous versions.
Users of the old Export and Import utilities are encouraged to replace
their usage with Data Pump Export and Data Pump Import.

Oracle’s Data Pump Export utility queries the database, including the data dictionary, and
writes the output to an XML file called an export dump file. You can export the full database,
specific users, tablespaces, or specific tables. During exports, you may choose whether or not to
export the data dictionary information associated with tables, such as grants, indexes, and
constraints. The file written by Data Pump Export will contain the commands necessary to
completely re-create all the chosen objects and data.

Once data has been exported via Data Pump Export, it may be imported via the Data Pump
Import utility. Data Pump Import reads the dump file created by Data Pump Export and executes
the commands found there. For example, these commands may include a CREATE TABLE
command, followed by an INSERT command to load data into the table.

13-ch13.indd 454 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 455

NOTE
Data Pump Export and Import can use a network connection for
a simultaneous export and import operation, avoiding the use of
intermediate operating system files and reducing total export and
import time. You can also leverage parallelism if your network
bandwidth is high enough.

The data that has been exported does not have to be imported into the same database, or the
same schema, as was used to generate the export dump file. You may use the export dump file to
create a duplicate set of the exported objects under a different schema or in a separate database.

You can import either all or part of the exported data. If you import the entire export dump file
from a full export, then the entire set of database objects, including tablespaces, datafiles, and
users, will be created during the import. However, it is often useful to pre-create tablespaces and
users in order to specify the physical distribution of objects in the database or provide different
attributes for those tablespaces. This advice is also applicable even in an ASM storage environment.

If you are only going to import part of the data from the export dump file, the tablespaces,
datafiles, and users that will own and store that data should be set up prior to the import.

Physical Backups
Physical backups involve copying the files that constitute the database. These backups are also
referred to as file system backups because they involve using operating system file backup
commands. Oracle supports two different types of physical file backups: offline backups and
online backups (also known as cold and hot backups, respectively). You can use the RMAN utility
(see Chapter 14) to perform all physical backups. You may optionally choose to write your own
scripts to perform physical backups, but doing so will prevent you from obtaining many of the
benefits of the RMAN approach.

Offline Backups
Consistent offline backups occur when the database has been shut down normally (that is, not
due to instance failure) using the NORMAL, IMMEDIATE, or TRANSACTIONAL option of the
SHUTDOWN command. While the database is “offline,” the following files should be backed up:

 ■ All datafiles

 ■ All control files

 ■ All archived redo log files

 ■ The init.ora file or server parameter file (SPFILE)

CAUTION
You should never, ever, want or need to back up online redo log files.
Although there is a slight time-savings for restoring from a cold backup
after a clean shutdown, the risk of losing committed transactions
outweighs the convenience. Your online redo logs should be mirrored
and multiplexed so that you should never lose the current online
log file.

13-ch13.indd 455 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

456 Oracle Database 12c DBA Handbook

Having all these files backed up while the database is closed provides a complete image of
the database as it existed at the time it was closed. The full set of these files could be retrieved
from the backups at a later date, and the database would be able to function. It is not valid to
perform a file system backup of the database while it is open unless an online backup is being
performed. Offline backups that occur following database aborts will also be considered inconsistent
and may require more effort to use during recoveries if they are usable.

Online Backups
You can use online backups for any database that is running in ARCHIVELOG mode. In this
mode, the online redo logs are archived, creating a log of all transactions within the database.

Oracle writes to the online redo log files in a cyclical fashion: After filling the first log file, it
begins writing to the second, until that one fills, and then it begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the archiver background processes (ARC0–ARC9
and ARCa–ARCt) make a copy of each redo log file before overwriting it. These archived redo log
files are usually written to a disk device. The archived redo log files may also be written directly to
a tape device, but disk space is getting cheap enough that the additional cost of archiving to disk
is offset by the time and labor savings when a disaster recovery operation must occur.

NOTE
Most production databases, particularly those that support transaction-
processing applications, should be run in ARCHIVELOG mode to
ensure recoverability in case of media failure.

You can perform file system backups of a database while that database is open, provided the
database is running in ARCHIVELOG mode. An online backup involves setting each tablespace
into a backup state, backing up its datafiles, and then restoring the tablespace to its normal state.

NOTE
When using the Oracle-supplied RMAN utility, you do not have to
manually place each tablespace into a backup state. RMAN reads the
data blocks in the same manner Oracle uses for queries.

The database can be fully recovered from an online backup, and it can, via the archived redo
logs, be rolled forward to any point in time before the failure. When the database is then opened,
any committed transactions that were in the database at the time of the failure will have been
restored, and any uncommitted transactions will have been rolled back.

While the database is open, the following files can be backed up:

 ■ All datafiles

 ■ All archived redo log files

 ■ One control file, via the ALTER DATABASE BACKUP CONTROLFILE command

 ■ The server parameter file (SPFILE)

13-ch13.indd 456 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 457

NOTE
RMAN automatically backs up the control file and SPFILE whenever
the entire database or the SYSTEM tablespace are backed up and
when you have CONTROLFILE AUTOBACKUP set as the default
in RMAN.

Online backup procedures are very powerful for two reasons. First, they provide full point-in-
time recovery. Second, they allow the database to remain open during the file system backup.
Even databases that cannot be shut down due to user requirements can still have file-system
backups. Keeping the database open also keeps the System Global Area (SGA) of the database
instance from being cleared when the database is shut down and restarted. Keeping the SGA
memory from being cleared will improve the database’s performance because it will reduce the
number of physical I/Os required by the database.

NOTE
You can use the Flashback Database option, introduced in Oracle
Database 10g, to roll the database backward in time without
relying on physical backups. To use the FLASHBACK DATABASE
command, you must have a fast recovery area defined, be running
in ARCHIVELOG mode, and must have issued the ALTER DATABASE
FLASHBACK ON command while the database was mounted but not
open. Logs written to the fast recovery area are used by Oracle during
the Flashback Database operation.

Using Data Pump Export and Import
Introduced with Oracle Database 10g, Data Pump provides a server-based data-extraction and
data-import utility. Its features include significant architectural and functional enhancements over
the original Import and Export utilities. Data Pump allows you to stop and restart jobs, see the
status of running jobs, and restrict the data that is exported and imported.

NOTE
Data Pump files are incompatible with those generated from the
original Export utility.

Data Pump runs as a server process, benefiting users in many ways. The client process that
starts the job can disconnect and later reattach to the job. Performance is enhanced (as compared
to the original Export/Import) because the data no longer has to be processed by a client program.
Data Pump extractions and loads can be parallelized, further enhancing performance.

In this section, you will see how to use Data Pump, along with descriptions and examples of
its major options. This includes how Data Pump uses directory objects, specifying options on the
command line, and how to stop and restart jobs within the Data Pump command-line interface.

Creating a Directory
Data Pump requires you to create directories for the datafiles and log files it will create and read.
Use the CREATE DIRECTORY command to create the directory pointer within Oracle to the

13-ch13.indd 457 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

458 Oracle Database 12c DBA Handbook

external directory you will use. Users who will access the Data Pump files must have the READ
and WRITE privileges on the directory.

Before you start, verify that the external directory exists and that the user who will be issuing
the CREATE DIRECTORY command has the CREATE ANY DIRECTORY system privilege.

NOTE
In a default installation of Oracle Database 12c, a directory object
called DATA_PUMP_DIR is created and points to the directory
$ORACLE_BASE/admin/database_name/dpdump in a non-multitenant
environment.

The following example creates a directory object called DPXFER in the Oracle instance dw
referencing the file system directory /u01/app/oracle/DataPumpXfer and grants READ and
WRITE access to the user RJB:

SQL> create directory dpxfer as '/u01/app/oracle/DataPumpXfer';

Directory created.

SQL> grant read, write on directory dpxfer to rjb;

Grant succeeded.

SQL>

The RJB user can now use the DPXFER directory for Data Pump jobs. The file system directory
/u01/app/oracle/DataPumpXfer can exist on the source server, the target server, or any server on
the network, as long as each server can access the directory and the permissions on the directory
allow read/write access by the oracle user (the user that owns the Oracle executable files).

On the server oc1, the administrator creates a directory with the same name that references
the same network file system, except that privileges on the directory are granted to the HR user
instead:

SQL> create directory dpxfer as '/u01/app/oracle/DataPumpXfer';

Directory created.

SQL> grant read,write on directory dpxfer to hr;

Grant succeeded.

SQL>

Data Pump Export Options
Oracle provides the OS utility expdp that serves as the interface to Data Pump. If you have
previous experience with the Export utility, some of the options will be familiar. However, some
significant features are available only via Data Pump. Table 13-1 shows the command-line input
parameters for expdp when a job is created. These parameters can be specified in a parameter file
unless otherwise noted.

13-ch13.indd 458 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 459

Parameter Description

ACCESS_METHOD Defaults to AUTOMATIC but you can specify DIRECT_PATH
or EXTERNAL_TABLE if AUTOMATIC doesn’t choose the right
value.

ATTACH Connects a client session to a currently running Data Pump
Export job.

CLUSTER Defaults to YES. Enables Data Pump to use resources on
multiple nodes in a RAC environment.

COMPRESSION Specifies which data to compress: ALL, DATA_ONLY,
METADATA_ONLY, NONE.

COMPRESSION_ALGORITHM BASIC, LOW, MEDIUM, or HIGH. Using BASIC balances
speed and size. Values of LOW, MEDIUM, or HIGH require the
Advanced Compression license.

CONTENT Filters what is exported: DATA_ONLY, METADATA_ONLY, or ALL.

DATA_OPTIONS If set to XML_CLOBS, then XMLType columns are exported
uncompressed.

DIRECTORY Specifies the destination directory for the log file and the dump
file set.

DUMPFILE Specifies the names and directories for dump files.

ENCRYPTION Encryption level of the output: ALL, DATA_ONLY,
ENCRYPTED_COLUMNS_ONLY, METADATA_ONLY, NONE.

ENCRYPTION_ALGORITHM The encryption method to perform the encryption: AES128,
AES192, AES256.

ENCRYPTION_MODE Uses a password or Oracle wallet or both: values are DUAL,
PASSWORD, TRANSPARENT.

ENCRYPTION_PASSWORD Encryption key required to encrypt and decrypt the backup files.

ESTIMATE Determines the method used to estimate the dump file size
(BLOCKS or STATISTICS).

ESTIMATE_ONLY A YES/NO flag used to instruct Data Pump whether the data
should be exported or just estimated.

EXCLUDE Specifies the criteria for excluding objects and data from being
exported.

FILESIZE Specifies the maximum file size of each export dump file.

FLASHBACK_SCN The SCN for the database to flash back to during the export.

FLASHBACK_TIME The timestamp for the database to flash back to during the
export. FLASHBACK_TIME and FLASHBACK_SCN are mutually
exclusive.

TABLE 13-1. Command-Line Input Parameters for expdp

13-ch13.indd 459 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

460 Oracle Database 12c DBA Handbook

Parameter Description

FULL Tells Data Pump to export all data and metadata in a Full mode
export.

HELP Displays a list of available commands and options.

INCLUDE Specifies the criteria for which objects and data will be exported.

JOB_NAME Specifies a name for the job; the default is system-generated.

KEEP_MASTER YES/NO flag to indicate whether to keep the master metadata
table at the end of an export or import job.

LOGFILE The name and optional directory name for the export log.

LOGTIME Adds timestamps to each step in the log file.

METRICS YES/NO flag to indicate whether to add more metadata to the
log file such as the number of objects and elapsed time.

NETWORK_LINK Specifies the source database link for a Data Pump job
exporting a remote database.

NOLOGFILE A YES/NO flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Export job.

PARFILE Names the parameter file to use, if any.

QUERY Filters rows from tables during the export.

REMAP_DATA Specifies a function that can transform a column or columns in
the data, for testing or masking sensitive data.

REUSE_DUMPFILES Overwrites existing dump files.

SAMPLE Specifies a percentage of the data blocks to easily select a
percentage of the rows in each table.

SCHEMAS Names the schemas to be exported for a Schema mode export.

STATUS Displays detailed status of the Data Pump job.

TABLES Lists the tables and partitions to be exported for a Table mode
export.

TABLESPACES Lists the tablespaces to be exported in tablespace mode.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being exported should first
be verified as a self-contained set.

TRANSPORT_TABLESPACES Specifies a Transportable Tablespace mode export.

TRANSPORTABLE Exports metadata only for a Table mode export.

VERSION Specifies the version of database objects to be created so
the dump file set may be compatible with earlier releases of
Oracle. The options are COMPATIBLE, LATEST, and database
version numbers (not lower than 9.2).

TABLE 13-1. Command-Line Input Parameters for expdp (Continued)

13-ch13.indd 460 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 461

As detailed in Table 13-1, five modes of Data Pump exports are supported:

 ■ Full Export all database data and metadata

 ■ Schema Export data and metadata for specific user schemas

 ■ Tablespace Export data and metadata for tablespaces

 ■ Table Export data and metadata for tables and table partitions

 ■ Transportable Tablespace Export metadata for specific tablespaces in preparation for
transporting a tablespace from one database to another

NOTE
You must have the EXP_FULL_DATABASE system privilege in order to
perform a Full export or a Transportable Tablespace export.

When you submit a job, Oracle will give the job a system-generated name. If you specify a
name for the job via the JOB_NAME parameter, you must be certain that the job name will not
conflict with the name of any table or view in your schema. During Data Pump jobs, Oracle will
create and maintain a master table for the duration of the job. The master table will have the same
name as the Data Pump job, so its name cannot conflict with existing objects.

While a job is running, you can execute the commands listed in Table 13-2 via Data Pump’s
interface.

Parameter Description

ADD_FILE Adds dump files.

CONTINUE_CLIENT Exits the interactive mode and enters logging mode.

EXIT_CLIENT Exits the client session but leaves the server Data Pump Export
job running.

FILESIZE Redefines the default size for subsequent dump files.

HELP Displays online help for the import.

KILL_JOB Kills the current job and detaches related client sessions.

PARALLEL Alters the number of workers for the Data Pump Export job.

START_JOB Restarts the attached job.

STATUS Displays a detailed status of the Data Pump job.

STOP_JOB Stops the job for later restart.

TABLE 13-2. Parameters for Interactive Mode Data Pump Export

13-ch13.indd 461 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

462 Oracle Database 12c DBA Handbook

Starting a Data Pump Export Job
You can store your job parameters in a parameter file, referenced via the PARFILE parameter of expdp.
For example, you can create a file named dp_rjb.par with the following entries:

directory=dpxfer
dumpfile=metadata_only.dmp
content=metadata_only

The logical Data Pump directory is DPXFER, the one created earlier in the chapter. The Data
Pump Export will only have metadata; the name of the dump file, metadata_only.dmp, reflects the
contents of the dump file. Here’s how you initiate a Data Pump job using this parameter file:

expdp rjb/rjb parfile=dp_rjb.par

Oracle will then pass the dp_rjb.par entries to the Data Pump Export job. A schema-type Data
Pump Export (which is the default) will be executed, and the output (metadata only, no table rows)
will be written to a file in the DPXFER directory. Here is the output from the expdp command:

[oracle@dw ~]$ expdp rjb/rjb parfile=dp_rjb.par

Export: Release 12.1.0.2.0 - Production on Thu Nov 13 09:13:10 2014

Copyright (c) 1982, 2014, Oracle and/or its affiliates. All rights reserved.

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

Starting "RJB"."SYS_EXPORT_SCHEMA_01": rjb/******** parfile=dp_rjb.par
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Processing object type SCHEMA_EXPORT/STATISTICS/MARKER
Master table "RJB"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for RJB.SYS_EXPORT_SCHEMA_01 is:
 /u01/app/oracle/DataPumpXfer/metadata_only.dmp
Job "RJB"."SYS_EXPORT_SCHEMA_01" successfully completed at Thu Nov 13 09:13:50
2014 elapsed 0 00:00:27 [oracle@dw ~]$

13-ch13.indd 462 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 463

The output file, as shown in the listing, is named metadata_only.dmp. The output dump file
contains a binary header and XML entries for re-creating the structures for the RJB schema. During
the export, Data Pump created and used an external table called SYS_EXPORT_SCHEMA_01.

NOTE
Dump files will not overwrite previously existing dump files in the
same directory unless you use the REUSE_DUMPFILES parameter.

You can use multiple directories and dump files for a single Data Pump Export. Within the
DUMPFILE parameter setting, list the directory along with the filename, in this format:

DUMPFILE=directory1:file1.dmp,
 directory2:file2.dmp

Using multiple directories in the DUMPFILE parameter has two benefits: the Data Pump job
can use parallel processes (using the PARALLEL parameter), in addition to spreading out the dump
file to wherever disk space is available. You can also use the substitution variable %U in the
filename specification to automatically create multiple dump files that can be written to by multiple
processes automatically. Even if only one process is writing the dump file, using the %U substitution
variable in combination with the FILESIZE parameter will limit the size of each dump file.

Stopping and Restarting Running Jobs
After you have started a Data Pump Export job, you can close the client window you used to start
the job. Because it is server based, the export will continue to run. You can then attach to the job,
check its status, and alter it. For example, you can start the job via expdp:

expdp rjb/rjb parfile=dp_rjb.par

Press ctrl-c to leave the log display, and Data Pump will return you to the expdb prompt:

Export>

Exit to the client using the exit_client command:

Export> exit_client

Later, you can restart the client and attach to the currently running job under your schema:

expdp rjb/rjb attach

If you gave a name to your Data Pump Export job (or you identified the job name in the log
file when the job started), specify the name as part of the attach parameter. For example, if you
had named the job RJB_JOB, attach to the job by name:

expdp rjb/rjb attach=RJB_JOB

When you attach to a running job, Data Pump will display the status of the job: its basic
configuration parameters and its current status. You can then issue the continue_client command
to see the log entries as they are generated, or you can alter the running job:

Export> continue_client

13-ch13.indd 463 11/05/15 5:12 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

464 Oracle Database 12c DBA Handbook

In addition, you can stop a job using the stop_job command:

Export> stop_job

The job is not canceled, only suspended. With the job stopped, you can then add additional
dump files in new directories via the ADD_FILE option. You can then restart the job using start_job:

Export> start_job

You can specify a log file location for the export log file via the LOGFILE parameter. If you do
not specify a value for LOGFILE, the log file will be written to the same directory as the dump file.

Exporting from Another Database
You can use the NETWORK_LINK parameter to export data from a different database. If you are
logged into the HQ database and you have a database link to the DW database, Data Pump can
use that link to connect to the DW database and extract its data.

NOTE
If the source database is read-only, the user on the source database
must have a locally managed tablespace assigned as the temporary
tablespace; otherwise, the job will fail.

In your parameter file or on the expdp command line, set the NETWORK_LINK parameter to
the name of the database link. The Data Pump Export job will write the data from the remote
database to the directory defined in your local database.

Using EXCLUDE, INCLUDE, and QUERY
You can exclude or include sets of tables from the Data Pump Export via the EXCLUDE and
INCLUDE options. You can exclude objects by type and by name. If an object is excluded, all its
dependent objects are also excluded. The format for the EXCLUDE option is

EXCLUDE=object_type[:name_clause] [, ...]

NOTE
You cannot specify EXCLUDE if you specify CONTENT=DATA_ONLY.

For example, to exclude the ANGUSP schema from a full export, the format of the EXCLUDE
option is as follows:

EXCLUDE=SCHEMA:"='ANGUSP'"

NOTE
You can specify more than one EXCLUDE option within the same Data
Pump Export job.

The EXCLUDE option in the preceding example contains a limiting condition within a set of
double quotes. The object_type variable can be any Oracle object type, including a grant, index,

13-ch13.indd 464 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 465

or table. The name_clause variable restricts the value returned. For example, to exclude from the
export all tables whose names begin with TEMP, use the following EXCLUDE clause:

EXCLUDE=TABLE:"LIKE 'TEMP%'"

When you enter this at the command line on Linux, you may need to use escape characters
so the quotation marks and other special characters are properly passed to Oracle. Your expdp
command will look similar to this:

expdp rjb/rjb EXCLUDE=TABLE:\"LIKE \'TEMP%\'\"

NOTE
This example shows part of the syntax, not the full syntax for the
command.

If you do not provide a name_clause value, all objects of the specified type are excluded. For
example, to exclude all indexes, you would use an EXCLUDE clause similar to the following:

expdp rjb/rjb EXCLUDE=INDEX

For a listing of the objects you can filter, query the DATABASE_EXPORT_OBJECTS, SCHEMA_
EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS data dictionary views. If the object_type value
is CONSTRAINT, all constraints will be excluded except for NOT NULL. Additionally, constraints
needed for a table to be created successfully, such as a primary key constraint for an index-
organized table, cannot be excluded. If the object_type value is USER, the user definitions are
excluded, but the objects within the user schemas will still be exported. Use the SCHEMA object_
type, as shown in an earlier example, to exclude a user and all of the user’s objects. If the object_
type value is GRANT, all object grants and system privilege grants are excluded.

A second option, INCLUDE, is also available. When you use INCLUDE, only those objects
that pass the criteria are exported; all others are excluded. INCLUDE and EXCLUDE are mutually
exclusive. The format for INCLUDE is

INCLUDE = object_type[:name_clause] [, ...]

NOTE
You cannot specify INCLUDE if you specify CONTENT=DATA_ONLY.

For example, to export two specific tables and all procedures, your parameter file will include
two lines similar to the following:

INCLUDE=TABLE:"IN ('BOOKSHELF','BOOKSHELF_AUTHOR')"
INCLUDE=PROCEDURE

What rows will be exported for the objects that meet the EXCLUDE or INCLUDE criteria? By
default, all rows are exported for each table. You can use the QUERY option to limit the rows
returned. Here is the format for the QUERY parameter:

QUERY = [schema.][table_name:] query_clause

13-ch13.indd 465 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

466 Oracle Database 12c DBA Handbook

If you do not specify values for the schema and table_name variables, the query_clause will
be applied to all the exported tables. Because query_clause will usually include specific column
names, you should be very careful when selecting the tables to include in the export. You can
specify a QUERY value for a single table, as shown in the following example:

QUERY=BOOKSHELF:'"where rating > 2"'

As a result, the dump file will only contain rows from the BOOKSHELF table that meet the
QUERY criterion as well as any INCLUDE or EXCLUDE criteria. You can also apply these filters
during a subsequent Data Pump Import job, as described in the next section.

Data Pump Import Options
To import a dump file exported via Data Pump Export, use Data Pump Import. As with the export
process, the import process runs as a server-based job you can manage as it executes. You can
interact with Data Pump Import via the command-line interface, a parameter file, and an
interactive interface. Table 13-3 lists the parameters for the command-line interface.

Parameter Description

ACCESS_METHOD Defaults to AUTOMATIC but you can specify one of DIRECT_PATH,
EXTERNAL_TABLE, or CONVENTIONAL if Data Pump Import does
not choose the best option.

ATTACH Attaches the client to a server session and places you in interactive
mode.

CLUSTER Defaults to YES. Enables Data Pump to use resources on multiple
nodes in a RAC environment.

CONTENT Filters what is imported: ALL, DATA_ONLY, or METADATA_ONLY.

DATA_OPTIONS Specifies how to handle certain exceptions. Possible values are
DISABLE_APPEND_HINT, SKIP_CONSTRAINT_ERRORS, and
REJECT_ROWS_WITH_REPL_CHAR. Using DISABLE_APPEND_
HINT is useful if other sessions may be accessing the table during
the import and you don’t want to block them or vice versa.

DIRECTORY Specifies the location of the dump file set and the destination
directory for the log and SQL files.

DUMPFILE Specifies the names and, optionally, the directories for the dump
file set.

ENCRYPTION_PASSWORD Specifies the password used to encrypt the export during a Data
Pump Export.

ESTIMATE Determines the method used to estimate the dump file size
(BLOCKS or STATISTICS).

TABLE 13-3. Data Pump Import Command-Line Parameters

13-ch13.indd 466 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 467

Parameter Description

EXCLUDE Excludes objects and data from being exported.

FLASHBACK_SCN The SCN for the database to flash back to during the import.

FLASHBACK_TIME The timestamp for the database to flash back to during the import.

FULL A YES/NO flag is used to specify whether you want to import the
full dump file.

HELP Displays online help for the import.

INCLUDE Specifies the criteria for objects to be imported.

JOB_NAME Specifies a name for the job; the default is system-generated.

KEEP_MASTER Specify whether to keep or delete (YES or NO) the master table after
the job completes. The master table is always kept if there are errors
in the job.

LOGFILE The name and optional directory name for the import log.

LOGTIME Choose when to attach timestamps to each log entry during the
import. Values are NONE (the default), STATUS (timestamps on
status messages only), LOGFILE (timestamps on log file messages
only), or ALL.

METRICS Adds more information about the job to the log file.

NETWORK_LINK Specifies the source database link for a Data Pump job importing a
remote database.

NOLOGFILE A Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Import job.

PARFILE Names the parameter file to use, if any.

PARTITION_OPTIONS NONE creates the partitions with the same characteristics
as the source. MERGE merges partitions into one table, and
DEPARTITION creates a new table for each source partition.

QUERY Filters rows from tables during the import.

REMAP_DATA Remaps column contents using a user-defined function before it’s
inserted into the target database.

REMAP_DATAFILE Changes the name of the source datafile to the target datafile in the
CREATE LIBRARY, CREATE TABLESPACE, and CREATE DIRECTORY
commands during the import.

REMAP_SCHEMA Imports data exported from the source schema into the target
schema.

REMAP_TABLE Renames a table during import.

TABLE 13-3. Data Pump Import Command-Line Parameters (Continued)

13-ch13.indd 467 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

468 Oracle Database 12c DBA Handbook

Parameter Description

REMAP_TABLESPACE Imports data exported from the source tablespace into the target
tablespace.

REUSE_DATAFILES Specifies whether existing datafiles should be reused by CREATE
TABLESPACE commands during Full mode imports.

SCHEMAS Names the schemas to be exported for a Schema mode import.

SKIP_UNUSABLE_INDEXES A Y/N flag. If set to Y, the import does not load data into tables
whose indexes are set to the Index Unusable state.

SQLFILE Names the file to which the DDL for the import will be written. The
data and metadata will not be loaded into the target database.

STATUS Displays a detailed status of the Data Pump job.

STREAMS_
CONFIGURATION

A YES/NO flag is used to specify whether Streams configuration
information should be imported.

TABLE_EXISTS_ACTION Instructs Import how to proceed if the table being imported already
exists. Values include SKIP, APPEND, TRUNCATE, and REPLACE.
The default is APPEND if CONTENT=DATA_ONLY; otherwise, the
default is SKIP.

TABLES Lists tables for a Table mode import.

TABLESPACES Lists tablespaces for a Tablespace mode import.

TRANSFORM Directs changes to the segment attributes or storage during import.

TRANSPORT_DATAFILES Lists the datafiles to be imported during a Transportable Tablespace
mode import.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being imported should first be
verified as a self-contained set.

TRANSPORT_TABLESPACES Lists the tablespaces to be imported during a Transportable
Tablespace mode import.

TRANSPORTABLE Specifies whether the transportable option should be used with a
table mode import (ALWAYS or NEVER).

VERSION Specifies the version of database objects to be created so the dump
file set may be compatible with earlier releases of Oracle. The
options are COMPATIBLE, LATEST, and database version numbers
(not lower than 10.1). Only valid for NETWORK_LINK and
SQLFILE.

VIEWS_AS_TABLES Converts views in the dump file to permanent tables.

TABLE 13-3. Data Pump Import Command-Line Parameters (Continued)

13-ch13.indd 468 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 469

As with Data Pump Export, five modes are supported in Data Pump Import:

 ■ Full Import all database data and metadata

 ■ Schema Import data and metadata for specific user schemas

 ■ Tablespace Import data and metadata for tablespaces

 ■ Table Import data and metadata for tables and table partitions

 ■ Transportable Tablespace Import metadata for specific tablespaces in preparation for
transporting a tablespace from the source database

If no mode is specified, Data Pump Import attempts to load the entire dump file.

NOTE
The directory for the dump file and log file must already exist; see
the prior section on the CREATE DIRECTORY command, “Creating a
Directory.”

Table 13-4 lists the parameters that are valid in the interactive mode of Data Pump Import.
Many of the Data Pump Import parameters are the same as those available for the Data Pump
Export. In the following sections, you’ll see how to start an import job, along with descriptions of
the major options unique to Data Pump Import.

Starting a Data Pump Import Job
You can start a Data Pump Import job via the impdp OS executable provided with Oracle
Database 12c. Use the command-line parameters to specify the import mode and the locations
for all the files. You can store the parameter values in a parameter file and then reference the file
via the PARFILE option.

Parameter Description

CONTINUE_CLIENT Exits the interactive mode and enters logging mode. The job will
be restarted if idle.

EXIT_CLIENT Exits the client session but leaves the server Data Pump Import
job running.

HELP Displays online help for the import.

KILL_JOB Kills the current job and detaches related client sessions.

PARALLEL Alters the number of workers for the Data Pump Import job.

START_JOB Restarts the attached job.

STATUS Displays detailed status of the Data Pump job.

STOP_JOB Stops the job for later restart.

TABLE 13-4. Interactive Parameters for Data Pump Import

13-ch13.indd 469 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

470 Oracle Database 12c DBA Handbook

In the first export example of this chapter, using the RJB schema, the parameter file named
dp_rjb.par has been copied to the destination and renamed to rjb_dp_imp.par. It contains the
following entries:

directory=dpxfer
dumpfile=metadata_only.dmp
content=metadata_only

If the Oracle directory object has the same name on the target database, you can reuse the
same parameter file. To create the RJB schema’s objects in a different schema on the target
database, use the REMAP_SCHEMA parameter as follows:

REMAP_SCHEMA=source_schema:target_schema

You can change the destination tablespace as well using the REMAP_TABLESPACE option.
Before starting the import, create a new user KFC as follows:

SQL> grant create session, unlimited tablespace to kfc identified by kfc;
Grant succeeded.
SQL>

Next, add the REMAP_SCHEMA parameter to the end of the parameter file you copied from
the source database:

directory=dpxfer
dumpfile=metadata_only.dmp
content=metadata_only
remap_schema=RJB:KFC

NOTE
All dump files must be specified at the time the job is started.

You are now ready to start the import job. Because you are changing the original owner of the
schema, you must have the IMP_FULL_DATABASE system privilege. Data Pump Import jobs are
started using the impdp utility; here is the command, including the revised parameter file:

impdp user/password parfile=rjb_dp_imp.par

Data Pump Import will now perform the import and display its progress. Because the NOLOGFILE
option was not specified, the log file for the import will be placed in the same directory as the dump
file and will be given the name import.log. You can verify the success of the import by logging into the
KFC schema and reviewing the objects. Here is the log file from the impdp command:

[oracle@oc1 ~]$ impdp rjb/rjb parfile=rjb_dp_imp.par

Import: Release 12.1.0.2.0 - Production on Thu Nov 13 10:15:40 2014

Copyright (c) 1982, 2014, Oracle and/or its affiliates. All rights reserved.
Password:

13-ch13.indd 470 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 471

Connected to: Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 -
64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options
Master table "RJB"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "RJB"."SYS_IMPORT_FULL_01": rjb/******** parfile=rjb_dp_imp.par
Processing object type SCHEMA_EXPORT/USER
ORA-31684: Object type USER:"KFC" already exists
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Job "RJB"."SYS_IMPORT_FULL_01" completed with 1 error(s) at Thu Nov 13
10:15:48 2014 elapsed 0 00:00:03

[oracle@oc1 ~]$

The only error during the impdp command was that the KFC user already exists; I created it
explicitly earlier, and this error message can safely be ignored.

What if a table being imported already exists? In this example, with the CONTENT option set
to METADATA_ONLY, the table would be skipped by default. If the CONTENT option was set to
DATA_ONLY, the new data would be appended to the existing table data. To alter this behavior,
use the TABLE_EXISTS_ACTION option. Valid values for TABLE_EXISTS_OPTION are SKIP,
APPEND, TRUNCATE, and REPLACE.

Stopping and Restarting Running Jobs After you have started a Data Pump Import job, you
can close the client window you used to start the job. Because it is server based, the import will
continue to run. You can then attach to the job, check its status, and alter it:

impdp rjb/rjb parfile=rjb_dp_imp.par

Press ctrl-c to leave the log display, and Data Pump Import will return you to the impdp
prompt:

Import>

Exit to the operating system using the exit_client command:

Import> exit_client

Later, you can restart the client and attach to the currently running job under your schema:

impdp rjb/rjb attach

If you gave a name to your Data Pump Import job, specify the name as part of the attach
parameter. When you attach to a running job, Data Pump Import will display the status of the
job—its basic configuration parameters and its current status. You can then issue the continue_
client command to see the log entries as they are generated, or you can alter the running job:

Import> continue_client

13-ch13.indd 471 11/05/15 5:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

472 Oracle Database 12c DBA Handbook

Not surprisingly, you can temporarily stop a job using the stop_job command:

Import> stop_job

While the job is stopped, you can increase its parallelism via the parallel option, and then
restart the job:

Import> start_job

EXCLUDE, INCLUDE, and QUERY Data Pump Import, like Data Pump Export, allows you to
restrict the data processed via the use of the EXCLUDE, INCLUDE, and QUERY options, as described
earlier in this chapter. Because you can use these options on both the export and the import, you can
be very flexible in your imports. For example, you may choose to export an entire table but only
import the rows that match your QUERY criteria. You could choose to export an entire schema but,
when recovering the database via import, include only the most necessary tables so that the
application downtime can be minimized. EXCLUDE, INCLUDE, and QUERY provide powerful
capabilities to developers and database administrators during both export and import jobs.

Transforming Imported Objects In addition to changing or selecting schemas, tablespaces,
datafiles, and rows during the import, you can change the segment attributes and storage
requirements during import via the TRANSFORM option. The format for TRANSFORM is as follows:

TRANSFORM = transform_name:value[:object_type]

The transform_name variable can have a value of SEGMENT_ATTRIBUTES or STORAGE. You
can use the value variable to include or exclude segment attributes (physical attributes such as
storage attributes, tablespaces, and logging). The object_type variable is optional, but if specified,
it must be one of these values:

 ■ CLUSTER

 ■ CONSTRAINT

 ■ INC_TYPE

 ■ INDEX

 ■ ROLLBACK_SEGMENT

 ■ TABLE

 ■ TABLESPACE

 ■ TYPE

For example, object storage requirements may change during an export/import; you may be
using the QUERY option to limit the rows imported, or you may be importing only the metadata,
without the table data. To eliminate the exported storage clauses from the imported tables, add
the following to the parameter file:

transform=storage:n:table

To eliminate the exported tablespace and storage clauses from all tables and indexes, use the
following:

transform=segment_attributes:n

13-ch13.indd 472 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 473

When the objects are imported, they will be assigned to the user’s default tablespace and will
use the default tablespace’s storage parameters.

Generating SQL Instead of importing the data and objects, you can generate the SQL for the
objects (without the data) and store it in a file on your operating system. The file will be written to
the directory and filename specified via the SQLFILE option. The SQLFILE option format is as follows:

SQLFILE=[directory_object:]file_name

NOTE
If you do not specify a value for the directory_object variable, the file
will be created in the dump file directory.

Here is the same parameter file used for the import earlier in this chapter, modified to create
the SQL only:

directory=dpxfer
dumpfile=metadata_only.dmp
sqlfile=sql.txt

Notice that we do not need the content=metadata_only or the remap_schema parameters,
since all we want to do is to create SQL statements:

impdp rjb/rjb parfile=rjb_dp_imp_sql.par

In the sql.txt file that the import process creates, you will see entries for each of the object
types within the schema. Here is an excerpt from the file:

-- CONNECT RJB
. . .
-- new object type path: SCHEMA_EXPORT/USER
-- CONNECT SYSTEM
 CREATE USER "RJB" IDENTIFIED BY VALUES 'S:46. . .569A6174D117AAC'
 DEFAULT TABLESPACE "USERS"
 TEMPORARY TABLESPACE "TEMP";
-- new object type path: SCHEMA_EXPORT/SYSTEM_GRANT
GRANT UNLIMITED TABLESPACE TO "RJB";
-- new object type path: SCHEMA_EXPORT/ROLE_GRANT
 GRANT "CONNECT" TO "RJB";
 GRANT "RESOURCE" TO "RJB";
 GRANT "DBA" TO "RJB";
-- new object type path: SCHEMA_EXPORT/DEFAULT_ROLE
 ALTER USER "RJB" DEFAULT ROLE ALL;
-- new object type path: SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
-- CONNECT RJB
BEGIN
sys.dbms_logrep_imp.instantiate_schema(schema_name=>SYS_
CONTEXT('USERENV','CURRENT_SCHEMA'), export_db_name=>'BOB', inst_
scn=>'1844409');
COMMIT;
END;
/

13-ch13.indd 473 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

474 Oracle Database 12c DBA Handbook

-- new object type path: SCHEMA_EXPORT/TABLE/TABLE
CREATE TABLE "RJB"."EMPLOYEE_ARCHIVE"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20 BYTE),
 "LAST_NAME" VARCHAR2(25 BYTE) NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25 BYTE) NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20 BYTE),
 "HIRE_DATE" DATE NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10 BYTE) NOT NULL ENABLE,
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) SEGMENT CREATION DEFERRED
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255
 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1
 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE "USERS" ;
-- new object type path: SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
-- new object type path: SCHEMA_EXPORT/STATISTICS/MARKER

The SQLFILE output is a plain-text file, so you can edit the file, use it with SQL*Plus or SQL
Developer, or keep it as documentation of your application’s database structures.

Implementing Offline Backups
An offline backup is a physical backup of the database files made after the database has been shut
down cleanly via a SHUTDOWN NORMAL, a SHUTDOWN IMMEDIATE, or a SHUTDOWN
TRANSACTIONAL command. While the database is shut down, each of the files actively used by
the database is backed up. These files provide a complete image of the database as it existed at
the moment it was shut down.

NOTE
You should not rely on an offline backup performed following a
SHUTDOWN ABORT, because it may be inconsistent. If you must
perform a SHUTDOWN ABORT, you should restart the database
and perform a normal SHUTDOWN or a SHUTDOWN IMMEDIATE
or a SHUTDOWN TRANSACTIONAL prior to beginning your offline
backup.

The following files should be backed up during a cold backup:

 ■ All datafiles

 ■ All control files

 ■ All archived redo log files

 ■ Initialization parameter file or server parameter file (SPFILE)

 ■ Password file

13-ch13.indd 474 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 475

If you are using raw devices for database storage, with or without ASM, you’ll have to back up
these devices as well using operating system commands such as dd in combination with a
compression utility, as in this example:

dd if=/dev/sdb | gzip > /mnt/bkup/dw_sdb_backup.img.gz

During a recovery, an offline backup can restore the database to the point in time at which
the database was shut down. Offline backups commonly play a part in disaster recovery planning,
because they are self-contained and may be simpler to restore on a disaster recovery server than
other types of backups. If the database is running in ARCHIVELOG mode, you can apply more
recent archived redo logs to the restored offline backup to bring the database back to the point in
time of a media failure or a complete loss of the database. As I’ve emphasized throughout this
book, the need for cold backups is minimized or eliminated if you use RMAN; your database may
never need to be shut down for a cold backup (unless disaster strikes—in which case, be sure to
create a RAC database as well!).

Implementing Online Backups
Consistent offline backups can only be performed while the database is shut down. However, you
can perform physical file backups of a database while the database is open, provided the database
is running in ARCHIVELOG mode and the backup is performed correctly. These backups are
referred to as online backups.

Oracle writes to the online redo log files in a cyclical fashion: After filling the first log file, it
begins writing to the second, until that one fills, and it then begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the archiver background processes (ARC0–ARC9
and ARCa–ARCt) make a copy of each redo log file after the LGWR process finishes writing to it.
These archived redo log files are usually written to a disk device. They may instead be written
directly to a tape device, but this tends to be very operator intensive.

Getting Started
To make use of the ARCHIVELOG capability, you must first place the database in ARCHIVELOG
mode. Before starting the database in ARCHIVELOG mode, make sure you are using one of the
following configurations, listed from most to least recommended:

 ■ Enable archiving to the fast recovery area only; use disk mirroring on the disks containing
the fast recovery area. The DB_RECOVERY_FILE_DEST parameter specifies the file system
location or ASM disk group containing the fast recovery area. As an Oracle best practice,
you should create the fast recovery area on a mirrored ASM disk group separate from the
primary disk group.

 ■ Enable archiving to the fast recovery area and set at least one LOG_ARCHIVE_DEST_n
parameter to another location outside of the fast recovery area.

 ■ Set at least two LOG_ARCHIVE_DEST_n parameters to archive to non–fast recovery area
destinations.

13-ch13.indd 475 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

476 Oracle Database 12c DBA Handbook

NOTE
If the initialization parameter DB_RECOVERY_FILE DEST is specified
and no LOG_ARCHIVE_DEST_n parameter is specified, then LOG_
ARCHIVE_DEST_10 is implicitly set to the fast recovery area.

In the following examples, I assume that the best configuration, a single mirrored fast recovery
area, has been selected. The following listing shows the steps needed to place a database in
ARCHIVELOG mode; first, shut down the database, and then issue these commands:

SQL> startup mount;
SQL> alter database archivelog;
SQL> alter database open;

NOTE
To see the currently active online redo log and its sequence number,
query the V$LOG dynamic view.

If you enable archiving but do not specify any archiving locations, the archived log files reside
in a default, platform-dependent location; on Unix and Linux platforms the default location is
$ORACLE_HOME/dbs.

Each of the archived redo log files contains the data from a single online redo log. They are
numbered sequentially, in the order in which they were created. The size of the archived redo log
files varies, but it does not exceed the size of the online redo log files.

If the destination directory of the archived redo log files runs out of space, the ARCn processes
will stop processing the online redo log data and the database will stop itself. This situation can
be resolved by adding more space to the archived redo log file destination disk or by backing up
the archived redo log files and then removing them from this directory. If you are using the fast
recovery area for your archived redo log files, the database issues a warning alert if the available
space in the fast recovery area is less than 15 percent, and a critical alert when the available
space is less than 3 percent. Taking action at the 15 percent level, such as increasing the size or
changing the location of the fast recovery area, can most likely avoid any service interruptions,
assuming that there are no runaway processes consuming space in the fast recovery area.

The initialization parameter DB_RECOVERY_FILE_DEST_SIZE can also assist in managing the
size of the fast recovery area. While its primary purpose is to limit the amount of disk space used
by the fast recovery area on the specified disk group or file system directory, it can be temporarily
increased once an alert is received to give the DBA additional time to allocate more disk space to
the disk group or relocate the fast recovery area.

DB_RECOVERY_FILE_DEST_SIZE helps manage space not only within a database but also
across all databases that use the same ASM disk groups. Each database can have its own setting
for DB_RECOVERY_FILE_DEST_SIZE.

Short of receiving a warning or critical alert, you can be a bit more proactive in monitoring
the size of the fast recovery area using the dynamic performance view V$RECOVERY_FILE_DEST
to see the total used and reclaimable space on the destination file system. In addition, you can use

13-ch13.indd 476 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 477

the dynamic performance view V$FLASH_RECOVERY_AREA_USAGE to see a usage breakdown
by file type:

SQL> select * from v$recovery_file_dest;

NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES
-------------------- ----------- ---------- ----------------- ---------------
+RECOV 8589934592 1595932672 71303168 13

SQL> select * from v$flash_recovery_area_usage;

FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
--------------- ------------------ ------------------------- ---------------
CONTROL FILE .12 0 1
REDO LOG 1.87 0 3
ARCHIVED LOG .83 1 7
BACKUP PIECE 15.75 0 2
IMAGE COPY 0 0 0
FLASHBACK LOG 0 0 0
FOREIGN ARCHIVE 0 0 0
D LOG

7 rows selected.

SQL>

In this example, the fast recovery area is less than 20 percent used, with the largest percentage
due to RMAN backups.

Performing Online Database Backups
Once a database is running in ARCHIVELOG mode, you can back it up while it is open and
available to users. This capability allows round-the-clock database availability to be achieved while
still guaranteeing the recoverability of the database.

Although online backups can be performed during normal working hours, they should be
scheduled for the times of the least user activity for several reasons. First, the online backups will
use operating system commands to back up the physical files, and these commands will use the
available I/O resources in the system (impacting the system performance for interactive users).
Second, while the tablespaces are being backed up, the manner in which transactions are written
to the archived redo log files changes. When you put a tablespace in “online backup” mode, the
DBWR process writes all the blocks in the buffer cache that belong to any file that is part of the
tablespace back to disk. When the blocks are read back into memory and then changed, they will
be copied to the log buffer the first time that a change is made to them. As long as they stay in the
buffer cache, they will not be recopied to the online redo log file. This will use a great deal more
space in the archived redo log file destination directory.

NOTE
You can create a command file to perform your online backups, but
using RMAN is preferred for several reasons: RMAN maintains a
catalog of your backups, allows you to manage your backup repository,
and allows you to perform incremental backups of the database.

13-ch13.indd 477 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

478 Oracle Database 12c DBA Handbook

Follow these steps to perform an online database backup or individual tablespace backups:

1. Set the database into backup state (prior to Oracle 10g, the only option was to enable
backup on a tablespace-by-tablespace basis) by using the ALTER TABLESPACE . . . BEGIN
BACKUP command for each tablespace or ALTER DATABASE BEGIN BACKUP to put all
tablespaces into online backup mode.

2. Back up the datafiles using operating system commands.

3. Set the database back to its normal state by issuing ALTER TABLESPACE . . . END BACKUP
for each tablespace or ALTER DATABASE END BACKUP for all tablespaces in the database.

4. Archive the unarchived redo logs so that the redo required to recover the tablespace
backup is used by issuing the command ALTER SYSTEM ARCHIVE LOG CURRENT.

5. Back up the archived redo log files. If necessary, compress or delete the backed-up
archived redo log files to free space on disk.

6. Back up the control file.

See Chapter 14 for details on RMAN’s automation of this process.

Integration of Backup Procedures
Because there are multiple methods for backing up the Oracle database, there is no need to have
a single point of failure in your backup strategy. Depending on your database’s characteristics,
you should choose one method, and use at least one of the remaining methods as a backup to
your primary backup method.

NOTE
When considering physical backups, you should also evaluate the use
of RMAN to perform incremental physical backups.

In the following sections, you will see how to choose the primary backup method for your
database, how to integrate logical and physical backups, and how to integrate database backups
with file system backups. For details on RMAN, see Chapter 14.

Integration of Logical and Physical Backups
Which backup method is appropriate to use as the primary backup method for your database?
When deciding, you should take into account the characteristics of each method:

Method Type Recovery Characteristics

Data Pump Export Logical Can recover any database object to its status as of the moment
it was exported.

Offline backups Physical Can recover the database to its status as of the moment it was
shut down. If the database is run in ARCHIVELOG mode,
you can recover the database to a status at any point in time.

Online backups Physical Can recover the database to its status at any point in time.

13-ch13.indd 478 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 13: Backup and Recovery Options 479

Offline backups are the least flexible method of backing up the database if the database is
running in NOARCHIVELOG mode. Offline backups are a point-in-time snapshot of the database.
Also, because they are a physical backup, DBAs cannot selectively recover logical objects (such
as tables) from them. Although there are times when they are appropriate (such as for disaster
recovery), offline backups should normally be used as a fallback in case your primary method
fails. If you are running the database in ARCHIVELOG mode (strongly recommended!), you can
use the offline backups as the basis for a media recovery, but an online backup would typically be
easier to use for recovery in that situation.

Of the two remaining methods, which one is more appropriate? For production environments,
the answer is almost always online backups. Online backups, with the database running in
ARCHIVELOG mode, allow you to recover the database to the point in time immediately preceding
a system fault or a user error. Using a Data Pump Export-based strategy would limit you to only
being able to go back to the data as it existed the last time the data was exported.

Consider the size of the database and what objects you will likely be recovering. Given a
standard recovery scenario, such as the loss of a disk, how long will it take for the data to be
recovered? If a file is lost, the quickest way to recover it is usually via a physical backup, which
again favors online backups over exports.

If the database is small, transaction volume is very low, and availability is not a concern, then
offline backups may serve your needs. If you are only concerned about one or two tables, you
could use Data Pump Export to selectively back them up. However, if the database is large, the
recovery time needed for Data Pump Export/Import may be prohibitive. For large, low-transaction
environments, offline backups may be appropriate.

Regardless of your choice for primary backup method, the final implementation should include
a physical backup and some sort of logical backup, either via Data Pump Export or via replication.
This redundancy is necessary because these methods validate different aspects of the database:
Data Pump Export validates that the data is logically sound, and physical backups validate that
the data is physically sound. A good database backup strategy integrates logical and physical
backups. The frequency and type of backup performed will vary based on the database’s usage
characteristics.

Other database activities may call for ad hoc backups. Ad hoc backups may include offline
backups before performing database upgrades and exports during application migration between
databases.

Integration of Database and Operating System Backups
As described in this chapter, the DBA’s backup activities involve a number of tasks normally
assigned to a systems management group: monitoring disk usage, maintaining tapes, and so on.
Rather than duplicate these efforts, it is best to integrate them; focus on a process-based alignment
of your organization. The database backup strategy should be modified so that the systems
management personnel’s file system backups will take care of all tape handling, allowing you to
centralize the production control processes in your environment.

Centralization of production control processes is usually accomplished by dedicating disk
drives as destination locations for physical file backups. Instead of files being backed up to tape
drives, the backups will instead be written to other disks on the same server. Those disks should
be targeted for backups by the systems management personnel’s regular file system backups. The
DBA does not have to run a separate tape backup job. However, the DBA does need to verify that
the systems management team’s backup procedures executed correctly and completed successfully.

13-ch13.indd 479 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

480 Oracle Database 12c DBA Handbook

If your database environment includes files outside the database, such as datafiles for external
tables or files accessed by BFILE datatypes, then you must determine how you are going to back
those files up in a way that will provide consistent data in the event of a recovery. The backups of
these flat files should be coordinated with your database backups and should also be integrated
into any disaster recovery planning.

Summary
As with most Oracle features and tools, you have more than one if not several ways to accomplish
a specific task. Performing backup and recovery is no exception. You can perform logical backups
of your database using Data Pump Export and Import; physical backups of the database using
RMAN in ARCHIVELOG mode; physical backups with the database shut down; or manual physical
database backups of datafiles, control files, the SPFILE, and other miscellaneous files such as the
password file and wallet while the database is in ARCHIVELOG mode.

Which method you should use depends on how available your database needs to be, how
much storage space you can allocate for backups, and how quickly you must restore and recover
the database in case of media failure. Using at least two of the methods described in this chapter
ensures that your backup infrastructure doesn’t become the single point of failure in your environment.

13-ch13.indd 480 21/04/15 4:32 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 481

CHAPTER
14

Using Recovery
Manager (RMAN)

14-ch14.indd 481 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

482 Oracle Database 12c DBA Handbook

In Chapters 11 and 13, we discussed a number of different ways in which we can back up our
data and protect the database from accidental, inadvertent, or deliberate corruption. Physical
backups of the database ensure that no committed transaction is lost and that we can restore

the database from any previous backup to the current point in time or any point in between;
logical backups allow the DBA or a user to capture the contents of individual database objects at
a particular point in time, providing an alternative recovery option when a complete database-
restoration operation would have too big an impact on the rest of the database.

Oracle’s Recovery Manager (RMAN) takes backup and recovery to a new level of protection
and ease of use. Since RMAN’s appearance in Oracle version 8, there have been a number of
major improvements and enhancements that can make RMAN a “one-stop shopping” solution for
nearly every database environment, including those that are leveraging Oracle’s multitenant
architecture features first available in Oracle Database 12c. In addition to the RMAN command-
line interface improvements in Oracle 12c, all the RMAN functionality has been included in the
web-based Enterprise Manager Cloud Control 12c (EM Cloud Control) interface as well, allowing a
DBA to monitor and perform backup operations when only a web browser connection is available.

In this chapter, we’ll use a number of examples of RMAN operations, both using command-
line syntax and the EM Cloud Control web interface. The examples will run the gamut from RMAN
environment setup to backup, and the recovery and validation of the backup itself. We’ll go into
some detail about how RMAN manages the metadata associated with the database and its
backups. Finally, we’ll cover a number of miscellaneous topics, such as using RMAN to catalog
backups made outside of the RMAN environment.

Oracle Database 12c brings even more functionality to an RMAN environment. To make
database management more easily accessible from the command line, virtually all commands
you would run at the SQL> prompt in SQL*Plus are now available at the RMAN> prompt without
using the RMAN sql command. You can also now perform a restore and recovery operation at the
table level—you would typically use Data Pump for logical export and import of table objects,
but this gives you another option to retrieve a single table or a small number of tables using the
latest RMAN backups. Finally, the DUPLICATE command can back up much faster over a network
connection by leveraging a higher degree of parallelism on the auxiliary instance as well as better
compression algorithms; these dramatically reduce the amount of time needed to create a copy of
a database.

Due to the wide variety of tape backup management systems available, discussing any particular
hardware configuration would be beyond the scope of this book. Instead, the focus in this chapter
will be on using the fast recovery area, a dedicated area allocated on disk to store disk-based
copies of all types of objects that RMAN can back up. The fast recovery area (formerly known as the
flash recovery area) has been available since Oracle Database 10g.

For all the examples in this chapter, we will use a recovery catalog with RMAN. Although most
of the functionality of RMAN is available by only using the control file of the target database,
benefits such as being able to store RMAN scripts and additional recovery capabilities far outweigh
the relatively low cost of maintaining an RMAN user account in a different database.

RMAN Features and Components
RMAN is more than just a client-side executable that can be used with a web interface. It comprises
a number of other components, including the database to be backed up (the target database), an
optional recovery catalog, an optional fast recovery area, and media management software to
support tape backup systems. We will review each of these briefly in this section.

14-ch14.indd 482 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 483

Many features of RMAN do not have equivalents in the backup methods presented in Chapter 13.
We’ll contrast the advantages and disadvantages of using RMAN versus the more traditional methods
of backups.

RMAN Components
The first, and minimal, component in the RMAN environment is the RMAN executable. It is available
along with the other Oracle utilities in the directory $ORACLE_HOME/bin, and it’s installed by
default with both the Standard and Enterprise Editions of Oracle Database 12c. From a command-
line prompt, you can invoke RMAN with or without command-line arguments; in the following
example, we’re starting up RMAN using operating system authentication without connecting to a
recovery catalog:

[oracle@tettnang ~]$ rman target /
RMAN>

The command-line arguments are optional; we can specify our target database and a recovery
catalog from the RMAN> prompt also. In Figure 14-1, you can see how to access RMAN features
from EM Cloud Control.

FIGURE 14-1. Accessing RMAN functionality from EM Cloud Control

14-ch14.indd 483 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

484 Oracle Database 12c DBA Handbook

RMAN is not of much use unless we have a database to back up. One or more target
databases can be cataloged in the recovery catalog; in addition, the control file of the database
being backed up contains information about backups performed by RMAN. From within the
RMAN client, you can also issue SQL commands for those operations you cannot perform with
native RMAN commands.

The RMAN recovery catalog, whether using the target database control file or a dedicated
repository in a separate database, contains the location of recovery data, its own configuration
settings, and the target database schema. At a minimum, the target database control file contains
this data; to be able to store scripts and to maintain a copy of the target database control file, a
recovery catalog is highly recommended. In this chapter, all examples will use a recovery catalog.

Since the release of Oracle 10g, the fast recovery area simplifies disk-based backup and
recovery by defining a location on disk to hold all RMAN backups. Along with the location, the
DBA can also specify an upper limit to the amount of disk space used in the fast recovery area.
Once a retention policy is defined within RMAN, RMAN will automatically manage the backup
files by deleting obsolete backups from both disk and tape. The initialization parameters related to
the fast recovery area are covered in the next section.

To access all non-disk-based media, such as tape and BD-ROM, RMAN utilizes third-party
media management software to move backup files to and from these offline and near-line devices,
automatically requesting the mount and dismount of the appropriate media to support backup
and restore operations. Most major media management software and hardware vendors have
device drivers that directly support RMAN.

RMAN vs. Traditional Backup Methods
There are very few reasons not to use RMAN as your main tool for managing backups. Here are
some of the major features of RMAN that either are not available with traditional backup methods
or have significant restrictions using traditional backup methods:

 ■ Skip unused blocks Blocks that have never been written to, such as blocks above the
high-water mark (HWM) in a table, are not backed up by RMAN when the backup is an
RMAN backupset. Traditional backup methods have no way to know which blocks have
been used.

 ■ Backup compression In addition to skipping blocks that have never been used, RMAN
can also use one of several Oracle-specific binary compression modes to save space on the
backup device. Although operating system–specific compression techniques are available
with traditional backup methods, the compression algorithm used by RMAN is customized
to maximize the compression for the typical kinds of data found in Oracle data blocks.
Although there is a slight increase in CPU time during an RMAN compressed backup or
recovery operation, the amount of media used for backup may be significantly reduced, as
well as network bandwidth if the backup is performed over the network. Multiple CPUs
can be configured for an RMAN backup to help alleviate the compression overhead.

 ■ Open database backups Tablespace backups can be performed in RMAN without using
the BEGIN/END BACKUP clause with ALTER TABLESPACE. Whether using RMAN or a
traditional backup method, however, the database must be in ARCHIVELOG mode.

 ■ True incremental backups For any RMAN incremental backup, unchanged blocks since
the last backup will not be written to the backup file. This saves a significant amount of
disk space, I/O time, and CPU time. For restore and recovery operations, RMAN supports

14-ch14.indd 484 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 485

incrementally updated backups. Data blocks from an incremental backup are applied
to a previous backup to potentially reduce the amount of time and number of files that
need to be accessed to perform a recovery operation. We will cover an example of an
incrementally updated backup later in this chapter.

 ■ Block-level recovery To potentially avoid downtime during a recovery operation, RMAN
supports block-level recovery for recovery operations that only need to restore or repair a
small number of blocks identified as being corrupt during the backup operation. The rest
of the tablespace and the objects within the tablespace can remain online while RMAN
repairs the damaged blocks. The rows of a table not being repaired by RMAN are even
available to applications and users.

 ■ Table-level recovery When logical backups of a table aren’t available or when
FLASHBACK TABLE cannot bring back a table to a previous state, you can use RMAN to
restore a table or tables from an RMAN backup as of any SCN since the last full RMAN
backup with the database in ARCHIVELOG mode. This makes table-level recovery much
easier than having to restore and recover an entire tablespace, much less the entire
database, for just one table.

 ■ Multiple I/O channels During a backup or recovery operation, RMAN can utilize many I/O
channels, via separate operating system processes, to perform concurrent I/O. Traditional
backup methods, such as a Unix cp command, are typically single-threaded operations.

 ■ Platform independence Backups written with RMAN commands will be syntactically
identical regardless of the hardware or software platform used, with the only difference
being the media management channel configuration. On the other hand, a Unix script
with lots of cp commands will not run very well if the backup script is migrated to a
Windows platform!

 ■ Tape manager support All major enterprise backup systems are supported within RMAN
by a third-party media management driver provided by a tape backup vendor.

 ■ Cataloging A record of all RMAN backups is recorded in the target database control
file, and optionally in a recovery catalog stored in a different database. This makes restore
and recovery operations relatively simple compared to manually tracking operating
system–level backups using “copy” commands.

 ■ Scripting capabilities RMAN scripts can be saved in a recovery catalog for retrieval
during a backup session. The tight integration of the scripting language, the ease of
maintaining scripts in RMAN, and the Oracle scheduling facility make it a better choice
than storing traditional operating system scripts in an operating system directory with the
operating system’s native scheduling mechanisms.

 ■ Encrypted backups RMAN uses backup encryption integrated into Oracle Database
12c (including advanced compression) to store encrypted backups. Storing encrypted
backups on tape requires the Advanced Security Option.

In a few limited cases, a traditional backup method may have an advantage over RMAN; but
now that RMAN supports the backup of password files and other non-database files such as
tnsnames.ora, listener.ora, and sqlnet.ora (using Oracle Secure Backup), the case for RMAN as
your single backup and recovery solution is compelling.

14-ch14.indd 485 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

486 Oracle Database 12c DBA Handbook

Backup Types
RMAN supports a number of different backup methods, depending on your availability needs,
the desired size of your recovery window, and the amount of downtime you can endure while the
database or a part of the database is involved in a recovery operation.

Consistent and Inconsistent Backups
A physical backup can be classified by being a consistent or an inconsistent backup. In a consistent
backup, all datafiles have the same SCN; in other words, all changes in the redo logs have been
applied to the datafiles. Because an open database with no uncommitted transactions may have
some dirty blocks in the buffer cache, it is rare that an open database backup can be considered
consistent. As a result, consistent backups are taken when the database is shut down normally or
in a MOUNT state.

In contrast, an inconsistent backup is performed while the database is open and users are
accessing the database. Because the SCNs of the datafiles typically do not match when an
inconsistent backup is taking place, a recovery operation performed using an inconsistent backup
must rely on both archived and online redo log files to bring the database into a consistent state
before it is opened. As a result, a database must be in ARCHIVELOG mode to use an inconsistent
backup method.

Full and Incremental Backups
Full backups include all blocks of every datafile within a tablespace or a database; it is essentially
a bit-for-bit copy of one or more datafiles in the database. Either RMAN or an operating system
command can be used to perform a full backup, although backups performed outside of RMAN
must be cataloged with RMAN before they can be used in an RMAN recovery operation.

In Oracle 11g and later, incremental backups can be level 0 or level 1. A level 0 backup is a
full backup of all blocks in the database that can be used in conjunction with differential,
incremental, or cumulative incremental level 1 backups in a database recovery operation.
A distinct advantage to using an incremental backup in a recovery strategy is that archived and
online redo log files may not be necessary to restore a database or tablespace to a consistent state;
the incremental backups may have some or all of the blocks needed. An example of using level 0
and level 1 incremental backups is presented later in this chapter. Incremental backups can only
be performed within RMAN.

Image Copies
Image copies are full backups created by operating system commands or RMAN BACKUP AS
COPY commands. Although a full backup created with a Unix cp command can be later registered
in the RMAN catalog as a database backup, doing the same image copy backup in RMAN has the
advantage of checking for corrupt blocks as they are being read by RMAN and recording the
information about the bad blocks in the data dictionary. Image copies are the default backup file
format in RMAN.

This is a great feature of Oracle 12c’s RMAN for the following reason: If you add another
datafile to a tablespace, you need to also remember to add the new datafile to your Unix script cp
command. By creating image copies using RMAN, all datafiles will automatically be included in
the backup. Forgetting to add the new datafile to a Unix script will make a recovery situation
extremely inconvenient at best and a disaster at worst.

14-ch14.indd 486 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 487

Backupsets and Backup Pieces
In contrast to image copies, which can be created in most any backup environment, backupsets
can be created and restored only with RMAN. A backupset is an RMAN backup of part or all of
a database, consisting of one or more backup pieces. Each backup piece belongs to only one
backupset, and can contain backups of one or many datafiles in the database. All backupsets and
pieces are recorded in the RMAN repository, the same as any other RMAN-initiated backup.

Compressed Backups
For any Oracle 12c RMAN backup creating a backupset, compression is available to reduce the
amount of disk space or tape needed to store the backup. Compressed backups are only usable
by RMAN, and they need no special processing when used in a recovery operation; RMAN
automatically decompresses the backup. Creating compressed backups is as easy as specifying AS
COMPRESSED BACKUPSET and COMPRESSION ALGORITHM in the RMAN BACKUP command
or as part of the default settings.

Overview of RMAN Commands and Options
In the next few sections, we’ll review the basic set of commands you’ll use on a regular basis.
We’ll look at how to make your job even easier by persisting some of the settings in an RMAN
session; in addition, we’ll set up the retention policy and the repository we’ll use to store RMAN
metadata.

At the end of this section, we’ll review the initialization parameters related to RMAN backups
and the fast recovery area.

Running SQL Commands in RMAN
Running SQL commands within an RMAN session becomes much easier in Oracle Database 12c.
Unless there is an RMAN command that has the same name as a SQL or SQL*Plus command,
you can just type it at the RMAN command line as if you were using SQL*Plus, as in this example:

[oracle@tettnang ~]$ rman target /
Recovery Manager: Release 12.1.0.1.0 - Production on Tue Aug 19 21:57:11 2014
Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.
connected to target database: HR (DBID=3516035730)
using target database control file instead of recovery catalog
RMAN> select ts#,name,bigfile
2> from v$tablespace
3> where name like 'S%';

 TS# NAME BIG
---------- ------------------------------ ---
 0 SYSTEM NO
 1 SYSAUX NO
RMAN>

The existing method to run SQL statements in RMAN, SQL “command”, is still available if
you want to avoid any ambiguity or don’t want to change any existing RMAN scripts.

14-ch14.indd 487 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

488 Oracle Database 12c DBA Handbook

Frequently Used Commands
Table 14-1 provides a list of the most common RMAN commands you’ll use on a regular basis,
along with some common options and caveats for each command. For the complete list of all
RMAN commands and their syntax, see the Oracle Database Backup and Recovery Reference,
12c Release 1.

RMAN Command Description

@ Runs an RMAN command script at the pathname specified after the @. If
no path is specified, the path is assumed to be the directory from which
RMAN was invoked.

ADVISE FAILURE Displays repair options for the failure found.

BACKUP Performs an RMAN backup, with or without archived redo logs. Backs
up datafiles or datafile copies, or performs an incremental level 0 or
level 1 backup. Backs up an entire database, or a single tablespace or
datafile. Validates the blocks to be backed up with the VALIDATE clause.

CATALOG Adds information about file copies and user-managed backups to the
repository.

CHANGE Changes the status of a backup in the RMAN repository. Useful for
explicitly excluding a backup from a restore or recovery operation, or
to notify RMAN that a backup file was inadvertently or deliberately
removed by an operating system command outside of RMAN.

CONFIGURE Configures the persistent parameters for RMAN. The parameters
configured are available during every subsequent RMAN session unless
they are explicitly cleared or modified.

CONVERT Converts datafile formats for transporting tablespaces or entire databases
across platforms.

CREATE CATALOG Creates the repository catalog containing RMAN metadata for one or
more target databases. It is strongly recommended that this catalog not
be stored in one of the target databases.

CROSSCHECK Checks the record of backups in the RMAN repository against the actual
files on disk or tape. Objects are flagged as EXPIRED, AVAILABLE,
UNAVAILABLE, or OBSOLETE. If the object is not available to RMAN, it
is marked UNAVAILABLE.

DELETE Deletes backup files or copies and marks them as DELETED in the target
database control file. If a repository is used, the record of the backup file is
removed.

DROP DATABASE Deletes the target database from disk and unregisters it.

DUPLICATE Uses backups of the target database (or uses the live database) to create
a duplicate database.

TABLE 14-1. Common RMAN Commands

14-ch14.indd 488 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 489

TABLE 14-1. Common RMAN Commands (Continued)

RMAN Command Description

FLASHBACK
DATABASE

Performs a Flashback Database operation. The database is restored to
a point in the past by SCN or log sequence number using flashback
logs to undo changes before the SCN or log sequence number, and
then archived redo logs are applied to bring the database forward to a
consistent state.

LIST Displays information about backupsets and image copies recorded in
the target database control file or repository. See REPORT for identifying
complex relationships between backupsets.

RECOVER Performs a complete or incomplete recovery on a datafile, a tablespace,
or the entire database. Can also apply incremental backups to a datafile
image copy to roll it forward in time.

REGISTER DATABASE Registers a target database in the RMAN repository.

REPAIR FAILURE Repairs one or more failures recorded in the Automatic Diagnostic
Repository (ADR).

REPORT Performs a detailed analysis of the RMAN repository. For example, this
command can identify which files need a backup to meet the retention
policy or which backup files can be deleted.

RESTORE Restores files from image copies or backupsets to disk, typically after
a media failure. Can be used to validate a restore operation without
actually performing the restore by specifying the PREVIEW option.

RUN Runs a sequence of RMAN statements as a group between { and }.
Allows you to override default RMAN parameters for the duration of the
execution of the group.

SET Sets RMAN configuration settings for the duration of the RMAN session,
such as allocated disk or tape channels. Persistent settings are assigned
with CONFIGURE.

SHOW Shows all or individual RMAN configured settings.

SHUTDOWN Shuts down the target database from within RMAN. Identical to the
SHUTDOWN command within SQL*Plus.

STARTUP Starts up the target database. This command has the same options and
function as the SQL*Plus STARTUP command.

SQL Runs SQL commands within RMAN. Rarely needed, as virtually all SQL
commands will run as is from the RMAN command line as of Oracle
Database 12c.

TRANSPORT
TABLESPACE

Creates transportable tablespace sets from backup for one or more
tablespaces.

VALIDATE Examines a backupset and reports whether its data is intact and consistent.

14-ch14.indd 489 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

490 Oracle Database 12c DBA Handbook

If backups use a fast recovery area (presented in Chapter 13), you can back up the database
without any other explicit RMAN configuration by running the following command:

RMAN> backup database;

Note that this is a full backup and can be used with archived redo log files to recover a
database. However, this is not a level 0 backup and cannot be used as part of an incremental
backup strategy. See the “Backup Operations” section later in this chapter.

Setting Up a Repository
Whether you use a repository for the metadata from one database or a hundred, the repository
setup is very straightforward and needs to be done only once. The examples that follow assume
that we have a default installation of an Oracle 12c database; the repository database itself can be
used for other applications if there is no significant performance degradation when RMAN needs
to update metadata in the repository.

CAUTION
Using an RMAN target database for the repository is strongly
discouraged. Loss of the target database prevents any chance of
a successful recovery of the database using RMAN because the
repository metadata is lost along with the target database.

The following sequence of commands creates a tablespace and a user to maintain the metadata
in the repository database. In this and all subsequent examples, a database with a SID of rman_
rep is used for all repository operations.

The tablespace that holds the repository database requires at least 125MB to hold recovery
catalog entries; here is a space requirements breakdown by tablespace:

 ■ 90MB in the SYSTEM tablespace

 ■ 5MB in the TEMP tablespace

 ■ 5MB in the UNDO tablespace

 ■ 15MB in RMAN’s default tablespace for each database registered in the recovery catalog

 ■ 1MB for each online redo log file

Starting out with available free space of 125MB will in most cases be sufficient for the first
year, and enabling additional extents of 75MB each will be sufficient in the long term depending
on how many databases you manage in the recovery catalog. Overall, it’s a very small amount of
disk space compared to your terabyte data warehouse!

Connect to the repository database with SYSDBA privileges and create the RMAN account
and the recovery catalog in the RMAN tablespace as follows:

[oracle@kthanid ~]$ sqlplus rjb/rjb909@kthanid:1521/rman_rep

SQL*Plus: Release 12.1.0.2.0 Production on Wed Aug 20 06:58:59 2014
Copyright (c) 1982, 2014, Oracle. All rights reserved.
Last Successful login time: Wed Aug 20 2014 06:50:11 -05:00

14-ch14.indd 490 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 491

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.2.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> create tablespace rman datafile 'data12c'
 2 size 125m autoextend on next 75m maxsize 1g;

Tablespace created.
SQL> grant recovery_catalog_owner to rman identified by rman;
Grant succeeded.
SQL> alter user rman default tablespace rman
 2 quota unlimited on rman;
User altered.
SQL>

TIP
You can create a user, grant privileges, and assign a password using
the GRANT command alone instead of using a separate CREATE USER
command.

Now that the RMAN user account exists in the repository database, we can start RMAN,
connect to the catalog, and initialize the repository with the CREATE CATALOG command from
the server with the target database:

[oracle@tettnang ~]$ rman catalog rman/rman@kthanid/rman_rep

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Aug 20 07:05:29 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to recovery catalog database

RMAN> create catalog;

recovery catalog created

RMAN

From this point on, using a repository is as easy as specifying the repository username and
password on the RMAN command line with the CATALOG parameter or using the CONNECT
CATALOG command in an RMAN session. Within EM Cloud Control, you can persist the repository
credentials as demonstrated in Figure 14-2.

In future EM Cloud Control sessions, any RMAN backup or recovery operations will automatically
use the recovery catalog.

Registering a Database
For each database for which RMAN will perform a backup or recovery, we must register the
database in the RMAN repository; this operation records information such as the target database

14-ch14.indd 491 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

492 Oracle Database 12c DBA Handbook

schema and the unique database ID (DBID) of the target database. The target database need only
be registered once; subsequent RMAN sessions that connect to the target database will automatically
reference the correct metadata in the repository.

[oracle@tettnang ~]$ rman target / catalog rman/rman@kthanid/rman_rep

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Aug 20 08:44:21 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)
connected to recovery catalog database

RMAN> register database;

database registered in recovery catalog
starting full resync of recovery catalog
full resync complete

RMAN>

FIGURE 14-2. Persisting RMAN repository credentials

14-ch14.indd 492 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 493

In the preceding example, we connect to the target database using operating system
authentication and to the repository with password authentication. Note that in this example the
database CDB01 may or may not be a container database (CDB), but it doesn’t matter since
RMAN must connect to a CDB in the root container to perform backup and recovery operations
for the entire CDB or any individual PDB.

All databases registered with the repository must have unique DBIDs; trying to register the
database again yields the following error message:

RMAN> register database;

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of register command on default channel
 at 08/28/2014 21:38:44
RMAN-20002: target database already registered in recovery catalog

RMAN>

Persisting RMAN Settings
To make the DBA’s job easier, a number of RMAN settings can be persisted. In other words, these
settings will stay in effect between RMAN sessions. In the example that follows, we use the
SHOW command to display the default RMAN settings:

RMAN> show all;

RMAN configuration parameters for database with db_unique_name CDB01 are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION ON;
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP ON; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; #
default
CONFIGURE DEVICE TYPE DISK PARALLELISM 4 BACKUP TYPE TO COMPRESSED BACKUPSET;
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BASIC' AS OF RELEASE 'DEFAULT'
 OPTIMIZE FOR LOAD TRUE ; # default
CONFIGURE RMAN OUTPUT TO KEEP FOR 7 DAYS; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO
 '/u01/app/oracle/product/12.1.0/dbhome_1/dbs/snapcf_cdb01.f'; # default

RMAN>

14-ch14.indd 493 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

494 Oracle Database 12c DBA Handbook

Any parameters that are set to their default values have # default at the end of the configuration
setting. These parameters are easy to review and change using EM Cloud Control, as demonstrated
in Figure 14-3.

In the next few sections, we’ll review a few of the more common RMAN persistent settings.

Retention Policy
Backups can be automatically retained and managed using one of two methods: by a recovery
window or by redundancy. Using a recovery window, RMAN will retain as many backups as
necessary to bring the database to any point in time within the recovery window. For example,
with a recovery window of seven days, RMAN will maintain enough image copies, incremental
backups, and archived redo logs to ensure that the database can be restored and recovered to any

FIGURE 14-3. Reviewing RMAN settings in EM Cloud Control

14-ch14.indd 494 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 495

point in time within the last seven days. Any backups that are not needed to support this recovery
window are marked as OBSOLETE and are automatically removed by RMAN if a fast recovery
area is used and disk space is needed for new backups.

In contrast, a redundancy retention policy directs RMAN to retain the specified number of
backups or copies of each datafile and control file. Any extra copies or backups beyond the
number specified in the redundancy policy are marked as OBSOLETE. As with a recovery window,
obsolete backups are automatically removed if disk space is needed and a fast recovery area is
used. Otherwise, you can use the DELETE OBSOLETE command to remove the backup files and
update the catalog.

If the retention policy is set to NONE, no backups or copies are ever considered obsolete, and
the DBA must manually remove unneeded backups from the catalog and from disk.

In the following example, we will set the retention policy to a recovery window of four days
(from a default redundancy policy of one copy):

RMAN> configure retention policy to recovery window of 4 days;

new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS;
new RMAN configuration parameters are successfully stored
RMAN>

Device Type
If the default device type is set to DISK and no pathname parameter is specified, RMAN uses the
fast recovery area for all backups (in this case the disk group +RECOV); you can easily override
the disk backup location in EM Cloud Control, as you can see in Figure 14-4. As with many of the
simplified administration tasks from Oracle 12c, there is no need to allocate or deallocate a
specific channel for backups unless you’re using a tape device.

Although configuring a tape device is specific to your installation, in general terms we
configure a tape device as follows:

RMAN> configure channel device type sbt
2> parms='ENV=(<vendor specific arguments>)';

NOTE
sbt is the device type used for any tape backup subsystem, regardless
of vendor.

Although we can use the fast recovery area to restore and recover our database entirely from
disk, at some point it becomes inefficient to keep all our backups on disk, especially if we have a
large recovery window. As a result, we can make copies of our backup files to tape, and RMAN
will dutifully keep track of where the backups are in case we need to restore or recover the
database from tape, or restore archived redo logs to roll forward an image copy in the fast
recovery area.

Control File Autobackup
Because of the importance of the control file, we want to back it up at least as often as it changes
due to modifications in the structure of the database. By default, the backup of the control file

14-ch14.indd 495 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

496 Oracle Database 12c DBA Handbook

does not occur automatically. This is a strange default, considering the importance of the control
file and how little disk space it takes to back it up. Fortunately, RMAN can easily be configured to
back up the control file automatically, either any time a successful backup must be recorded in
the repository or when a structural change affects the contents of the control file (in other words,
cases when a control file backup must occur to ensure a successful recovery if and when a recovery
operation is required):

RMAN> configure controlfile autobackup on;

new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP ON;
new RMAN configuration parameters are successfully stored

RMAN>

FIGURE 14-4. Configuring backup destination using EM Cloud Control

14-ch14.indd 496 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 497

Every RMAN backup from this point on will automatically include a copy of the control file; the
control file is also backed up whenever a new tablespace is created or another datafile is added
to an existing tablespace.

Backup Compression
If disk space is at a premium, you have a very large database, and you have some extra CPU
capacity, it makes sense to compress the backups to save space. The files are decompressed
automatically during a restore or recovery operation.

RMAN> configure device type disk backup type to compressed backupset;

new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO
 COMPRESSED BACKUPSET PARALLELISM 8;
new RMAN configuration parameters are successfully stored

RMAN>

Compressing backupsets may not be necessary if the operating system’s file system has
compression enabled or if the tape device hardware automatically compresses backups; however,
RMAN’s compression algorithm is tuned to efficiently back up Oracle data blocks, and as a result
it may do a better job of compressing the backupsets.

Initialization Parameters
A number of initialization parameters are used to control RMAN backups. We’ll cover some of
the more important parameters in this section.

CONTROL_FILE_RECORD_KEEP_TIME
A record of all RMAN backups is kept in the target control file. This parameter specifies the number
of days that RMAN will attempt to keep a record of backups in the target control file. After this
time, RMAN will begin to reuse records older than this retention period. If RMAN needs to write
a new backup record, and the retention period has not been reached, RMAN will attempt to
expand the size of the control file. Usually, this is successful because the size of the control file is
relatively small compared to other database objects. However, if space is not available for the
expansion of the control file, RMAN will reuse the oldest record in the control file and write a
message to the alert log.

As a rule of thumb, you should set CONTROL_FILE_RECORD_KEEP_TIME to several days
beyond your actual recovery window to ensure that backup records are retained in the control
file. The default is seven days.

DB_RECOVERY_FILE_DEST
This parameter specifies the location of the fast recovery area. It should be located on a file
system different from any database datafiles, control files, or redo log files, online or archived. If
you lose the disk with the datafiles, the fast recovery area is gone too, mitigating the advantages of
using a fast recovery area.

14-ch14.indd 497 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

498 Oracle Database 12c DBA Handbook

DB_RECOVERY_FILE_DEST_SIZE
The parameter DB_RECOVERY_FILE_DEST_SIZE specifies an upper limit to the amount of space
used for the fast recovery area. The underlying file system may have less or more than this amount
of space; the DBA should ensure that at least this amount of space is available for backups. Note
that this is the amount of recovery space for this database only; if multiple databases share the same
ASM disk group for their fast recovery area, the sum of all values for DB_RECOVERY_FILE_DEST_
SIZE must not exceed the available space in the disk group.

In our data warehouse database, dw, a fast recovery area is defined in the disk group +RECOV
with a maximum size of 8GB. As this limit is reached, RMAN will automatically remove obsolete
backups and generate an alert in the alert log when the amount of space occupied by nonobsolete
backups is within 10 percent of the value specified in DB_RECOVERY_FILE_DEST_SIZE.

The parameters DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE are both
dynamic; they can be changed on the fly while the instance is running to respond to changes in
disk space availability.

Data Dictionary and Dynamic Performance Views
A number of Oracle data dictionary and dynamic performance views contain information specific
to RMAN operations, on both the target database and the catalog database. In Table 14-2 are the
key views related to RMAN. Each of these views will be covered in more detail later in this chapter.

TABLE 14-2. RMAN Data Dictionary and Dynamic Performance Views

View Description

RC_* RMAN recovery catalog views. Only exist in the RMAN
repository database and contain recovery information
for all target databases.

V$RMAN_STATUS Displays finished and in-progress RMAN jobs.

V$RMAN_OUTPUT Contains messages generated by RMAN sessions and
each RMAN command executed within the session.

V$SESSION_LONGOPS Contains the status of long-running administrative
operations that run for more than six seconds; includes
statistics gathering and long-running queries, in addition
to RMAN recovery and backup operations.

V$DATABASE_BLOCK_CORRUPTION Corrupted blocks detected during an RMAN session.

V$FLASH_RECOVERY_AREA_USAGE The percentage of space used, by object type, in the fast
recovery area.

V$RECOVERY_FILE_DEST The number of files, space used, space that can be
reclaimed, and space limit for the fast recovery area.

V$RMAN_CONFIGURATION RMAN configuration parameters with non-default values
for this database.

14-ch14.indd 498 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 499

The RC_* views only exist in a database that is used as an RMAN repository; the V$ views
exist and have rows in any database that is backed up using RMAN. To highlight this difference,
we’ll look at the view V$RMAN_CONFIGURATION in the target database:

[oracle@tettnang ~]$ sqlplus rjb/rjb@tettnang/dw

SQL*Plus: Release 12.1.0.1.0 Production on Wed Aug 20 09:06:37 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> select * from v$rman_configuration;

 CONF# NAME VALUE CON_ID
---------- ------------------------- ------------------------------ ----------
 1 BACKUP OPTIMIZATION ON 0
 2 DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED 0
 BACKUPSET PARALLELISM 4

 3 RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS 0
 4 CONTROLFILE AUTOBACKUP ON 0

SQL>

Note that these are the RMAN persistent parameters that were changed from the default. The
recovery catalog database keeps these non-default values in the view RC_RMAN_CONFIGURATION
for all databases registered with RMAN. Note also the CON_ID column for databases in a
multitenant environment. A PDB will have CON_ID=0 (no visibility to other PDBs in the CDB),
whereas CON_ID will have a unique identifier for each PDB when connected to the root
container.

SQL> connect rman/rman@kthanid/rman_rep
Connected.
SQL> select db_key, db_unique_name, name, value
 2 from rman.rc_rman_configuration;

 DB_KEY DB_UNIQUE_NAME NAME VALUE
---------- ------------------ ------------------------- ---------------
 1 CDB01 BACKUP OPTIMIZATION ON
 1 CDB01 DEVICE TYPE DISK BACKUP TYP
 E TO COMPRESSED
 BACKUPSET PARA
 LLELISM 4

14-ch14.indd 499 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

500 Oracle Database 12c DBA Handbook

 1 RETENTION POLICY TO RECOVERY WIN
 DOW OF 4 DAYS

 1 CDB01 CONTROLFILE AUTOBACKUP ON

4 rows selected.

If we were using RMAN to back up another database, this view would contain other values for
DB_KEY and DB_UNIQUE_NAME for other target databases with non-default RMAN parameters.

Because we are not using RMAN to back up the rman_rep database, the views V$RMAN_*
are empty.

Backup Operations
In this section, we’ll run through some examples to back up the target database in a variety of
ways: We’ll perform two kinds of full backups, create image copies of selected database files,
investigate how incremental backups work, and discuss both incremental backup optimization
and the fast recovery area.

We’ll continue to use our data warehouse database, dw, as the target database, with the
database rman_rep as the RMAN repository.

Full Database Backups
In our first example of a full database backup, we’ll use backupsets to copy all database files,
including the SPFILE, to the fast recovery area:

RMAN> backup as compressed backupset database spfile;
Starting backup at 20-AUG-14
starting full resync of recovery catalog
full resync complete
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=269 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=523 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=778 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=1024 device type=DISK
skipping datafile 5; already backed up 1 time(s)
skipping datafile 7; already backed up 1 time(s)
skipping datafile 18; already backed up 1 time(s)
skipping datafile 19; already backed up 1 time(s)
. . .
piece handle=+RECOV/CDB01/F754FCD8744A55AAE043E3A0080A3B17/
BACKUPSET/2014_08_20/nnndf0_tag20140820t094015_0.758.856086089
tag=TAG20140820T094015 comment=NONE
channel ORA_DISK_2: backup set complete, elapsed time: 00:01:07
Finished backup at 20-AUG-14
Starting Control File and SPFILE Autobackup at 20-AUG-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_08_20/s_856086157.752.856086157
comment=NONE
Finished Control File and SPFILE Autobackup at 20-AUG-14
RMAN>

14-ch14.indd 500 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 501

NOTE
When using a recovery catalog, RMAN can only connect to the root
container (CDB) to perform backup and recovery operations.

Files 5, 7, 18, and 19 did not need to be backed up because of the BACKUP OPTIMIZATION
setting configured to ON. Note also that the SPFILE is backed up twice, the second time along
with the control file. Because we set CONFIGURE CONTROLFILE AUTOBACKUP to ON, we
automatically back up the control file and SPFILE whenever we do any other kind of backup or
the structure of the database changes. As a result, we don’t need to specify SPFILE in the BACKUP
command.

Taking a peek into the fast recovery area using the asmcmd tool, we see a lot of cryptic
filenames for the recent archived redo logs and the full database backup we just performed:

[oracle@tettnang ~]$ sqlplus / as sysdba

SQL*Plus: Release 12.1.0.1.0 Production on Wed Aug 20 09:46:59 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, Automatic Storage Management, OLAP, Advanced Analytics
and Real Application Testing options

SQL> show parameter db_recov

NAME TYPE VALUE
------------------------------------ ----------- -----------------------------
db_recovery_file_dest string +RECOV
db_recovery_file_dest_size big integer 25G
SQL> select name from v$database;
NAME

CDB01
SQL> exit
[oracle@tettnang ~]$. oraenv
ORACLE_SID = [cdb01] ? +ASM
The Oracle base remains unchanged with value /u01/app/oracle
[oracle@tettnang ~]$ asmcmd
ASMCMD> ls
DATA/
RECOV/
ASMCMD> cd recov
ASMCMD> ls
CDB01/
HR/
ASMCMD> cd cdb01
ASMCMD> ls

14-ch14.indd 501 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

502 Oracle Database 12c DBA Handbook

00FF6323468C3972E053E3A0080AAFD5/
AUTOBACKUP/
BACKUPSET/
CONTROLFILE/
F754FCD8744A55AAE043E3A0080A3B17/
FA782A61F8447D03E043E3A0080A9E54/
FA787E0038B26FFBE043E3A0080A1A75/
FB03AEEBB6F60995E043E3A0080AEE85/
FBA928F391D2217DE043E3A0080AB287/
FC9588B12BBD413FE043E3A0080A5528/
ASMCMD> ls -l backupset
Type Redund Striped Time Sys Name
 Y 2014_06_04/
 Y 2014_08_20/
ASMCMD> ls -l backupset/2014_08_20
Type Redund Striped Time Sys Name
BACKUPSET UNPROT COARSE AUG 20 09:00:00 Y nnndf0_TAG2014082
0T094015_0.756.856086105
BACKUPSET UNPROT COARSE AUG 20 09:00:00 Y nnndf0_TAG2014082
0T094015_0.757.856086105
BACKUPSET UNPROT COARSE AUG 20 09:00:00 Y nnndf0_TAG2014082
0T094015_0.762.856086041
BACKUPSET UNPROT COARSE AUG 20 09:00:00 Y nnsnf0_TAG2014082
0T093249_0.763.856085647
BACKUPSET UNPROT COARSE AUG 20 09:00:00 Y nnsnf0_TAG2014082
0T094015_0.753.856086141
ASMCMD>

As an alternative, you can use RMAN’s LIST command to see these backups as they are
cataloged in the target database control file and the RMAN repository. There are four backupsets,
one for a previous full database backup, and three others: a more recent full backup containing
the datafiles themselves, one for the explicit SPFILE backup, and one for the implicit SPFILE and
control file backup.

RMAN> list backup by backup;

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
1606 Full 1.39M DISK 00:00:00 04-JUN-14
 BP Key: 1633 Status: AVAILABLE Compressed: YES Tag:
TAG20140604T073433
 Piece Name: +RECOV/CDB01/BACKUPSET/2014_06_04/nnndf0_tag2014060
4t073433_0.300.849339275
 List of Datafiles in backup set 1606
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 4 Full 4733015 04-JUN-14 +DATA/CDB01/DATAFILE/
undotbs1.270.845194049

14-ch14.indd 502 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 503

 28 Full 4733015 04-JUN-14 +DATA/CDB01/DATAFILE/
undotbs1.263.848922747
. . .
 126 Full 13866695 20-AUG-14 +DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/DATAFILE/epicixsochx.387.850144917

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
2109 Full 18.39M DISK 00:00:01 20-AUG-14
 BP Key: 2133 Status: AVAILABLE Compressed: NO Tag:
TAG20140820T094237
 Piece Name: +RECOV/CDB01/AUTOBACKUP/2014_08_20
/s_856086157.752.856086157
 SPFILE Included: Modification time: 20-AUG-14
 SPFILE db_unique_name: CDB01
 Control File Included: Ckp SCN: 13868824 Ckp time: 20-AUG-14

RMAN>

One of the full backups can be used in conjunction with the archived redo logs (stored by
default in the fast recovery area residing in the ASM disk group +RECOV) to recover the database
to any point in time up to the last committed transaction.

Figure 14-5 shows a whole database backup configured to run using EM Cloud Control. Notice
that you can view, copy, or edit the RMAN script that EM Cloud Control generates.

Displaying the contents of the catalog is just as easy in EM Cloud Control. Figure 14-6 shows
results equivalent to the LIST BACKUP BY BACKUP command.

The LIST and REPORT commands are covered in more detail later in this chapter.

Tablespace Backups
After adding a tablespace to the database, performing an immediate backup of the tablespace will
shorten the time it will take to restore the tablespace later in the event of media failure. In addition,
you might back up an individual tablespace in a database that is too large to back up all at once;
again, creating a backupset or image copy of a tablespace at frequent intervals will reduce the
amount of redo that would need to be applied to an older backup of the tablespace in the event
of media failure. For example, in an environment with three large tablespaces—USERS, USERS2,
and USERS3—along with the default tablespaces SYSTEM and SYSAUX, you might back up the
SYSTEM and SYSAUX tablespaces on Sunday, USERS on Monday, USERS2 on Wednesday, and
USERS3 on Friday. Failures of any media containing datafiles from one of these tablespaces will
use a tablespace backup that is no more than a week old plus the intervening archived and online
redo log files for recovery.

In our next example, we’re adding a tablespace to the dw database (a PDB within the CDB01
container) to support a new set of star schemas:

SQL> create tablespace inet_star
 2 datafile '+data' size 100m
 3 autoextend on next 100m maxsize 5g;
Tablespace created.

14-ch14.indd 503 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

504 Oracle Database 12c DBA Handbook

From an RMAN session, we will back up the tablespace along with the control file. In this
case, it’s critical that we back up the control file because it contains the definition for the new
tablespace.

RMAN> backup tablespace dw:inet_star;
Starting backup at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=10 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=268 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=522 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=776 device type=DISK
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00218 name=+DATA/CDB01/00FF6323468C3972E053E3A0080A
AFD5/DATAFILE/inet_star.493.856087357
channel ORA_DISK_1: starting piece 1 at 20-AUG-14

FIGURE 14-5. Configure backup job with EM Cloud Control

14-ch14.indd 504 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 505

channel ORA_DISK_1: finished piece 1 at 20-AUG-14
piece handle=+RECOV/CDB01/00FF6323468C3972E053E3A0080AAFD5/
BACKUPSET/2014_08_20/nnndf0_tag20140820t100445_0.751.856087487
tag=TAG20140820T100445 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
Finished backup at 20-AUG-14

Starting Control File and SPFILE Autobackup at 20-AUG-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_08_20/s_856087488.750.856087489
comment=NONE
Finished Control File and SPFILE Autobackup at 20-AUG-14

RMAN>

Since the dw database is a PDB within the CDB01 container (a feature new to Oracle
Database 12c; see Chapter 11), you must qualify the tablespace name with the PDB name,
even if there is only one PDB with a tablespace with that name.

FIGURE 14-6. Display backupset information with EM Cloud Control

14-ch14.indd 505 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

506 Oracle Database 12c DBA Handbook

In Figure 14-7, you can see the new RMAN backup record in the repository
(TAG20140820T100448)—a combined backupset for the tablespace and the control file/SPFILE
autobackup.

Datafile Backups
Backing up individual datafiles is as easy as backing up a tablespace. If it’s impractical to back up
an entire tablespace within an RMAN session, you can back up individual datafiles within a
tablespace over a period of days, and the archived redo log files will take care of the rest during a
recovery operation. Here is an example of a datafile backup of a single datafile within a non-ASM
tablespace:

RMAN> backup as backupset datafile
2> '/u04/oradata/ord/oe_trans_06.dbf';

Image Copy Backups
Up until this point, we have been using backupset backups; in contrast, image copies make bit-
for-bit copies of the specified tablespace or entire database. There are a couple of distinct
advantages for using RMAN to perform image copy backups: First, the backup is automatically

FIGURE 14-7. Tablespace backup files in EM Cloud Control

14-ch14.indd 506 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 507

recorded in the RMAN repository. Second, all blocks are checked for corruption as they are read
and copied to the backup destination. Another side benefit to making image copies is that the
copies can be used “as is” outside of RMAN if, for some reason, a recovery operation must occur
outside of RMAN.

In the example that follows, we make another backup of the INET_STAR tablespace, this time
as an image copy:

RMAN> backup as copy tablespace dw:inet_star;
Starting backup at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
channel ORA_DISK_1: starting datafile copy
input datafile file number=00218 name=+DATA/CDB01/00FF6323468C3972E053E3A0080A
AFD5/DATAFILE/inet_star.493.856087357
output file name=+RECOV/CDB01/00FF6323468C3972E053E3A0080AAFD5/DATAFILE/inet_
star.749.856087951 tag=TAG20140820T101231 RECID=3 STAMP=856087951
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:01
Finished backup at 20-AUG-14

Starting Control File and SPFILE Autobackup at 20-AUG-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_08_20/s_856087953.748.856087953
comment=NONE
Finished Control File and SPFILE Autobackup at 20-AUG-14
RMAN>

Image copies can only be created on DISK device types. In Figure 14-8, we perform an image
copy of the root container’s USERS tablespace with EM Cloud Control.

Because we had earlier configured the default backup type to COMPRESSED BACKUPSET,
we overrode the default value in an earlier setup screen for this backup.

Control File, SPFILE Backup
To back up the control file and SPFILE manually, use the following RMAN command:

RMAN> backup current controlfile spfile;
Starting backup at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=10 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=268 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=522 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=776 device type=DISK
channel ORA_DISK_1: starting datafile copy
copying current control file
channel ORA_DISK_2: starting full datafile backup set
channel ORA_DISK_2: specifying datafile(s) in backup set
including current SPFILE in backup set

14-ch14.indd 507 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

508 Oracle Database 12c DBA Handbook

channel ORA_DISK_2: starting piece 1 at 20-AUG-14
output file name=+RECOV/CDB01/CONTROLFILE/backup.747.856089293
tag=TAG20140820T103452 RECID=4 STAMP=856089292
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:01
channel ORA_DISK_2: finished piece 1 at 20-AUG-14
piece handle=+RECOV/CDB01/BACKUPSET/2014_08_20/nnsnf0_tag2014082
0t103452_0.746.856089293 tag=TAG20140820T103452 comment=NONE
channel ORA_DISK_2: backup set complete, elapsed time: 00:00:01
Finished backup at 20-AUG-14

Starting Control File and SPFILE Autobackup at 20-AUG-14
piece handle=+RECOV/CDB01/AUTOBACKUP/2014_08_20/s_856089294.745.856089295
comment=NONE
Finished Control File and SPFILE Autobackup at 20-AUG-14

RMAN>

FIGURE 14-8. Image copy backup of a tablespace using EM Cloud Control

14-ch14.indd 508 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 509

Note that because we already had AUTOBACKUP set to ON, we actually performed two
backups of the control file and the SPFILE. The second backup of the control file, however, has a
record of the first control file and SPFILE backup.

Archived Redo Log Backup
Even when archived redo logs are sent to multiple destinations, including the fast recovery area,
due to the critical nature of the archived redo logs, we want to back up copies of the logs to tape
or another disk destination. Once the backup is completed, we have the option to leave the logs
in place, to delete only the logs that RMAN used for the backup, or to delete all copies of the
archived logs that were backed up to tape.

In the following example, we back up all the archived log files in the fast recovery area and
then remove them from disk:

RMAN> backup device type sbt archivelog all delete input;

If archived log files are being sent to multiple locations, then only one set of the archived redo
log files is deleted. If we want all copies to be deleted, we use DELETE ALL INPUT instead of
DELETE INPUT. As of Oracle Database 11g, corrupt or missing archived log files do not prevent a
successful RMAN backup of the archived logs as in previous releases; as long as one of the
archive log file destinations has a valid log file for a given log sequence number, the backup is
successful.

Backing up and deleting only older archived redo log files can be accomplished by specifying
a date range in the BACKUP ARCHIVELOG command:

RMAN> backup device type sbt
2> archivelog from time 'sysdate-30' until time 'sysdate-7'
3> delete all input;

In the preceding example, all archived redo logs older than one week, going back for three
weeks, are copied to tape and deleted from disk. In addition, you can specify a range using SCNs
or log sequence numbers.

Incremental Backups
An alternative strategy to relying on full backups with archived redo logs is to use incremental
backups along with archived redo logs for recovery. The initial incremental backup is known as a
level 0 incremental backup. Each incremental backup after the initial incremental backup (also
known as a level 1 incremental backup) contains only changed blocks and as a result takes less
time and space. Incremental level 1 backups can either be cumulative or differential. A cumulative
backup records all changed blocks since the initial incremental backup; a differential backup
records all changed blocks since the last incremental backup, whether it was a level 0 or a level 1
incremental backup.

When a number of different types of backups exist in the catalog, such as image copies,
tablespace backupsets, and incremental backups, RMAN will choose the best combination of
backups to most efficiently recover and restore the database. The DBA still has the option to
prevent RMAN from using a particular backup (for example, if the DBA thinks that a particular
backup is corrupt and will be rejected by RMAN during the recovery operation).

The decision whether to use cumulative or differential backups is based partly on where you
want to spend the CPU cycles, and how much disk space you have available. Using cumulative

14-ch14.indd 509 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

510 Oracle Database 12c DBA Handbook

backups means that each incremental backup will become progressively larger and take longer
until another level 0 incremental backup is performed, but during a restore and recovery
operation, only two backupsets will be required. On the other hand, differential backups only
record the changes since the last backup, so each backupset might be smaller or larger than the
previous one, with no overlap in data blocks backed up. However, a restore and recovery
operation may take longer if you have to restore from several backupsets instead of just two.

Following our example with the dw database, we have changed the retention policy to a
window of eight days. Therefore, we will likely need to perform a backup to satisfy that policy:

RMAN> report need backup;

RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 8 days
Report of files whose recovery needs more than 8 days of archived logs

File #bkps Name
---- ----- ---
5 1 +DATA/CDB01/DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/
system.277.845194085
7 1 +DATA/CDB01/DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/
sysaux.276.845194085
34 1
. . .
216 1 +DATA/CDB01/00FF6323468C3972E053E3A0080AAFD5/DATAFILE/
system.490.856007869
217 1 +DATA/CDB01/00FF6323468C3972E053E3A0080AAFD5/DATAFILE/
sysaux.491.856007871

RMAN>

To remedy this situation, we can do another full backup, or we can pursue an incremental
backup policy, which might be easier to implement and maintain. To set up our incremental
policy, we need to perform a level 0 incremental backup first:

RMAN> backup incremental level 0
2> as compressed backupset database;

Starting backup at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=10 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=268 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=522 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=776 device type=DISK
. . .
Finished backup at 20-AUG-14

Starting Control File and SPFILE Autobackup at 20-AUG-14

14-ch14.indd 510 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 511

piece handle=+RECOV/CDB01/AUTOBACKUP/2014_08_20/s_856090305.314.856090305
comment=NONE
Finished Control File and SPFILE Autobackup at 20-AUG-14

RMAN>

At any point in the future after this level 0 backup, we can perform an incremental level 1
differential backup:

RMAN> backup as compressed backupset
2> incremental level 1 database;

The default incremental backup type is differential; the keyword DIFFERENTIAL is neither
needed nor allowed. However, to perform a cumulative backup, we add the CUMULATIVE
keyword:

RMAN> backup as compressed backupset
2> incremental level 1 cumulative database;

How much database activity is performed may also dictate whether you use cumulative or
differential backups. In an OLTP environment with heavy insert and update activity, incremental
backups may be more manageable in terms of disk space usage. For a data warehouse environment
with infrequent changes, a differential backup policy may be more suitable. Compared to using
redo log files, both types of incremental backups are far superior in terms of the time to recover a
database. In any case, we have addressed RMAN’s retention policy:

RMAN> report need backup;
RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 8 days
Report of files that must be backed up to satisfy 8 days recovery window
File Days Name
---- ----- ---

RMAN>

Incrementally Updated Backups
An incrementally updated backup can potentially make a restore and recovery operation even
more efficient by rolling the changes from a level 1 incremental backup to a level 0 incremental
image backup. If the incrementally updated backup is run on a daily basis, then any recovery
operation would require at most the updated image copy, one incremental level 1 backup, and
the most recent archived and online redo logs. The following example uses an RMAN script that
can be scheduled to run at the same time every day to support an incrementally updated backup
strategy:

run
{
 recover copy of database with tag 'incr_upd_img';
 backup incremental level 1
 for recover of copy with tag 'incr_upd_img' database;
}

14-ch14.indd 511 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

512 Oracle Database 12c DBA Handbook

The key part of both commands within the RUN script is the RECOVER COPY clause. Rather
than doing a recovery of the actual database datafiles, we are recovering a copy of a database
datafile by applying incremental backups. Using a tag with an RMAN backup allows us to apply
the incremental backup to the correct image copy. Tags allow DBAs to easily refer to a specific
backup for recovery or catalog cleanup operations; if the BACKUP command does not provide a
tag, one is automatically generated for the backupset and is unique within the backupsets for the
target database.

The basics of standard recovery operations and RMAN scripting capabilities are covered later
in this chapter.

The EM Cloud Control backup wizards make it easy to automate an incrementally updated
backup strategy. In the figures that follow, we’ll cover the steps needed to configure this strategy
within EM Cloud Control.

In Figure 14-9, we’re specifying the strategy for backing up our database.
The database is open, ARCHIVELOG mode is enabled, and backups will follow the Oracle-

suggested guidelines for a backup strategy. Figure 14-10 shows the next step in the backup
configuration process: a summary of the database name, the selected strategy, where the backups
will be sent, the recovery catalog in use, and a brief explanation as to how the backup will be
performed.

In Figure 14-11, we specify when the backups will start, and what time of day they will run.
Although the backup job can run any time during the day, because we are performing a hot
backup (the database is open and users can process transactions), we want to minimize the

FIGURE 14-9. EM Cloud Control backup strategy selection

14-ch14.indd 512 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 513

possible impact on query and DML response time by scheduling the job during a time period
with low activity.

Figure 14-12 gives us one more chance to review how the backup will be performed and
where it will reside.

At the bottom of the browser window is the actual RMAN script that will be scheduled to run
on a daily basis (see Figure 14-12). Coincidentally, it strongly resembles the RMAN script we
presented earlier in this section.

Incremental Backup Block Change Tracking
Another way to improve the performance of incremental backups is to enable block change
tracking. For a traditional incremental backup, RMAN must inspect every block of the tablespace
or datafile to be backed up to see if the block has changed since the last backup. For a very large
database, the time it takes to scan the blocks in the database can easily exceed the time it takes to
perform the actual backup.

FIGURE 14-10. EM Cloud Control backup setup summary

14-ch14.indd 513 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

514 Oracle Database 12c DBA Handbook

By enabling block change tracking, RMAN knows which blocks have changed by using a
change tracking file. Although there is some slight overhead in space usage and maintenance of
the tracking file every time a block is changed, the tradeoff is well worth it if frequent incremental
backups are performed on the database. In the following example, we create a block change
tracking file in the DATA disk group and enable block change tracking:

RMAN> alter database enable block change tracking using file '+data';
Statement processed
RMAN>

The next time a backup is performed, RMAN will only have to use the contents of an OMF-
named file in the DW/CHANGETRACKING directory of the DATA disk group to determine which
blocks need to be backed up. The space needed for the block change tracking file is approximately
1/250,000 the size of the database.

FIGURE 14-11. EM Cloud Control backup schedule

14-ch14.indd 514 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 515

The dynamic performance view V$BLOCK_CHANGE_TRACKING contains the name and size
of the block change tracking file as well as whether change tracking is enabled:

SQL> select filename, status, bytes from v$block_change_tracking;

FILENAME STATUS BYTES
--- ---------- ----------
+DATA/ CDB01/CHANGETRACKING/ctf.494.856091195 ENABLED 11599872
SQL>

Using a Fast Recovery Area
Earlier in this chapter, we covered the initialization parameters required to set up the fast recovery
area: DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE. Both of these parameters
are dynamic, allowing the DBA to change either the RMAN destination for backups or the amount
of space allowed for backups in the fast recovery area without restarting the instance.

FIGURE 14-12. EM Cloud Control backup summary

14-ch14.indd 515 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

516 Oracle Database 12c DBA Handbook

To facilitate a completely disk-based recovery scenario, the fast recovery area should be big
enough for a copy of all datafiles, incremental backup files, online redo logs, archived redo logs
not on tape, control file autobackups, and SPFILE backups. Using a larger or smaller recovery
window or adjusting the redundancy policy will require an adjustment in the size of the fast
recovery area. If the fast recovery area is limited in size due to disk space constraints, at a minimum
there should be enough room to hold the archived log files that have not yet been copied to tape.
The dynamic performance view V$RECOVERY_FILE_DEST displays information about the number
of files in the fast recovery area, how much space is currently being used, and the total amount of
space available in the fast recovery area.

The fast recovery area automatically uses OMF. As part of the simplified management
structure introduced in Oracle Database 11g, you do not need to explicitly set any of the LOG_
ARCHIVE_DEST_n initialization parameters if you only need one location for archived redo log
files; if the database is in ARCHIVELOG mode, and a fast recovery area is defined, then the
initialization parameter LOG_ARCHIVE_DEST_10 is implicitly defined as the fast recovery area.

As you have seen in many previous examples, RMAN uses the fast recovery area in a very
organized fashion with separate directories for archived logs, backupsets, image copies, block
change tracking files, and automatic backups of the control file and SPFILE. In addition, each
subdirectory is further subdivided by a datestamp, making it easy to find a backupset or image
copy when the need arises.

Multiple databases can share the same fast recovery area, even a primary and a standby
database. Even with the same DB_NAME, as long as the DB_UNIQUE_NAME parameter is
different, there will not be any conflicts. RMAN uses the DB_UNIQUE_NAME to distinguish
backups between databases that use the same fast recovery area.

Validating Backups
Having multiple image backups or enough archived redo log files to support a recovery window
is of less value if there are problems with the live database files or control files. The RMAN
command BACKUP VALIDATE DATABASE will simulate a backup, checking for the existence of
the specified files, ensuring that they are not corrupted. No backup files are created. This
command would be useful in a scenario where you can check for problems with the database or
archived redo logs proactively, giving you an opportunity to fix problems before the actual backup
operation or for scheduling additional time overnight to repair problems found during the day.

In the following example, we will validate the entire database along with the archived redo
logs after some logs are accidentally deleted:

[oracle@tettnang ~]$ asmcmd
ASMCMD> ls
DATA/
RECOV/
ASMCMD> cd recov
ASMCMD> ls
CDB01/
HR/
ASMCMD> cd cdb01
ASMCMD> ls
00FF6323468C3972E053E3A0080AAFD5/
ARCHIVELOG/

14-ch14.indd 516 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 517

AUTOBACKUP/
BACKUPSET/
CONTROLFILE/
F751D8C27D475B57E043E3A0080A2A47/
F754FCD8744A55AAE043E3A0080A3B17/
FA782A61F8447D03E043E3A0080A9E54/
FA787E0038B26FFBE043E3A0080A1A75/
FB03AEEBB6F60995E043E3A0080AEE85/
FBA928F391D2217DE043E3A0080AB287/
FC9588B12BBD413FE043E3A0080A5528/
ONLINELOG/
ASMCMD> cd backupset
ASMCMD> ls
2014_06_04/
2014_08_20/
ASMCMD> cd 2014_06_04
ASMCMD> ls
nnndf0_TAG20140604T073433_0.298.849339275
nnndf0_TAG20140604T073433_0.300.849339275
nnndf0_TAG20140604T073433_0.302.849339275
ASMCMD> rm *275
You may delete multiple files and/or directories.
Are you sure? (y/n) y
ASMCMD>
. . .
RMAN> backup validate database archivelog all;

Starting backup at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=10 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=4 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=268 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=522 device type=DISK
. . .
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of backup command at 08/20/2014 11:14:30
RMAN-06059: expected archived log not found, loss of archived log compromises
recoverability
ORA-19625: error identifying file +RECOV/CDB01/ARCHIVELOG/2014_06_28/thread_1_
seq_494.780.851385617
ORA-17503: ksfdopn:2 Failed to open file +RECOV/CDB01/ARCHIVELOG/2014_06_28/
thread_1_seq_494.780.851385617
ORA-15012: ASM file '+RECOV/CDB01/ARCHIVELOG/2014_06_28/thread_1_
seq_494.780.851385617' does not exist
RMAN>

14-ch14.indd 517 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

518 Oracle Database 12c DBA Handbook

The BACKUP VALIDATE command has identified an archived redo log file that is no longer in
the fast recovery area. It may have been archived to tape outside of RMAN, or it may have been
inadvertently deleted (in this case, it appears that the log file was intentionally deleted). Looking
at the datestamp of the log file, we see that it is outside of our recovery window of four days, so it
is not a critical file in terms of recoverability.

Synchronizing the fast recovery area and the catalog with the CROSSCHECK command is
covered later in this chapter; once we have fixed the cross-reference problem we have just
discovered, we can perform the rest of the validation:

RMAN> backup validate database archivelog all;

Starting backup at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00003 name=+DATA/CDB01/DATAFILE/
sysaux.267.845193957
channel ORA_DISK_2: starting compressed full datafile backup set
channel ORA_DISK_2: specifying datafile(s) in backup set
input datafile file number=00042 name=+DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/DATAFILE/epicstagelarge.296.849782391
input datafile file number=00036 name=+DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/DATAFILE/epicstagemedium.266.849459763
input datafile file number=00057 name=+DATA/CDB01/
F754FCD8744A55AAE043E3A0080A3B17/DATAFILE/epicsmall.318.850144911. . .
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
218 OK 0 12673 12800 13871102
 File Name: +DATA/CDB01/00FF6323468C3972E053E3A0080AAFD5/DATAFILE/inet_
star.493.856087357
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 127

Finished backup at 20-AUG-14

RMAN>

No errors were found during the validation; RMAN read every block of every archived redo
log file and datafile to ensure that they were readable and had no corrupted blocks. However,
no backups were actually written to a disk or tape channel.

14-ch14.indd 518 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 519

Recovery Operations
Every good backup plan includes a disaster recovery plan so that we can retrieve the datafiles and
logs from the backups and recover the database files. In this section, we’ll review several different
aspects of RMAN recovery operations.

RMAN can perform restore and recovery operations at various levels of granularity, and most
of these operations can be performed while the database is open and available to users. We can
recover individual blocks, tablespaces, datafiles, or even an entire database. In addition, RMAN
has various methods of validating a restore operation without performing an actual recovery on
the database datafiles.

Block Media Recovery
When there are only a small handful of blocks to recover in a database, RMAN can perform block
media recovery rather than a full datafile recovery. Block media recovery minimizes redo log
application time, and it drastically reduces the amount of I/O required to recover only the block
or blocks in question. While block media recovery is in progress, the affected datafiles can remain
online and available to users.

NOTE
Block media recovery is only available from within the RMAN
application.

There are a number of ways in which block corruption is detected. During a read or write
operation from an INSERT or SELECT statement, Oracle may detect a block is corrupt, write an
error in a user trace file, and abort the transaction. An RMAN BACKUP or BACKUP VALIDATE
command can record corrupted blocks in the dynamic performance view V$DATABASE_BLOCK_
CORRUPTION. In addition, the SQL commands ANALYZE TABLE and ANALYZE INDEX could
uncover corrupted blocks.

To recover one or more data blocks, RMAN must know the datafile number and block number
within the datafile. This information is available in a user trace file, as in the following example:

ORA-01578: ORACLE data block corrupted (file # 6, block # 403)
ORA-01110: data file 6: '/u09/oradata/ord/oe_trans01.dbf'

Alternatively, the block may appear in the view V$DATABASE_BLOCK_CORRUPTION after
an RMAN BACKUP command; the columns FILE# and BLOCK# provide the information needed
to execute the RECOVER command. The column CORRUPTION_TYPE identifies the type of
corruption in the block, such as FRACTURED, CHECKSUM, or CORRUPT. Fixing the block is
easily accomplished in RMAN:

RMAN> recover datafile 6 block 403;

Starting recover at 04-SEP-14
using channel ORA_DISK_1

starting media recovery
media recovery complete, elapsed time: 00:00:01

14-ch14.indd 519 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

520 Oracle Database 12c DBA Handbook

Finished recover at 04-SEP-14

RMAN>

A corrupted block must be restored completely; in other words, all redo operations up to the
latest SCN against the data block must be applied before the block can be considered usable
again.

NOTE
The BLOCKRECOVER command, available in previous releases of
RMAN, has been deprecated as of Oracle Database 11g in favor of
the RECOVER command; the syntax of the command is otherwise the
same.

Restoring a Control File
In the rare event that you lose all copies of your control file, it is easy to restore the control file
when a recovery catalog is used; start the instance with NOMOUNT (since we don’t have a
control file to read with MOUNT) and issue the following RMAN command:

RMAN> restore controlfile;

If you are not using a recovery catalog, you can add the FROM '<FILENAME>' clause to the
command to specify where the latest control file exists:

RMAN> restore controlfile from '/u11/oradata/ord/bkup.ctl';

After restoring the control files, you must perform complete media recovery of your database
and open the database with the RESETLOGS option. Complete media recovery can be performed
using RMAN or the methods described in Chapter 13.

Restoring a Tablespace
If the disk containing the datafiles for a tablespace fails or becomes corrupted, recovery of the
tablespace is possible while the database remains open and available. The exception to this is the
SYSTEM tablespace. In our dw database, suppose the disk containing the datafiles for the root
container’s USERS2 tablespace has crashed. After the first phone call from the users (which
happened even before EM Cloud Control notified us of the error), we can check the dynamic
performance view V$DATAFILE_HEADER to see which datafiles need recovery:

SQL> select file#, status, error, tablespace_name, name
 2 from v$datafile_header
 3 where error is not null;

 FILE# STATUS ERROR TABLESPACE_NAME NAME
---------- ------- ---------------- ------------------------- ----------------
 219 OFFLINE OFFLINE NORMAL

SQL>

14-ch14.indd 520 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 521

Incidentally, you would have also seen this error when trying to bring the USERS2 tablespace
back online:

SQL> alter tablespace users2 online;
alter tablespace users2 online
*
ERROR at line 1:
ORA-01157: cannot identify/lock data file 219 - see DBWR trace file
ORA-01110: data file 219: '+DATA/CDB01/DATAFILE/users2.495.856093073'

After replacing the disk drive, you can use also the REPORT SCHEMA command to find
the tablespace associated with file number 219. To restore and recover the tablespace, we force
the tablespace offline, restore and recover the tablespace, and bring it back online. If the
USERS2 tablespace was not already offline, you can do that within RMAN before recovering it:

RMAN> alter tablespace users2 offline immediate;

Statement processed
RMAN> restore tablespace users2;

Starting restore at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=10 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1280 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=14 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=522 device type=DISK
. . .
channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00219 to +DATA/CDB01/DATAFILE/
users2.495.856093073
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
BACKUPSET/2014_08_20/nnndf0_tag20140820t113833_0.302.856093115
channel ORA_DISK_1: piece handle=+RECOV/CDB01/BACKUPSET/2014_08_20/nnndf0_tag2
0140820t113833_0.302.856093115 tag=TAG20140820T113833
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:24
Finished restore at 20-AUG-14
starting full resync of recovery catalog
full resync complete
RMAN> recover tablespace users2;

Starting recover at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

14-ch14.indd 521 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

522 Oracle Database 12c DBA Handbook

starting media recovery
media recovery complete, elapsed time: 00:00:00

Finished recover at 20-AUG-14

RMAN> alter tablespace users2 online;
Statement processed
starting full resync of recovery catalog
full resync complete

RMAN>

The RESTORE command copied the latest image or backupset copy of the datafiles in the
USERS tablespace to their original locations; the RECOVER command applied redo from either
redo log files or incremental backups to bring the objects in the tablespace back up to the latest
SCN. Once the tablespace is back online, it is available for use again, without the loss of any
committed transactions to tables in the tablespace.

Restoring a Table
As of Oracle Database 12c, you can use an RMAN backup to recover a single table. This method
fills the gap between the tablespace point in time recovery (TSPITR) method (which is time
consuming and must involve the DBA) and methods that are available to a database user such as
Flashback Table using the UNDO tablespace and possibly a Flashback Data Archive. Because the
logical corruption of a table may have been discovered long after the UNDO data has expired
and been purged from the UNDO tablespace, recovering a single table from an RMAN backup
fills the gap between a full TSPITR and a Flashback Table or Flashback Drop operation.

Scenarios for Table Recovery from Backups
In addition to the time it takes to recover an entire tablespace versus a single table from a tablespace
backup, there are several other reasons why you would use table recovery from backups (TRFB)
instead of other Flashback methods.

Using TSPITR may be a reasonable option if you have many tables in a tablespace that you
need to recover, but what if the tablespace is not self-contained? In that scenario, you will have to
recover more than one tablespace, which makes TSPITR less attractive.

You may often rely on Flashback Drop to get back a table that might have been dropped even
weeks ago, but space pressure may have already purged it or the table may have been dropped
while the recycle bin was turned off.

Finally, even if your UNDO tablespace and retention period is long, there may have been a
recent structural change to the table, which will prevent any Flashback operation using the UNDO
tablespace.

Prerequisites and Limitations for Table Recovery from Backups
In addition to the limitations mentioned in the previous section, there are several other conditions
that must be met to perform TRFB:

 ■ The database must be in read-write mode.

 ■ The database must be in ARCHIVELOG mode.

 ■ COMPATIBLE must be set to 12.0 or higher.

14-ch14.indd 522 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 523

 ■ You cannot recover tables or table partitions from the SYS schema.

 ■ You cannot recover objects from the SYSTEM or SYSAUX tablespace.

 ■ Objects cannot be recovered to standby databases.

Using Table Recovery from Backups
Using TRFB is quite similar to TSPITR in many ways. In fact, you could argue that TRFB is more of
an RMAN recovery method than a tool in your Flashback toolkit. The key is the scope of the objects
that you are recovering or rewinding to a previous point in time or SCN.

Figure 14-13 shows the general steps and flow of the recovery operation.
Here are the steps you use in RMAN to recover a single table using TRFB:

1. Specify the RMAN parameters for the TRFB operation:

a. Names of tables or table partitions to recover

b. Point in time at which the objects need to be recovered to (timestamp or SCN)

c. Whether the recovered objects must be imported into the target database

2. RMAN determines which backups will be used for the operation.

3. RMAN creates a temporary auxiliary instance.

4. RMAN recovers the table or tables into a tablespace available to this auxiliary instance.

5. RMAN creates a Data Pump Export dump file with the recovered objects.

6. If specified, RMAN will use Data Pump Import to copy the objects into the target database.

FIGURE 14-13. Process flow for table recovery from backups

Target Database

COMPATIBLE=12.0 (or
greater)
ARCHIVELOG mode
READ WRITE open mode

Prerequisites OK

Name?
Time?
Import?

Backup Data Auxiliary Instance

Dump File

Tablespace
pace
pace

Tablespace
pace
pace

14-ch14.indd 523 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

524 Oracle Database 12c DBA Handbook

As you may have noticed, this operation is somewhat automated compared to TSPITR, especially
in versions of Oracle Database before 12c. This operation still must be performed by a DBA, however.

Restoring a Datafile
Restoring a datafile is a very similar operation to restoring a tablespace. Once the missing or
corrupted datafile is identified using the V$DATAFILE_HEADER view, the RMAN commands are
very similar to the previous example in the “Restoring a Tablespace” section; the tablespace is
taken offline, the datafile(s) are restored and recovered, and the tablespace is brought back online.
If only file number 7 was lost, the RECOVER and RESTORE commands are as simple as this:

RMAN> restore datafile 7;
RMAN> recover datafile 7;

Restoring an Entire Database
Although the loss of an entire database is a serious and disastrous event, having a solid backup
and recovery policy, as described previously in this chapter, can bring the database back up to the
most recent committed transaction with a minimum of effort. In the following scenario, we have
lost all datafiles. However, because we have multiplexed the control file and online redo log files
on many different disks, we will have them available during the RMAN restore and recovery
operation. Alternatively, you can restore the control files or copy the online redo log files to the
other destinations before mounting the database. If this is not feasible because the alternate disk
locations are not available, you can alter your parameter file or SPFILE to indicate which files are
still available.

The entire restore and recovery operation can be performed within RMAN; first, we start up
RMAN and open the database in MOUNT mode, just as if we used the STARTUP MOUNT
command at a SQL*Plus prompt:

[oracle@tettnang ~]$ rman target / catalog rman/rman@kthanid/rman_rep

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Aug 20 11:58:15 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database (not started)
connected to recovery catalog database

RMAN> startup mount

Oracle instance started
database mounted

Total System Global Area 5027385344 bytes

Fixed Size 2691952 bytes
Variable Size 3338669200 bytes
Database Buffers 1677721600 bytes
Redo Buffers 8302592 bytes
starting full resync of recovery catalog

14-ch14.indd 524 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 525

full resync complete
RMAN> restore database;
Starting restore at 20-AUG-14
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=1022 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1275 device type=DISK
allocated channel: ORA_DISK_3
. . .
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:01:50
Finished restore at 20-AUG-14
RMAN> recover database;
Starting recover at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
. . .
starting media recovery
media recovery complete, elapsed time: 00:00:03

Finished recover at 20-AUG-14
RMAN> alter database open;
database opened
RMAN>

The database is now open and available for use. RMAN will pick the most efficient way to
perform the requested operation, minimizing the number of files accessed or the number of disk
I/Os to bring the database back to a consistent state in as short a time as possible. In the previous
example, RMAN used a full database backupset and archived redo log files to recover the database.

During a recovery operation, RMAN may need to restore archived redo logs from tape; to
limit the amount of disk space used during a recovery operation, the RECOVER command used in
the previous example could use the following options instead:

RMAN> recover database delete archivelog maxsize 2gb;

The parameter DELETE ARCHIVELOG directs RMAN to remove archived log files from disk
that were restored from tape for this recovery option; the MAXSIZE 2GB parameter restricts the
amount of space that can be occupied by restored archived log files at any point in time to 2GB.
In our dw database, these two parameters are not needed; all archived log files needed to recover
the database are kept in the fast recovery area on disk to support the defined retention policy.

Validating Restore Operations
Earlier in this chapter, we validated the data blocks in the datafiles that we want to back up. In
this section, we’ll take the opposite approach and instead validate the backups that we have
already made. We’ll also find out from RMAN which backupsets, image copies, and archived
redo logs would be used in a recovery operation without actually performing the recovery.

14-ch14.indd 525 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

526 Oracle Database 12c DBA Handbook

RESTORE PREVIEW
The command RESTORE PREVIEW will provide a list of the files that RMAN will use to perform
the requested operation; the preview will also indicate if a tape volume will be requested, for
example. No files are actually restored; only the recovery catalog is queried to determine which
files are needed. In the following example, we want to find out what RMAN will need if we need
to recover the USERS tablespace:

RMAN> restore tablespace users preview;
Starting restore at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
2583 Incr 0 1.48M DISK 00:00:00 20-AUG-14
 BP Key: 2613 Status: AVAILABLE Compressed: YES Tag:
TAG20140820T104812
 Piece Name: +RECOV/CDB01/BACKUPSET/2014_08_20/nnndn0_tag2014082
0t104812_0.737.856090217
 List of Datafiles in backup set 2583
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 6 0 Incr 13878805 20-AUG-14 +DATA/CDB01/DATAFILE/users.269.845194049

List of Archived Log Copies for database with db_unique_name CDB01
===

Key Thrd Seq S Low Time
------- ---- ------- - ---------
2981 1 1484 A 20-AUG-14
 Name: +RECOV/CDB01/ARCHIVELOG/2014_08_20/thread_1_
seq_1484.318.856090843
Media recovery start SCN is 13878805
Recovery must be done beyond SCN 13878805 to clear datafile fuzziness
Finished restore at 20-AUG-14
RMAN>

For the restore operation, RMAN will need to use one backupset for the single datafile in the
tablespace; archived redo log files will be used to bring the tablespace up to the current SCN.

If a restore operation needs to be performed immediately, and one of the files that RMAN will
request to perform the operation is offsite, you can use the CHANGE . . . UNAVAILABLE
command to mark a backupset as unavailable and then run the RESTORE TABLESPACE . . .
PREVIEW command again to see if RMAN can use disk-based backupsets to fulfill the request.

14-ch14.indd 526 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 527

RESTORE VALIDATE
The RESTORE . . . PREVIEW command does not read the actual backupsets, only the catalog
information; if we want to validate whether the backupsets themselves are readable and not
corrupted, we use the RESTORE . . . VALIDATE command. As with most other RMAN commands,
we can perform the validation for a datafile, a tablespace, or the entire database. In the following
example, we’ll perform a validation on the same backupsets that RMAN reported in the previous
example for the USERS tablespace:

RMAN> restore tablespace users validate;
Starting restore at 20-AUG-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
BACKUPSET/2014_08_20/nnndn0_tag20140820t104812_0.737.856090217
channel ORA_DISK_1: piece handle=+RECOV/CDB01/BACKUPSET/2014_08_20/nnndn0_tag2
0140820t104812_0.737.856090217 tag=TAG20140820T104812
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:00:01
Finished restore at 20-AUG-14
RMAN>

All blocks of the backupsets were read to ensure that they are usable for a restore operation
for the USERS tablespace.

Point-in-Time Recovery
RMAN can be used to implement point-in-time recovery, or restoring and recovering a database
up to a timestamp or SCN before the point at which a database failure occurred. As you found out
in Chapter 13, a point-in-time recovery (PITR) may be useful for recovering from a user error
where a table was dropped yesterday but the error was not detected until today. Using PITR, we
can recover the database to a point in time right before the table was dropped.

Using PITR has the disadvantage of losing all other changes to the database from the point at
which the database was restored; this disadvantage needs to be weighed against the consequences
of the dropped table. If both options are undesirable, then another method such as Flashback
Table, Flashback Database, or TSPITR should be considered as an alternative for recovering from
these types of user errors. If you are using Oracle Database 12c, you can also restore and recover
a table using RMAN, as covered earlier in this chapter.

Data Recovery Advisor
The Data Recovery Advisor (DRA), enhanced in Oracle Database 12c, can both proactively and
reactively analyze failures. In both scenarios, it will not automatically fix problems it finds but
instead provide one or more possible fixes and give you the option and the commands to perform
the fix. As of Oracle Database 12c release 1 (12.1.0.2) only non-CDBs and single-instance CDBs
are supported (non-RAC environments).

14-ch14.indd 527 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

528 Oracle Database 12c DBA Handbook

In previous releases of Oracle RMAN, you could perform proactive checks of the database’s
datafiles with the VALIDATE command. In a CDB environment the VALIDATE command has been
enhanced to analyze individual PDBs or the entire CDB.

In this scenario I’ll show you how DRA works in a multitenant environment, which means it
also works the same way for a pre-Oracle Database 12c database or a non-CDB. In the container
database CDB01, the datafiles for the CCREPOS SYSTEM tablespace were lost. You might come to
that conclusion after viewing the alert log or, more likely, after a user submits a help desk ticket
saying they can’t get into the CCREPOS database. You suspect that there might be more failures,
so you start RMAN and use the DRA commands LIST FAILURE, ADVISE FAILURE, and REPAIR
FAILURE to fix one or more issues.

To view and repair any issues with the CDB containing the CCREPOS PDB, start RMAN from
the root container and run the LIST FAILURE DETAIL command:

RMAN> list failure detail;

using target database control file instead of recovery catalog
Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing
 Impact: Database cannot be opened

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1542 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981' is missing
 Impact: Database cannot be opened
RMAN>

It looks like the SYSTEM datafile was lost once already (and recovered) earlier in the day! But
the failure was not cleared from RMAN, so use CHANGE FAILURE to clear the earlier event:

RMAN> change failure 1542 closed;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1542 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849342981' is missing

14-ch14.indd 528 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 529

Do you really want to change the above failures (enter YES or NO)? yes
closed 1 failures

RMAN>

Next, let’s see what RMAN recommends to fix the problem:

RMAN> advise failure 1562;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=774 device type=DISK
allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=1028 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1276 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=10 device type=DISK
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file +DATA/CDB01/FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/
system.258.849343395 was unintentionally renamed or moved, restore it
2. Automatic repairs may be available if you shut down the database and
restart it in mount mode

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 30
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /u01/app/oracle/diag/rdbms/cdb01/cdb01/hm/reco_461168804.hm

RMAN>

14-ch14.indd 529 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

530 Oracle Database 12c DBA Handbook

The repair script generated by RMAN is as follows:

 # restore and recover datafile
 sql 'CCREPOS' 'alter database datafile 30 offline';
 restore (datafile 30);
 recover datafile 30;
 sql 'CCREPOS' 'alter database datafile 30 online';

The script is generated to run as is in RMAN. Knowing that the CCREPOS PDB is closed,
however, means that we can skip the first and last commands and just run the RESTORE and
RECOVER commands:

RMAN> restore (datafile 30);

Starting restore at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00030 to +DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395
channel ORA_DISK_1: reading from backup piece +RECOV/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/BACKUPSET/2014_06_04/nnndf0_tag2014060
4t084003_0.316.849343205
channel ORA_DISK_1: piece handle=+RECOV/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/BACKUPSET/2014_06_04/nnndf0_tag2014060
4t084003_0.316.849343205 tag=TAG20140604T084003
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:07
Finished restore at 04-JUN-14

RMAN> recover datafile 30;

Starting recover at 04-JUN-14
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4

starting media recovery
media recovery complete, elapsed time: 00:00:01

Finished recover at 04-JUN-14

RMAN>

14-ch14.indd 530 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 531

Finally, open the PDB and see if all is well:

RMAN> alter pluggable database ccrepos open;
Statement processed
RMAN>

Since CCREPOS starts fine now, you can clear the failure in RMAN:

RMAN> change failure 1562 closed;

Database Role: PRIMARY

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1562 CRITICAL OPEN 04-JUN-14 System datafile 30: '+DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/DATAFILE/system.258.849343395' is missing

Do you really want to change the above failures (enter YES or NO)? yes
closed 1 failures

RMAN>

Miscellaneous Operations
The next few sections cover some of the other capabilities of RMAN, beyond the backup, restore,
and recovery operations. I’ll show how to record the existence of other backups made outside of
the database and perform some catalog maintenance. I’ll also give a couple more examples of the
LIST and REPORT commands.

Cataloging Other Backups
On occasion, we want the recovery catalog to include backups made outside of RMAN, such as
image copies made with operating system commands or with the asmcmd command, as in this
example:

ASMCMD> pwd
+data/cdb01/datafile
ASMCMD> ls
SYSAUX.267.845193957
SYSTEM.268.849339613
UNDOTBS1.263.848922747
UNDOTBS1.270.845194049
USERS.269.845194049
USERS2.495.856093717
ASMCMD> cp users.269.845* /u01/image_copy
copying +data/cdb01/datafile/USERS.269.845194049 ->
 /u01/image_copy/USERS.269.845194049
ASMCMD>

14-ch14.indd 531 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

532 Oracle Database 12c DBA Handbook

CAUTION
Image copies created with operating system commands must be
performed either while the database is shut down or by using the
ALTER TABLESPACE . . . BEGIN/END BACKUP commands.

Recording this image copy of the USERS tablespace is easy in RMAN using the CATALOG
command:

[oracle@tettnang u01]$ rman target / catalog rman/rman@kthanid/rman_rep

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Aug 20 12:16:24 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)
connected to recovery catalog database

RMAN> catalog datafilecopy '/u01/image_copy/USERS.269.845194049';

cataloged datafile copy
datafile copy file name=/u01/image_copy/USERS.269.845194049 RECID=5
STAMP=856095390

RMAN>

Now that the image copy is recorded in the RMAN repository, it may be considered for use in
restore and recovery operations for the USERS tablespace.

Catalog Maintenance
Earlier in this chapter, we discussed the use of the BACKUP VALIDATE command to ensure that all
the files that could be used in a backup operation were available, readable, and not corrupted. In
that example, we found out that we had a mismatch between what the catalog reported and the
archived redo logs on disk; some old archived redo logs were inadvertently removed from disk
during a cleanup operation. You can use the CROSSCHECK command to update the recovery
catalog with what archived redo log files are in the fast recovery area and which ones are missing:

[oracle@tettnang u01]$ rman target / catalog rman/rman@kthanid/rman_rep

Recovery Manager: Release 12.1.0.1.0 - Production on Wed Aug 20 12:30:37 2014

Copyright (c) 1982, 2013, Oracle and/or its affiliates. All rights reserved.

connected to target database: CDB01 (DBID=1382179355)
connected to recovery catalog database

RMAN> crosscheck archivelog all;

allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=260 device type=DISK

14-ch14.indd 532 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 533

allocated channel: ORA_DISK_2
channel ORA_DISK_2: SID=6 device type=DISK
allocated channel: ORA_DISK_3
channel ORA_DISK_3: SID=1031 device type=DISK
allocated channel: ORA_DISK_4
channel ORA_DISK_4: SID=522 device type=DISK
validation succeeded for archived log
archived log file name=+RECOV/CDB01/ARCHIVELOG/2014_08_20/thread_1_
seq_1484.318.856090843 RECID=560 STAMP=856090843
. . .
validation failed for archived log
archived log file name=+RECOV/CDB01/ARCHIVELOG/2014_06_29/thread_1_
seq_546.832.851526505 RECID=559 STAMP=851526504
validation failed for archived log
archived log file name=+RECOV/CDB01/ARCHIVELOG/2014_08_20/thread_1_
seq_1485.322.856094699 RECID=561 STAMP=856094699
Crosschecked 54 objects
RMAN>

The missing archived redo logs are now marked as EXPIRED in the catalog, and they won’t be
considered when validating backups or for performing restore or recovery operations.

All other datafiles that RMAN could consider for a backup operation, including archived redo
logs, are available and readable.

REPORT and LIST
All throughout this chapter, I’ve provided a number of examples of how to extract information
from the recovery catalog, whether it resides in the target database control file or in a catalog
database repository. We’ve used both the LIST and REPORT commands. The primary difference
between these commands is in their complexity: The LIST command displays information about
backupsets and image copies in the repository and lists the contents of scripts stored in the
repository catalog:

RMAN> list backup summary;

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
1606 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433
1607 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433
1608 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433
1609 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433
1610 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433
1611 B F A DISK 04-JUN-14 1 1 YES
TAG20140604T073433

14-ch14.indd 533 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

534 Oracle Database 12c DBA Handbook

. . .
3735 B F A DISK 20-AUG-14 1 1 NO
TAG20140820T123711
RMAN>

In contrast, the REPORT command performs a more detailed analysis of the information in
the recovery catalog; as in one of our previous examples, we used REPORT to identify which
database files needed backups to comply with our retention policy. In the following example,
we find out what the datafiles looked like back on August 19, 2014:

RMAN> report schema at time='19-aug-2014';
Report of database schema for database with db_unique_name CDB01
List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 810 SYSTEM YES +DATA/CDB01/DATAFILE/
system.268.849339613
3 2950 SYSAUX NO +DATA/CDB01/DATAFILE/
sysaux.267.845193957
4 900 UNDOTBS1 YES +DATA/CDB01/DATAFILE/
undotbs1.270.845194049
5 250 PDB$SEED:SYSTEM NO +DATA/CDB01/
DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/system.277.845194085
. . .
List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 521 TEMP 32767 +DATA/CDB01/TEMPFILE/
temp.275.845194083
2 20 PDB$SEED:TEMP 32767 +DATA/CDB01/
DD7C48AA5A4404A2E04325AAE80A403C/DATAFILE/pdbseed_temp01.dbf
3 20 CCREPOS:TEMP 32767 +DATA/CDB01/
FB03AEEBB6F60995E043E3A0080AEE85/TEMPFILE/temp.262.849342985
4 20 TOOL:TEMP 32767 . . .
. . .
14 20 HR:TEMP 32767 +DATA/CDB01/
FC9588B12BBD413FE043E3A0080A5528/TEMPFILE/temp.485.851068789
RMAN>

At some point between 8/19/2014 and today, we created the tablespace INET_STAR, as
indicated by its omission from this report.

Summary
If you have not been using RMAN extensively since the release of Oracle Database 11g, you
should be using it almost exclusively in Oracle Database 12c. RMAN can manage all aspects of
physical backup and recovery for your departmental database or for hundreds of databases,
including OLTP and data warehouse databases throughout an enterprise.

14-ch14.indd 534 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 14: Using Recovery Manager (RMAN) 535

The features included with RMAN keep pace with the new features of the database. Backing
up an entire container database or a pluggable database in Oracle 12c is as easy as backing up a
non-CDB database in Oracle 11g. Other new features of RMAN, such as network support of
compressed duplication of a database in parallel over a network to an auxiliary instance, means
you may not need any intermediate RMAN backups on disk to support the duplication process.

Finally, having a recovery catalog makes it easy to recover an entire database even when you
lose all datafiles and control files. If your environment has more than one production database,
then maintaining a recovery catalog is worthwhile.

14-ch14.indd 535 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 536

14-ch14.indd 536 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 537

CHAPTER
15

Oracle Data Guard

15-ch15.indd 537 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

538 Oracle Database 12c DBA Handbook

Oracle Data Guard provides a solution for high availability, enhanced performance, and
automated failover. You can use Oracle Data Guard to create and maintain multiple
standby databases for a primary database. The standby databases can be started in read-

only mode to support reporting users and then returned to standby mode. Changes to the primary
database can be automatically relayed from the primary database to the standby databases with a
guarantee of no data lost in the process. The standby database servers can be physically separate
from the primary server.

In this chapter, you will get an overview on how to administer an Oracle Data Guard
environment, along with sample configuration files for a Data Guard environment.

Data Guard Architecture
In a Data Guard implementation, a database running in ARCHIVELOG mode is designated as the
primary database for an application. One or more standby databases, accessible via Oracle Net,
provide for failover capabilities. Data Guard automatically transmits redo information to the
standby databases, where it is applied. As a result, the standby database is transactionally consistent.
Depending on how you configure the redo apply process, the standby databases may be in sync
with the primary database or may lag behind it. Figure 15-1 shows a standard Data Guard
implementation.

FIGURE 15-1. Simple Data Guard configuration

15-ch15.indd 538 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 539

The redo log data is transferred to the standby databases via Log Transport Services, as defined
via your initialization parameter settings. Log Apply Services apply the redo information to the
standby databases. A third set of services, Global Data Services, simplify the process of making
standby databases serve as the primary database.

NOTE
The primary database can be a single instance or a multi-instance Real
Application Clusters implementation.

Physical vs. Logical Standby Databases
Two types of standby databases are supported: physical standbys and logical standbys. A physical
standby database has the same structures as the primary database. A logical standby database
may have different internal structures (such as additional indexes used for reporting or a different
tablespace layout). You synchronize a logical standby database with the primary by transforming
the redo data into SQL statements that are executed against the standby database.

Physical and logical standby databases serve different purposes. A physical standby database
is a block-for-block copy of the primary database, so it can be used for database backups in place
of the primary database. During disaster recovery, the physical standby looks exactly like the
primary database it replaces.

A logical standby database, because it supports additional database structures, can more
easily be used to support specific reporting requirements that would otherwise burden the
primary database. Additionally, rolling upgrades of primary and standby databases can be
performed with minimal downtime when logical standby databases are used. The type of standby
to use depends on your needs; many environments start out using physical standby databases for
disaster recovery and then add in additional logical standby databases to support specific
reporting and business requirements.

NOTE
The operating system and platform architecture on the primary and
standby locations do not need to be identical as of Oracle Database
11g. The directory structures for the primary and standby databases
may differ, but you should minimize the differences to simplify
administration and failover processes. If the standby is located on
the same server as the primary, you must use a different directory
structure for the two databases, and they cannot share an archive log
directory. In addition, Oracle Data Guard is available only in Oracle
Enterprise Edition. Also, not all cross-platform Data Guard replication
is supported, even in Oracle Database 12c (12.1.0.2). See My Oracle
Support note Data Guard Support for Heterogeneous Primary and
Physical Standbys in Same Data Guard Configuration (ID 413484.1).

Data Protection Modes
When you configure the primary and standby databases, you will need to determine the level of
data loss that is acceptable to the business. In the primary database, you will define its archive log
destination areas, at least one of which will refer to the remote site used by the standby database.
The ASYNC, SYNC, ARCH, LGWR, NOAFFIRM, and AFFIRM attributes of the LOG_ARCHIVE_DEST_n

15-ch15.indd 539 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

540 Oracle Database 12c DBA Handbook

parameter setting (see the upcoming Table 15-1) for the standby database will direct Oracle Data
Guard to select among several modes of operation:

 ■ In maximum protection (or “no data loss”) mode, at least one standby location must be
written to before a transaction commits in the primary database. The primary database
shuts down if the standby database’s log location is unavailable.

 ■ In maximum availability mode, at least one standby location must be written to before a
transaction commits in the primary database. If the standby location is not available, the
primary database does not shut down. When the fault is corrected, the redo that has been
generated since the fault is transported and applied to the standby databases.

 ■ In maximum performance mode (the default), transactions can commit before their redo
information is sent to the standby locations. Commits in the primary database occur as soon as
writes to the local online redo logs complete. The writes to the standby locations are handled
by the ARCn processes by default (up to 30 archiver processes in Oracle Database 12c).

Once you have decided the type of standby and the data protection mode for your configuration,
you can create your standby database.

LOG_ARCHIVE_DEST_n Parameter Attributes
As illustrated in the following sections, Oracle Data Guard configurations rely on a number of
attributes within the LOG_ARCHIVE_DEST_n parameter. Table 15-1 summarizes the attributes
available for this parameter. In almost all cases the attributes are paired; in some cases the second
member of the pair simply serves to nullify the setting.

NOTE
LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST are
deprecated unless you do not have Oracle Database 12c Enterprise
Edition, otherwise you can still use these parameters. With Enterprise
Edition, use LOG_ARCHIVE_DEST_n instead.

Attribute Description

AFFIRM and
NOAFFIRM

AFFIRM ensures all disk I/O to the archived redo log files or standby
redo log files at the standby destination is performed synchronously
and completes successfully before the Log Writer process (LGWR) can
continue. AFFIRM is required to achieve no data loss.
NOAFFIRM indicates all disk I/O to archived redo log files and standby
redo log files is to be performed asynchronously; online redo log files
on the primary database can be reused before the disk I/O on the
standby destination completes. In Oracle Database 12c, you can use
NOAFFIRM in conjunction with the Data Guard Maximum Availability
feature to acknowledge receipt of the redo in memory before it is
written to the remote redo log file.

TABLE 15-1. LOG_ARCHIVE_DEST_n Parameter Attributes

15-ch15.indd 540 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 541

Attribute Description

ALTERNATE and
NOALTERNATE

ALTERNATE specifies an alternate LOG_ARCHIVE_DEST_n destination
to use when the original archiving destination fails.

COMPRESSION Compress redo data before transmission to a redo transport destination.
This feature is part of the Advanced Compression option, which is
a separately licensed product that is available in Oracle Database
12.1.0.2 or later.

DB_UNIQUE_NAME and
NODB_UNIQUE_NAME

DB_UNIQUE_NAME specifies the unique database name for the
destination.

DELAY and
NODELAY

DELAY specifies a time lag between archiving redo data on the standby
site and applying the archived redo log file to the standby database;
DELAY may be used to protect the standby database from corrupted or
erroneous primary data. If neither DELAY nor NODELAY is specified,
NODELAY is the default. If DELAY is specified and no value is
provided, then 30 minutes is the default.

ENCRYPTION Encrypt redo data before transmission. Only supported for a Zero Data
Loss Recovery Appliance.

LOCATION and
SERVICE

Each destination must specify either the LOCATION or the SERVICE
attribute to identify either a local disk directory (via LOCATION) or a
remote database destination where Log Transport Services can transmit
redo data (via SERVICE).

MANDATORY and
OPTIONAL

If a destination is OPTIONAL, archiving to that destination may fail, yet
the online redo log file is available for reuse and may be overwritten
eventually. If the archival operation of a MANDATORY destination fails,
online redo log files cannot be overwritten.

MAX_CONNECTIONS Use additional network paths to the redo transport destination.

MAX_FAILURE and
NOMAX_FAILURE

MAX_FAILURE specifies the maximum number of reopen attempts
before the primary database permanently gives up on the standby
database.

NET_TIMEOUT and
NONET_TIMEOUT

NET_TIMEOUT specifies the number of seconds the LGWR process
on the primary system waits for status from the network server process
before terminating the network connection. The default value is
30 seconds.

REGISTER and
NOREGISTER

REGISTER indicates that the location of the archived redo log file is to
be recorded at the corresponding destination.

REOPEN and
NOREOPEN

REOPEN specifies the minimum number of seconds (the default is
300 seconds) before the archiver processes (ARCn) or the LGWR
process should try again to access a previously failed destination.

TABLE 15-1. LOG_ARCHIVE_DEST_n Parameter Attributes (Continued)

15-ch15.indd 541 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

542 Oracle Database 12c DBA Handbook

Attribute Description

SYNC and
ASYNC

SYNC and ASYNC specify that network I/O is to be done synchronously
or asynchronously when using the LGWR process. The default is
SYNC=PARALLEL, which should be used when there are multiple
destinations with the SYNC attribute. All destinations should use the
same value.

TEMPLATE and
NOTEMPLATE

TEMPLATE defines a directory specification and format template for
names of the archived redo log files or standby redo log files at the
standby destination. You can specify these attributes in either the
primary or standby initialization parameter file, but the attribute applies
only to the database role that is archiving.

VALID_FOR VALID_FOR identifies when Log Transport Services can transmit
redo data to destinations based on the following factors: (1) whether
the database is currently running in the primary or the standby role,
and (2) whether online redo log files, standby redo log files, or both
are currently being archived on the database at this destination.
The default value for this attribute is VALID_FOR=(ALL_LOGFILES,
ALL_ROLES). Other values include PRIMARY_ROLE, STANDBY_ROLE,
ONLINE_LOGFILES, and STANDBY_LOGFILE.

TABLE 15-1. LOG_ARCHIVE_DEST_n Parameter Attributes (Continued)

Creating the Standby Database Configuration
You can use SQL*Plus, Oracle Enterprise Manager (OEM), or Data Guard–specific tools to configure
and administer Data Guard configurations. The parameters you set will depend on the configuration
you choose.

If the primary and standby databases are on the same server, you will need to set a value for
the DB_UNIQUE_NAME parameter. Because the directory structures for the two databases will be
different, you must either manually rename files or define values for the DB_FILE_NAME_CONVERT
and LOG_FILE_NAME_CONVERT parameters in the standby database. You must set up unique
service names for the primary and standby databases via the SERVICE_NAMES initialization
parameter.

If the primary and standby databases are on separate servers, you can use the same directory
structures for each, avoiding the need for the filename conversion parameters. If you use a different
directory structure for the database files, you will need to define the values for the DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters in the standby database.

In physical standby databases, all the redo comes from the primary database. When physical
standby databases are opened in read-only mode, no redo is generated. Oracle Data Guard does,
however, use archived redo log files to support the replication of the data and SQL commands
used to update the standby databases.

NOTE
For each standby database, you should create a standby redo log file
to store redo data received from the primary database.

15-ch15.indd 542 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 543

Preparing the Primary Database
On the primary database, make sure you have set values for the following parameters, which
impact the transfer of the redo log data. The first five parameters are standard for most databases;
set REMOTE_LOGIN_PASSWORDFILE to EXCLUSIVE to support remote access by SYSDBA-
privileged users.

DB_NAME The database name. Use the same name for all
standby databases and the primary database.

DB_UNIQUE_NAME The unique name for the database. This value must
be different for each standby database and must
differ from the primary database.

SERVICE_NAMES Service names for the databases; set separate service
names for the primary and standby databases.

CONTROL_FILES The location of the control files.

REMOTE_LOGIN_PASSWORDFILE Set to EXCLUSIVE or SHARED. Set the same
password for SYS on both the primary and standby
databases.

The LOG_ARCHIVE-related parameters, listed next, will configure how the Log Transport
Services work.

LOG_ARCHIVE_CONFIG Within the DB_CONFIG parameter, list the primary
and standby databases.

LOG_ARCHIVE_DEST_1 The location of the primary database’s archived redo
log files.

LOG_ARCHIVE_DEST_2 The remote location used for the standby redo log files.

LOG_ARCHIVE_DEST_STATE_1 Set to ENABLE.

LOG_ARCHIVE_DEST_STATE_2 Set to ENABLE to enable log transport.

LOG_ARCHIVE_FORMAT Specify the format for the archive log file’s name.

For this example, assume that the primary database has a DB_UNIQUE_NAME value of
HEADQTR and the physical standby database has a DB_UNIQUE_NAME value of SALESOFC.
The SERVICE_NAMES values can be the same as the DB_UNIQUE_NAME values, but this is not a
requirement. In fact, the SERVICE_NAMES value may be unique to a single node in a RAC instance.

The LOG_ARCHIVE_CONFIG parameter setting may resemble the following:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(headqtr,salesofc)'

There are two LOG_ARCHIVE_DEST_n entries—one for the local copy of the archived redo
log files, and a second for the remote copy that will be shipped to the physical standby database:

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch/headqtr/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)

15-ch15.indd 543 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

544 Oracle Database 12c DBA Handbook

 DB_UNIQUE_NAME=headqtr'
LOG_ARCHIVE_DEST_2=
 'SERVICE=salesofc
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=salesofc'

The LOG_ARCHIVE_DEST_1 parameter specifies the location of the archived redo log files for the
primary database (as specified via the DB_UNIQUE_NAME parameter). The LOG_ARCHIVE_DEST_2
parameter gives the service name of the physical standby database as its location. For each of
these destinations, the corresponding LOG_ARCHIVE_DEST_STATE_n parameter should have a
value of ENABLE.

The standby role–related parameters include the FAL (Fetch Archive Log) parameters used prior
to Oracle Database 10g to resolve gaps in the range of archive logs copied to the standby databases:

FAL_SERVER Specify the service name of the FAL server (typically the
primary database).

FAL_CLIENT Specify the service name of the FAL client (the standby
database fetching the logs).

DB_FILE_NAME_CONVERT If the primary and standby databases use differing
directory structures, specify the pathname and filename
location of the primary database datafiles, followed by
the standby location.

LOG_FILE_NAME_CONVERT If the primary and standby databases use differing
directory structures, specify the pathname and filename
location of the primary database log files, followed by
the standby location.

STANDBY_FILE_MANAGEMENT Set to AUTO.

TIP
FAL_SERVER and FAL_CLIENT should both be defined on each node
so they are ready to switch back to their original roles after a role
switch.

Sample settings for these parameters are shown in the following listing:

FAL_SERVER=headqtr
FAL_CLIENT=salesofc
LOG_FILE_NAME_CONVERT=
'/arch/headqtr/','/arch/salesofc/','/arch1/headqtr/','/arch1/salesofc/'
STANDBY_FILE_MANAGEMENT=AUTO

If the primary database is not already in ARCHIVELOG mode, enable archiving by issuing the
ALTER DATABASE ARCHIVELOG command while the database is mounted but not open. In
addition, enable forced logging in the primary database to ensure that all unlogged direct writes
will be propagated to the standby database by using the ALTER DATABASE FORCE LOGGING
command.

15-ch15.indd 544 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 545

Once the log-related parameters have been set, you can begin the process of creating the
standby database.

Step 1: Back Up the Primary Database’s Datafiles
First, perform a physical backup of the primary database. Oracle recommends using the RMAN
utility to back up the database; you can use the DUPLICATE command within RMAN to automate
the process of creating the standby database.

Step 2: Create a Control File for the Standby Database
In the primary database, issue the following command to generate a control file that will be used
for the standby database:

alter database create standby controlfile as '/tmp/salesofc.ctl';

Note that you specify the directory and filename where you want the control file to be created.
Also, do not use the same directory and control file name as you use for the primary database.

Step 3: Create an Initialization Parameter File for the Standby Database
In the primary database, create a parameter file from the server parameter file:

create pfile='/tmp/initsalesofc.ora' from spfile;

Edit this initialization file to set the proper values for the standby database. Set the standby
database’s values for DB_UNIQUE_NAME, SERVICE_NAMES, CONTROL_FILES, DB_FILE_
NAME_CONVERT, LOG_FILE_NAME_CONVERT, LOG_ARCHIVE_DEST_n, INSTANCE_NAME,
FAL_SERVER, and FAL_CLIENT. The filename conversions should be the same as in the primary
database—you want to convert the filenames from the primary database to the standby database
format when the redo information is applied:

LOG_ARCHIVE_DEST_1=
'LOCATION=/arch/salesofc/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=salesofc'
LOG_ARCHIVE_DEST_2=
'SERVICE=headqtr
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)

In the standby environment, the LOG_ARCHIVE_DEST_1 parameter points to its local archive
log destination, and LOG_ARCHIVE_DEST_2 points to the primary database’s service name. If the
roles of the two databases are switched, the original primary database will be able to serve as the
standby database. While the standby database is running in standby mode, the LOG_ARCHIVE_
DEST_2 value will be ignored.

NOTE
Set the COMPATIBLE parameter to the same value for both the
primary and standby databases. To take advantage of the new features
in Oracle 12c, set the COMPATIBLE value to 12.1.0 or higher. Once
COMPATIBLE is set to 12.1.0, you cannot reset it to a lower value.

15-ch15.indd 545 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

546 Oracle Database 12c DBA Handbook

Step 4: Copy the Database Files to the Standby Database Location
Copy the datafiles from Step 1, the control file from Step 2, and the standby initialization file from
Step 3 to the standby database location. Put the files in the proper directories (as defined by the
CONTROL_FILES, DB_FILE_NAME_CONVERT, and LOG_FILE_NAME_CONVERT parameters).
Alternatively, use an RMAN backup of the primary database to create the standby database files.

Step 5: Configure the Standby Database Environment
At this point, the files are in place. You need to create the proper environment variables and
services to allow an instance to access the files. For example, in a Windows environment you
should use the oradim utility to create a new service, as shown in this example:

oradim -new -sid salesofc -intpwd oracle -startmode manual

Next, create a password file for the standby database via the orapwd utility (see Chapter 2 for
details on creating a new password file).

Next, create the Oracle Net parameters and services needed to access the standby database.
In the standby environment, create an Oracle Net listener service for the standby database. In the
standby server’s sqlnet.ora file, set the SQLNET.EXPIRE_TIME parameter to 1 to activate broken-
connection detection after one minute. See Chapter 17 for further details on Oracle Net connections.

Next, create a service name entry for the standby database in the tnsnames.ora file and then
distribute that update to both the standby and primary database servers.

If the primary database has an encryption wallet, copy the wallet to the standby database
system and configure the standby database to use this wallet; the wallet must be re-copied from
the primary to all standby databases whenever the master encryption key is updated.

Lastly, create a server parameter file via the CREATE SPFILE FROM PFILE command, passing
the name and location of the standby parameter file as input to that command.

Step 6: Start the Standby Database
From within SQL*Plus, start the standby database in MOUNT mode, as shown in the following
example:

startup mount;

NOTE
You can add new temporary files to the temporary tablespaces in
the standby database. Adding temporary files will support sorting
operations required for reporting activity within the standby database
if the standby database is going to be used for read-only operations
such as reporting.

Oracle recommends that you create the same number of online redo log files on each standby
database; you could create fewer to speed up the migration process, but if there are not at least
two, then the instance will not open.

Start the redo application process within the standby database via the following ALTER DATABASE
command:

alter database recover managed standby database
 using current logfile disconnect from session;

15-ch15.indd 546 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 547

Step 7: Verify the Configuration
To test the configuration, go to the primary database and force a log switch to occur via the ALTER
SYSTEM command, as shown here:

alter system switch logfile;

The primary database’s redo log data should then be copied to the standby location.
On the standby database, you can query the V$ARCHIVED_LOG view or use the ARCHIVE

LOG LIST command to see which archived logs have been applied to the database. As new logs
are received from the primary database and applied to the standby, new rows will be added to the
listing in V$ARCHIVED_LOG.

Creating Logical Standby Databases
Logical standby databases follow many of the same steps used to create physical standby databases.
Because they rely on the re-execution of SQL commands, logical standby databases have greater
restrictions on their use. If any of your tables in the primary database use the following datatypes,
they will be skipped during the redo application process:

 ■ BFILE

 ■ ROWID, UROWID

 ■ User-defined datatypes

 ■ Identity columns

 ■ Objects with nested tables and REFs

 ■ Collections (varying arrays, nested tables)

 ■ Spatial datatypes

NOTE
Support for logical replication of XMLtype was added in Oracle
Database 12c Release 1 (12.1.0.1). Oracle’s Extended Datatype
Support (EDS) supports most datatypes that do not otherwise have
native redo-based support.

Additionally, tables that use table compression and the schemas that are installed with the
Oracle software are skipped during redo application. The DBA_LOGSTDBY_UNSUPPORTED
view lists the objects that are not supported for logical standby databases. The DBA_LOGSTDBY_
SKIP view lists the schemas that will be skipped. Figure 15-2 shows the processing flow for the
SQL apply architecture for a logical standby database.

A logical standby database is not identical to the primary database. Each transaction that is
executed in the logical standby database must be the logical equivalent of the transaction that
was executed in the primary database. Therefore, you should make sure your tables have the
proper constraints on them—primary keys, unique constraints, check constraints, and foreign
keys—so the proper rows can be targeted for update in the logical standby database. You can
query DBA_LOGSTDBY_NOT_UNIQUE to list tables that lack primary key or unique constraints
in the primary database.

To create a logical standby database, follow the steps outlined in the remainder of this section.

15-ch15.indd 547 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

548 Oracle Database 12c DBA Handbook

Step 1: Create a Physical Standby Database
Following the steps in the prior section of this chapter, create a physical standby database. After
you create and start up the physical standby, stop the redo apply process on the physical standby
to avoid applying changes past the redo that contains the supplemental log information:

alter database recover managed standby database cancel;

Step 2: Enable Supplemental Logging
Supplemental logging on the primary database generates additional information in the redo log.
That information is then used during the redo application process in the standby database to make
sure the correct rows are affected by the generated SQL. To add primary key and unique index
information to the redo data, issue the following command in the primary database:

execute dbms_logstdby.build;

This procedure waits for all existing transactions to complete; if there are long-running transactions
on the primary database, this process will not finish until those transactions commit or roll back.

Step 3: Transition the Physical Standby to a Logical Standby
The redo log files have the information necessary to convert your physical database to a logical
database; run this command to continue redo log data application to the physical standby database
until the moment you’re ready to convert to a logical standby:

alter database recover to logical standby new_db_name;

Data�les

Applier

PreparerReader Builder

Redo
Records LCR

Logical Change
Records Not
Grouped Into
Transactions

Transactions
Sorted in

Dependency Order

Shared Pool

Transaction
Groups

Analyzer

Log Mining

Apply Processing

Transactions
to be Applied

Coordinator

LCR
LCR
LCR

.

.

.

Redo Data
from Primary

Database

FIGURE 15-2. SQL apply process for logical standby databases

15-ch15.indd 548 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 549

Oracle automatically stores the name of your new logical standby database, new_db_name, in
the SPFILE. Otherwise, this command generates a message reminding you to change the DB_
NAME parameter in your initialization parameter file after shutting down the database.

Physical standby databases operate in read-only mode; logical standby databases are open for
writes and generate their own redo data. In the initialization file for the logical standby database,
specify destinations for the logical standby database’s redo data (LOG_ARCHIVE_DEST_1) and
the incoming redo from the primary database (in this example, LOG_ARCHIVE_DEST_3 will be
used to avoid conflicts with the earlier LOG_ARCHIVE_DEST_2 setting). You do not want a logical
standby database to have the LOG_ARCHIVE_DEST_2 destination enabled and pointing back to
the primary database.

Shut down and start up the database and change these parameters:

shutdown;
startup mount;

Step 4: Start the Logical Standby Database
Open the logical standby database using its new initialization parameter file or SPFILE as follows:

alter database open resetlogs;

Because this is the first time the database is opened after being converted to a standby, the
database’s global name is adjusted to match the new DB_NAME initialization parameter.

Step 5: Start the Redo Application Process
Within the logical standby database, you can now start the redo application process:

alter database start logical standby apply immediate;

To see the logs that have been received and applied to the logical standby database, query the
DBA_LOGSTDBY_LOG view. You can query the V$LOGSTDBY view to see the activity log of the
logical standby redo application process. The logical standby database is now available for use.

Using Real-Time Apply
By default, redo data is not applied to a standby database until the standby redo log file is
archived. When you use the real-time apply feature, redo data is applied to the standby database
as it is received, reducing the time lag between the databases and potentially shortening the time
required to fail over to the standby database.

To enable real-time apply in a physical standby database, execute the following command in
the standby database:

alter database recover managed standby database
using current logfile;

For a logical standby database, the command to use is

alter database start logical standby apply immediate;

The RECOVERY_MODE column of the V$ARCHIVE_DEST_STATUS view will have a value of
MANAGED REAL TIME APPLY if real-time apply has been enabled.

15-ch15.indd 549 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

550 Oracle Database 12c DBA Handbook

As shown earlier in this chapter, you can enable the redo application on a physical standby
database via the command:

alter database recover managed standby database disconnect;

The DISCONNECT keyword allows the command to run in the background after you disconnect
from your Oracle session. When you start a foreground session and issue the same command
without the DISCONNECT keyword, control is not returned to the command prompt until the
recovery is cancelled by another session. To stop the redo application in a physical standby
database, whether in a background session or a foreground session, use the following command:

alter database recover managed standby database cancel;

For a logical standby database, the command to stop the Log Apply Services is

alter database stop logical standby apply;

Managing Gaps in Archive Log Sequences
If the standby database has not received one or more archived logs generated by the primary
database, it does not have a full record of the transactions in the primary database. Oracle Data
Guard detects the gap in the archive log sequence automatically; it resolves the problem by
copying the missing sequence of log files to the standby destination. In versions of Oracle Database
prior to 10g, the FAL (Fetch Archive Log) client and server were used to resolve gaps from the
primary database.

To determine if there is a gap in your physical standby database, query the V$ARCHIVE_GAP
view. For each gap, that view will report the lowest and highest log sequence number of the set of
logs missing from the standby database. If there is some reason why Oracle Data Guard has not
been able to copy the logs, you can copy the files manually to your physical standby database
environment and register them using the ALTER DATABASE REGISTER LOGFILE filename command;
then you can start the redo apply process. After the logs have been applied, check the V$ARCHIVE_
GAP view again to see if there is another gap to resolve.

Managing Roles: Switchovers and Failovers
Each database that participates in a Data Guard configuration has a role—it is either a primary
database or a standby database. At some point, those roles may need to change. For example,
if there is a hardware failure on the primary database’s server, you may fail over to the standby
database. Depending on your configuration choices, there may be some loss of data during
a failover.

A second type of role change is called a switchover. This occurs when the primary database
switches roles with a standby database, and the standby becomes the new primary database.
During a switchover, there should be no data lost. Switchovers and failovers require manual
intervention by a database administrator.

Switchovers
Switchovers are planned role changes, usually to allow for maintenance activities to be performed
on the primary database server. A standby database is chosen to act as the new primary database,

15-ch15.indd 550 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 551

the switchover occurs, and applications now write their data to the new primary database. At
some later point in time you can switch the databases back to their original roles.

NOTE
You can perform switchovers with either a logical standby database
or a physical standby database; the physical standby database is the
preferred option.

What if you have defined multiple standby databases? When one of the physical standby
databases becomes the new primary database, the other standby databases must be able to
receive their redo log data from the new primary database. In that configuration, you must define
the LOG_ARCHIVE_DEST_n parameters to allow those standby sites to receive data from the new
primary database location.

NOTE
Verify that the database that will become the new primary database is
running in ARCHIVELOG mode.

In the following sections, you will see the steps required to perform a switchover to a standby
database. The standby database should be actively applying redo log data prior to the switchover,
as this will minimize the time required to complete the switchover.

Switchovers to Physical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a physical standby database. There is
no data loss during a switchover.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the SWITCHOVER_STATUS column:

select switchover_status from v$database;

If the SWITCHOVER_STATUS column’s value is anything other than TO STANDBY, it is not
possible to perform the switchover (usually due to a configuration or hardware issue). If the
column’s value is SESSIONS ACTIVE, you should terminate active user sessions. Valid values for
the SWITCHOVER_STATUS column are shown in Table 15-2.

From within the primary database, you can initiate its transition to the physical standby database
role with the following command:

alter database commit to switchover to physical standby;

As part of executing this command, Oracle will back up the current primary database’s control
file to a trace file. At this point, you should shut down the primary database and mount it:

shutdown immediate;
startup mount;

The primary database is prepared for the switchover; you should now go to the physical standby
database that will serve as the new primary database.

15-ch15.indd 551 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

552 Oracle Database 12c DBA Handbook

In the physical standby database, check the switchover status in the V$DATABASE view; its
status should be TO PRIMARY (see Table 15-2). You can now switch the physical standby database
to the primary via the following command:

alter database commit to switchover to primary;

Value Description

NOT ALLOWED The current database is not a primary database with standby
databases.

PREPARING DICTIONARY This logical standby database is sending its redo data to a primary
database and other standby databases to prepare for the switchover.

PREPARING SWITCHOVER Used by logical standby configurations while redo data is being
accepted for the switchover.

FAILED DESTINATION On a primary database, indicates that one or more standby
destinations are in an error state.

RECOVERY NEEDED This standby database has not received the switchover request.

RESOLVABLE GAP On a primary database, indicates that one or more standby
destinations have a redo gap that can be automatically resolved by
retrieving the missing redo log from the primary or another standby
database.

UNRESOLVABLE GAP On a primary database, indicates that one or more standby
databases have a redo log gap that cannot be automatically
resolved by copying the redo log from another database.

LOG SWITCH GAP On a primary database, indicates that one or more standby
databases are missing redo because of a recent log switch. This
status is typically resolved quickly because the redo log ship is
likely in process.

SESSIONS ACTIVE There are active SQL sessions in the primary database; they must be
disconnected before continuing.

SWITCHOVER PENDING Valid for standby databases in which the primary database
switchover request has been received but not processed.

SWITCHOVER LATENT The switchover did not complete and went back to the primary
database.

TO LOGICAL STANDBY This primary database has received a complete dictionary from a
logical standby database.

TO PRIMARY This standby database can switch over to a primary database.

TO STANDBY This primary database can switch over to a standby database.

TABLE 15-2. SWITCHOVER_STATUS Values

15-ch15.indd 552 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 553

If you add the WITH SESSION SHUTDOWN WAIT clause, the statement will not return to the
SQL> prompt until the switchover is complete. Start up the database using the OPEN keyword:

alter database open;

The database has completed its transition to the primary database role. Next, start the redo
apply services on the standby databases if they were not already running in the background:

alter database recover managed standby database
 using current logfile
 disconnect from session;

Switchovers to Logical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a logical standby database.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the SWITCHOVER_STATUS column:

select switchover_status from v$database;

For the switchover to complete, the status must be either TO STANDBY, TO LOGICAL STANDBY,
or SESSIONS ACTIVE.

In the primary database, issue the following command to prepare the primary database for the
switchover:

alter database prepare to switchover to logical standby;

In the logical standby database, issue the following command:

alter database prepare to switchover to primary;

At this point, the logical standby database will begin transmitting its redo data to the current
primary database and to the other standby databases in the configuration. The redo data from the
logical standby database is sent but is not applied at this point.

In the primary database, you must now verify that the dictionary data was received from the
logical standby database. The SWITCHOVER_STATUS column value in V$DATABASE must read
TO LOGICAL STANDBY in the primary database before you can continue to the next step. When
that status value is shown in the primary database, switch the primary database to the logical
standby role:

alter database commit to switchover to logical standby;

You do not need to shut down and restart the old primary database. You should now go
back to the original logical standby database and verify its SWITCHOVER_STATUS value in
V$DATABASE (it should be TO PRIMARY). You can then complete the switchover; in the original
logical standby database, issue the following command:

alter database commit to switchover to primary;

15-ch15.indd 553 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

554 Oracle Database 12c DBA Handbook

The original logical standby database is now the primary database. In the new logical standby
database (the old primary database), start the redo apply process:

alter database start logical standby apply immediate;

The switchover is now complete.

Failovers
Failovers occur when the primary database can no longer be part of the primary database
configuration. In the following section, you will see the steps required to fail over a physical
standby database to the role of the primary database in a Data Guard configuration. In the
subsequent section, you will see the steps required to fail over a logical standby database to the
role of the primary database in a Data Guard configuration.

Failovers to Physical Standby Databases
In the standby database, you should first attempt to identify and resolve any gaps in the archived
redo log files (see the section “Managing Gaps in Archive Log Sequences,” earlier in this chapter).
You may need to manually copy and register log files for use by the standby database.

Within the standby database, you must then finish the recovery process. If you have configured
the standby database to have standby redo log files, the command to execute is

alter database recover managed standby database finish;

If there are no standby redo log files, execute the following command:

alter database recover managed standby database finish
 skip standby logfile;

Once the standby recovery operation has completed, you can perform the switchover using
the following command:

alter database commit to switchover to primary;

Shut down and restart the new primary database to complete the transition. The old primary
database is no longer a part of the Data Guard configuration. If you want to re-create the old
primary database and use it as a standby database, you must create it as a standby database
following the steps provided earlier in this chapter.

Failovers to Logical Standby Databases
In the standby database, you should first attempt to identify and resolve any gaps in the archived
redo log files (see the section “Managing Gaps in Archive Log Sequences,” earlier in this chapter).
You may need to manually copy and register log files for use by the standby database. Query the
DBA_LOGSTDBY_LOG view for details on the logs remaining to be applied. If the redo apply
process was not active on the logical standby database, start it by using the following command:

alter database start logical standby apply nodelay finish;

Next, enable the remote locations for the redo log files that the logical standby database
generates. You may need to update the logical standby database’s settings of the LOG_ARCHIVE_
DEST_STATE_n parameters so the other standby databases in the configuration will receive the

15-ch15.indd 554 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 555

redo generated from the original logical standby database. You can then activate the original
logical standby database as the new primary database via the following command:

alter database activate logical standby database finish apply;

If there are other logical standby databases that are part of the Data Guard configuration, you
may need to re-create them or use database links to add them to the new configuration. First,
create a link in each of the databases that will act as a logical standby database to the new
primary database. The ALTER SESSION DISABLE GUARD command allows you to bypass the
Data Guard processes within your session. The database account used by the database link must
have the SELECT_CATALOG_ROLE role:

alter session disable guard;
create database link salesofc
 connect to username identified by password using 'salesofc';
alter session enable guard;

You should verify the link by selecting from the DBA_LOGSTDBY_PARAMETERS view in the
remote database (the new primary database).

In each logical standby database, you can now start the redo apply process based on the new
primary database:

alter database start logical standby apply new primary salesofc;

Administering the Databases
In the following sections, you will see the steps required to perform standard maintenance actions
on the databases that are part of the Data Guard configuration, including startup and shutdown
operations.

Startup and Shutdown of Physical Standby Databases
When you start up a physical standby database, you should start the redo apply process. First,
mount the database:

startup mount;

Next, start the redo apply process:

alter database recover managed standby database disconnect from session;

Use the USING CURRENT LOGFILE clause in place of the DISCONNECT FROM SESSION clause
to start real-time apply.

To shut down the standby database, you should first stop the Log Apply Services. Query the
V$MANAGED_STANDBY view; if Log Apply Services are listed there, cancel them using the
following command:

alter database recover managed standby database cancel;

You can then shut down the database.

15-ch15.indd 555 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

556 Oracle Database 12c DBA Handbook

Opening Physical Standby Databases in Read-Only Mode
To make the physical standby database open for read operations, you should first cancel any log
apply operations in the database:

alter database recover managed standby database cancel;

Next, open the database:

alter database open;

Managing Datafiles in Data Guard Environments
As noted earlier in this chapter, you should set the STANDBY_FILE_MANAGEMENT initialization
parameter to AUTO. Setting this parameter simplifies the administration of the Data Guard
environment, because files added to the primary environment can be automatically propagated
to the physical standby databases. When this parameter is set to AUTO, any new datafiles created
in the primary database are automatically created in the standby databases; when the parameter is
set to MANUAL, you must manually create the new datafiles in the standby databases.

When STANDBY_FILE_MANAGEMENT is set to MANUAL, follow these steps to add a datafile
to a tablespace:

1. Add the new datafile in the primary database.

2. Alter the datafile’s tablespace so that it is offline.

3. Copy the datafile to the standby location.

4. Alter the datafile’s tablespace so that it is once again online.

To add a new tablespace using manual file management, follow the same steps: Create the
tablespace, take the tablespace offline, copy its datafiles to the standby location, and then alter
the tablespace so it is online. If you are using automatic file management, you only need to
create the new tablespace in the primary database for it to be propagated to the standby databases.

To drop a tablespace, simply drop it in the primary database and force a log switch via the
ALTER SYSTEM SWITCH LOGFILE command. You can then drop the file at the operating system
level in the primary and standby environments.

Changes to the names of datafiles are not propagated, even if you are using automatic file
management. To rename a datafile in a Data Guard configuration, take the tablespace offline and
rename the datafile at the operating system level on the primary server. Use the ALTER TABLESPACE
RENAME DATAFILE command on the primary database to point to the new location of the datafile.
Bring the tablespace back online with the ALTER TABLESPACE tablespace_name ONLINE command.
On the standby database, query the V$ARCHIVED_LOG view to verify all logs have been applied
and then shut down the redo apply services:

alter database recover managed standby database cancel;

Shut down the standby database and rename the file on the standby server. Next, use the
STARTUP MOUNT command to mount the standby database. With the database mounted but not
opened, use the ALTER DATABASE RENAME FILE command to point to the new file location on
the standby server. Finally, restart the redo apply process:

alter database recover managed standby database
 disconnect from session;

15-ch15.indd 556 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 15: Oracle Data Guard 557

Performing DDL on a Logical Standby Database
As illustrated earlier in this chapter, you can temporarily disable Data Guard within a logical
standby database. When you need to perform DDL operations (such as the creation of new indexes
to improve query performance), you will follow the same basic steps:

1. Stop the application of redo on the logical standby database.

2. Disable Data Guard.

3. Execute the DDL commands.

4. Enable Data Guard.

5. Restart the redo apply process.

For example, to create a new index, start by turning off the Data Guard features:

alter database stop logical standby apply; alter session disable guard;

At this point, you can perform your DDL operations. When you are done, reenable the Data
Guard features:

alter session enable guard;
alter database start logical standby apply;

The logical standby database will then restart its redo apply process, while the index will be
available to its query users.

Summary
Disasters happen. They can be physical disasters (data center fire, flood, and so forth) or logical
disasters (dropped databases with no current backup). Even with a recent backup, a dropped
database may take hours or days to restore and recover. Using Oracle Data Guard (and a suitable
redo log file apply delay) you can be up and running in minutes instead of hours or days by
having a standby database either in the same data center or on the other side of the world. While
normal operations continue on the standby database, you can repair the original primary database
and switch it back. A physical Data Guard destination matches the primary database bit for bit,
including the physical layout of the tablespaces and datafiles.

If your standby needs are primarily as a read-only reporting database, then using a logical
standby database fits the bill. The logical standby database need not have the same physical layout.
In fact, the logical standby’s layout may differ significantly in its role as a reporting database: You
may have additional temporary tablespaces, for example, to support long-running reports with
many queries having ORDER BY and GROUP BY clauses that require a big temporary tablespace.
Regardless of the type of standby you need, Oracle Database 12c has a configuration to maintain
and enhance your recoverability, scalability, and availability.

15-ch15.indd 557 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 558

15-ch15.indd 558 13/05/15 10:03 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 559

CHAPTER
16

Miscellaneous High
Availability Features

16-ch16.indd 559 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

560 Oracle Database 12c DBA Handbook

In this chapter, you will see the implementation details for features that can significantly
enhance the availability of your database applications. Some of these features, such as the
LogMiner options, are enhancements of features available in earlier versions of Oracle.

Others, such as the use of the recycle bin and the FLASHBACK DATABASE command, have been
introduced in Oracle Database 10g and enhanced in Oracle Database 11g and 12c. Other
Flashback options, such as Flashback Table and Flashback Query, which rely solely on undo data,
were thoroughly covered in Chapter 7. In this chapter, you will see how to use the following
features to enhance the availability of your database:

 ■ Flashback Drop

 ■ Flashback Database

 ■ LogMiner

 ■ Online object-reorganization options

Flashback Drop relies on a construct introduced in Oracle Database 10g, the recycle bin,
which behaves much like the recycle bin on a Windows-based computer: if there is enough room
in the tablespace, dropped objects can be restored to their original schema with all indexes and
constraints intact. Flashback Database relies on data stored in the fast recovery area, a new
storage area also introduced in Oracle Database 10g. LogMiner, available since Oracle9i, relies on
archived redo log files to see the changes made to tables, indexes, and other database structures
(DDL operations) over time.

Recovering Dropped Tables Using Flashback Drop
When you drop a table (and its associated indexes, constraints, and nested tables), Oracle does
not immediately release the table’s disk space for use by other objects in the tablespace. Instead,
the objects are retained in the recycle bin until purged by the owner or the space occupied by the
dropped objects is needed for new objects.

TIP
To leverage the features of the recycle bin, you must set the
initialization parameter RECYCLEBIN to ON.

In this example, consider the AUTHOR table, defined as follows:

SQL> describe author

Name Null? Type
------------------ -------- ----------------------------
AUTHORNAME NOT NULL VARCHAR2(50)
COMMENTS VARCHAR2(100)

Now, assume that the table is dropped accidentally. This can happen when a user with
privileges on a table that exists in multiple environments intends to drop a table in a development
environment but is pointing to the production database when the command is executed.

SQL> drop table author cascade constraints;

Table dropped.

16-ch16.indd 560 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 561

How can the table be recovered? As of Oracle Database 10g, a dropped table does not fully
disappear. Its blocks are still maintained in its tablespace, and it still counts against your space
quota. You can see the dropped objects by querying the RECYCLEBIN data dictionary view. Note
that the format for the OBJECT_NAME column may differ between versions:

SQL> select object_name, original_name, operation, type, user,
 2 can_undrop, space from recyclebin;

OBJECT_NAME ORIGINAL_NAME OPERATION
------------------------------ -------------------- ---------
TYPE USER CAN_UNDROP SPACE
------------------------- ------------------------------ ---------- ----------
BIN$AWo20R+6ce3gU8pnCAoT4Q==$0 SYS_C0010718 DROP
INDEX RJB NO 8

BIN$AWo20R+7ce3gU8pnCAoT4Q==$0 AUTHOR DROP
TABLE RJB YES 8

SQL>

RECYCLEBIN is a public synonym for the USER_RECYCLEBIN data dictionary view, showing
the recycle bin entries for the current user. DBAs can see all dropped objects via the DBA_
RECYCLEBIN data dictionary view.

NOTE
As of Oracle Database 12c release 1 (12.1.0.2), the recycle bins are
local to the root container and each pluggable database and do not
have a CON_ID column. This makes sense, because the tablespaces
that are shared across all containers, such as SYSTEM, UNDO, and
optionally TEMP, do not support the recycle bin even in a non-CDB
environment.

As shown in the preceding listing, a user has dropped the AUTHOR table and its associated
primary key index. Although they have been dropped, they are still available for flashback. The
index cannot be recovered by itself (its CAN_UNDROP column value is NO, while the AUTHOR
table’s CAN_UNDROP value is YES).

You can use the FLASHBACK TABLE TO BEFORE DROP command to recover the table from
the recycle bin:

SQL> flashback table author to before drop;

Flashback complete.

The table has been restored, along with its rows, indexes, and statistics.
What happens if you drop the AUTHOR table, re-create it, and then drop it again? The recycle

bin will contain both of the tables. Each entry in the recycle bin will be identified via its SCN and
the timestamp for the drop.

16-ch16.indd 561 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

562 Oracle Database 12c DBA Handbook

NOTE
The FLASHBACK TABLE TO BEFORE DROP command does not
recover referential constraints.

To purge old entries from the recycle bin, use the PURGE command. You can purge all your
dropped objects, all dropped objects in the database (if you are a DBA), all objects in a specific
tablespace, or all objects for a particular user in a specific tablespace. You can use the RENAME
TO clause of the FLASHBACK TABLE command to rename the table as you flash it back.

By default, the recycle bin is enabled in Oracle Database 12c. You can use the initialization
parameter RECYCLEBIN to turn the recycle bin on and off; you can also turn the recycle bin on
and off at the session level, as in this example:

alter session set recyclebin = off;

Temporarily disabling the recycle bin functionality does not affect objects currently in the
recycle bin; even when the recycle bin is disabled, you can still recover objects currently in
the recycle bin. Only objects dropped while the recycle bin is disabled cannot be recovered.

The Flashback Database Command
The FLASHBACK DATABASE command returns the database to a past time or SCN, providing a
fast alternative to performing incomplete database recovery. Following a FLASHBACK DATABASE
operation, in order to have write access to the flashed-back database, you must reopen it with an
ALTER DATABASE OPEN RESETLOGS command. You must have the SYSDBA system privilege in
order to use the FLASHBACK DATABASE command.

NOTE
The database must have been put in FLASHBACK mode with an
ALTER DATABASE FLASHBACK ON command. The database must
be mounted in exclusive mode but not open when that command is
executed.

The syntax for the FLASHBACK DATABASE command is as follows:

flashback [standby] database [database]
{ to {scn | timestamp} expr
| to before {scn | timestamp } expr
}

You can use either the TO SCN or TO TIMESTAMP clause to set the point to which the entire
database should be flashed back. You can flash back TO BEFORE a critical point (such as a
transaction that produced an unintended consequence for multiple tables). Use the ORA_
ROWSCN pseudo-column to see the SCNs of the most recent row transactions.

If you have not already done so, you will need to shut down your database and enable
flashback during the startup process using this sequence of commands:

startup mount;
alter database archivelog;
alter database flashback on;
alter database open;

16-ch16.indd 562 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 563

NOTE
In a multitenant environment, you cannot flash back just a single PDB.
The FLASHBACK DATABASE operation applies to the entire CDB
(including the root container and all PDBs).

Two initialization parameter settings control how much flashback data is retained in the
database. The DB_FLASHBACK_RETENTION_TARGET initialization parameter sets the upper limit
(in minutes) for how far back in time the database can be flashed back. The DB_RECOVERY_FILE_
DEST initialization parameter sets the size of the fast recovery area (see Chapter 13 for more
information on setting up the fast recovery area). Note that the FLASHBACK TABLE command uses
data already stored in the undo tablespace (it does not create additional entries), whereas the
FLASHBACK DATABASE command relies on flashback logs stored in the fast recovery area.

You can determine how far back you can flash back the database by querying the
V$FLASHBACK_DATABASE_LOG view. The amount of flashback data retained in the database is
controlled by the initialization parameter and the size of the fast recovery area. The following
listing shows the available columns in V$FLASHBACK_DATABASE_LOG and sample contents:

SQL> describe v$flashback_database_log

Name Null? Type
--- -------- -------
OLDEST_FLASHBACK_SCN NUMBER
OLDEST_FLASHBACK_TIME DATE
RETENTION_TARGET NUMBER
FLASHBACK_SIZE NUMBER
ESTIMATED_FLASHBACK_SIZE NUMBER
CON_ID NUMBER

SQL> select * from v$flashback_database_log;

OLDEST_FLASHBACK_SCN OLDEST_FL RETENTION_TARGET FLASHBACK_SIZE
-------------------- --------- ---------------- --------------
ESTIMATED_FLASHBACK_SIZE CON_ID
------------------------ ----------
 2977530 24-AUG-14 1440 104857600
 0 0

You can verify the database’s flashback status by querying V$DATABASE; the FLASHBACK_
ON column will have a value of YES if the flashback has been enabled for the database:

SQL> select current_scn, flashback_on from v$database;

CURRENT_SCN FLASHBACK_ON
----------- ------------------
 2979255 YES

16-ch16.indd 563 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

564 Oracle Database 12c DBA Handbook

With the database open for over an hour, verify that the flashback data is available and then
flash it back—you will lose all transactions that occurred during that time:

shutdown;
startup mount;
flashback database to timestamp sysdate-1/24;

Note that the FLASHBACK DATABASE command requires that the database be mounted in exclusive
mode, which will affect its participation in any RAC clusters (see Chapter 12).

When you execute the FLASHBACK DATABASE command, Oracle checks to make sure all
required archived and online redo log files are available. If the logs are available, the online
datafiles are reverted to the time or SCN specified.

If there is not enough data online in the archive logs and the flashback area, you will need to
use traditional database recovery methods to recover the data. For example, you may need to use
a file system recovery method or a recent full RMAN backup followed by rolling the data forward.

Once the flashback has completed, you must open the database using the RESETLOGS option
in order to have write access to the database:

alter database open resetlogs;

To turn off the Flashback Database option, execute the ALTER DATABASE FLASHBACK OFF
command when the database is mounted but not open:

startup mount;
alter database flashback off;
alter database open;

You can use the Flashback options to perform an array of actions, including recovering old data,
reverting a table to its earlier state, maintaining a history of changes on a row basis, and quickly
restoring an entire database. All these actions are greatly simplified if the database has been
configured to support Automatic Undo Management (AUM). Also, note that the FLASHBACK
DATABASE command requires the modification of the database status. Although these requirements
can present additional burdens to DBAs, the benefits involved in terms of the number of recoveries
required and the speed with which those recoveries can be completed may be dramatic.

Using LogMiner
Oracle uses online redo log files to track every change that is made to user data and the data
dictionary. The information stored in the redo log files is used to re-create the database, in part or
in full, during recovery. To enable recovery of the database to a point in time after the database
backup was made, you can maintain archived copies of the redo log files. The LogMiner utility
provides a vital view into the modifications that have occurred within your database.

When you use LogMiner, you see both the changes that have been made (the SQL_redo
column) and the SQL you can use to reverse those changes (the SQL_undo column). Thus, you
can review the history of the database, without actually applying any redo logs, and obtain the
code to reverse any problematic transactions. Using LogMiner, you can pinpoint the transaction
under which corruption first occurred so that you can determine the correct point in time or System
Change Number (SCN) to use as the endpoint for a database recovery.

16-ch16.indd 564 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 565

If there were a small number of transactions that required rolling back, prior to LogMiner, you
would have to restore the table to an earlier state (either using Flashback Table or recovering a
single table using RMAN backups) and apply archived log files to bring the table forward to just
before the corruption. When restoring the table and applying the archived log files, you would
risk losing later transactions that you would like to retain. You can now use LogMiner to roll back
only the transactions that are problematic without losing later, valid transactions.

LogMiner in its original form has had some limitations associated with its use. With the
original approach, you could only review one log file at a time, and the interface to the tool was
cumbersome to use. LogMiner includes a viewer for use with Oracle Cloud Control 12c. Both the
manual approach to using LogMiner and the EM Cloud Control LogMiner Viewer are presented
within this section.

How LogMiner Works
To run the LogMiner utility, you must have the EXECUTE privilege on the DMBS_LOGMNR
package, the EXECUTE_CATALOG_ROLE role, the SELECT ANY DICTIONARY system privilege,
and the SELECT ANY TRANSACTION system privilege. LogMiner requires a data dictionary to
fully translate the redo log file contents and translate internal object identifiers and datatypes to
object names and external data formats. If a data dictionary is not available, LogMiner will return
the data in hex format and the object information as internal object IDs.

You have three choices for obtaining a data dictionary for LogMiner use:

 ■ Extract the data dictionary information to a flat file.

 ■ Extract the data dictionary to redo log files.

 ■ Use the online data dictionary from the current database.

The LogMiner analysis usually requires that the data dictionary in use was generated from the
same database that generated the redo log files. However, if you are using a flat file format or are using
the data dictionary from redo log files, you can analyze the redo log files either from the database on
which LogMiner is running or from another database. If, however, you are using the online catalog
from the current database, you can only analyze redo log files from the current database.

Since you can run LogMiner from one database against the redo log files in another database,
the character sets used on both databases must match. The hardware platform must also match the
one used when the redo log files were generated.

Extracting the Data Dictionary
One potential problem with extracting the data dictionary to a flat file is that while you are
extracting the data dictionary, someone else could be issuing DDL statements. Therefore, the
extracted data dictionary could be out of sync with the database. When you use a flat file to store
the data dictionary, fewer system resources are required than when you use redo log files.

When you extract the data dictionary to redo log files, no DDL statements can be processed
during the time in which the data dictionary is extracted. Therefore, the dictionary will be in sync
with the database; the extraction is more resource intensive, but the extraction process is faster.

To extract the data dictionary to either a flat file or to redo log files, you use the procedure
DBMS_LOGMNR_D.BUILD. The data dictionary file is placed in a directory. Therefore, you must
have write permission for the directory in which the file will be placed. To define the location of
the directory, use the initialization parameter UTL_FILE_DIR. For example, to specify the location

16-ch16.indd 565 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

566 Oracle Database 12c DBA Handbook

/u01/app/ora_mine as the location for the LogMiner output, run the following command and
restart the database:

alter system set UTL_FILE_DIR='/u01/app/ora_mine/dict' scope=spfile;

To execute the DBMS_LOGMNR_D.BUILD procedure, you must specify a filename for the
dictionary, the directory pathname for the file, and whether you want the dictionary written to a
flat file or redo log files. To extract the data dictionary to a flat file located in the directory /u01/
app/ora_mine/dict with the filename mydb_dictionary.ora, you issue the following command:

begin
 dbms_logmnr_d.build
 (
 dictionary_filename => 'mydb_dictionary.ora',
 dictionary_location => '/u01/app/ora_mine/dict',
 options => dbms_logmnr_d.store_in_flat_file
);
end;
/

Once you have the dictionary stored in a flat file, you can copy it to another platform to run
LogMiner. You may need to run dbmslmd.sql on the other database to establish the correct
environment. The dbmslmd.sql file can be found in the $ORACLE_HOME/rdbms/admin directory
on a Linux system.

You can use DBMS_LOGMNR_D.STORE_IN_REDO_LOGS as the other option, which is more
common if you’re analyzing logs generated on the same database:

begin
 dbms_logmnr_d.build
 (
 options => dbms_logmnr_d.store_in_redo_logs
);
end;
/

Analyzing One or More Redo Log Files
To analyze redo log files using LogMiner, follow these steps:

1. Start the LogMiner utility using the DBMS_LOGMNR.START_LOGMNR procedure. You
can specify which redo log files to use when starting LogMiner by specifying the first log
to use.

2. Query V$LOGMNR_CONTENTS to see the results.

3. Once you have finished viewing the redo logs, use DBMS_LOGMNR.END_LOGMNR to
end the session:

execute dbms_logmnr.end_logmnr;

The available subprograms for the DBMS_LOGMNR package are described in Table 16-1.
Table 16-2 shows the parameters for the START_LOGMNR procedure.

16-ch16.indd 566 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 567

Subprogram Description

ADD_LOGFILE Adds a file to the list of archive files to process.

START_LOGMNR Initializes the LogMiner utility.

END_LOGMNR Completes and ends a LogMiner session.

MINE_VALUE
(function)

Returns the undo or redo column value of the column name specified by
the COLUMN_NAME parameter for any row returned from V$LOGMNR_
CONTENT.

COLUMN_PRESENT
(function)

Determines if undo or redo column values exist for the column name
specified by the COLUMN_NAME parameter for any row returned from
V$LOGMNR_CONTENT.

REMOVE_LOGFILE Removes a log file from the list of log files to be processed by LogMiner.

TABLE 16-1. DBMS_LOGMNR Subprograms

Options Description

COMMITTED_DATA_ONLY Only DMLs corresponding to committed transactions are
returned if this option is set.

SKIP_CORRUPTION Skips any corruption encountered in the redo log file during a
select from V$LOGMNR_CONTENTS. This option works only
if a block in the actual redo log file is corrupted and does not
work if the corruption is in the header block.

DDL_DICT_TRACKING Enables LogMiner to update the internal data dictionary if a
DDL event occurs, to ensure that SQL_REDO and SQL_UNDO
information is maintained and correct.

DICT_FROM_ONLINE_CATALOG Instructs LogMiner to use the online data dictionary instead of
a flat file or redo log file stored dictionary.

DICT_FROM_REDO_LOGS Instructs LogMiner to use the data dictionary stored in one or
more redo log files.

NO_SQL_DELIMITER Instructs LogMiner not to place the SQL delimiter (;) at the
end of reconstructed SQL statements.

NO_ROWID_IN_STMT Instructs LogMiner not to include the ROWID clause in the
reconstructed SQL statements.

PRINT_PRETTY_SQL Instructs LogMiner to format the reconstructed SQL for ease of
reading.

CONTINUOUS_MINE Instructs LogMiner to automatically add redo log files to find
the data of interest. Specify the starting SCN, date, or the
first log to mine. LogMiner must be connected to the same
database instance that is generating the redo log files.

TABLE 16-2. Values for the START_LOGMNR Options

16-ch16.indd 567 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

568 Oracle Database 12c DBA Handbook

To create a list of the redo log files that are available for analysis, you run the procedure
DBMS_LOGMNR.ADD_LOGFILE with the NEW option as follows; this example uses a Linux
file system:

begin
 dbms_logmnr.add_logfile
 (
 logfilename =>
 '+RECO/test12c/archivelog/2014_08_24/thread_1_seq_143.2005.856470967',
 options => dbms_logmnr.new
);
 dbms_logmnr.start_logmnr
 (
 options =>
 dbms_logmnr.dict_from_online_catalog +
 dbms_logmnr.continuous_mine
);
end;
/

After you’ve told LogMiner the location of the data dictionary and added the first redo log file,
you can begin analyzing the redo log files using the DBMS_LOGMNR.START_LOGMNR package:

begin
 dbms_logmnr.start_logmnr
 (
 options =>
 dbms_logmnr.dict_from_online_catalog +
 dbms_logmnr.continuous_mine
);
end;
/

If you do not enter start and end times or a range of SCN numbers, the entire file is read for
every SELECT statement that you issue. To look at the redo and undo code, you select the SQL_
REDO and SQL_UNDO columns as follows:

select sql_redo, sql_undo
from v$logmnr_contents;

Be sure to turn off LogMiner when you’re done:

execute dbms_logmnr.end_logmnr;

Until Oracle Database 11g, a DBA had to use the Java-based LogMiner console, which was
difficult to install and not completely integrated with Oracle Enterprise Manager Database Control
(the predecessor to EM Cloud Control). This integration further enhances ease of use by integrating
a task-based log mining operation with Flashback Transaction. Figure 16-1 shows the OEM
interface for LogMiner.

16-ch16.indd 568 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 569

Online Object Reorganization
You can reorganize many database objects online. Options include the following:

 ■ Creating indexes online

 ■ Rebuilding indexes online

 ■ Coalescing indexes online

 ■ Rebuilding index-organized tables online

FIGURE 16-1. OEM LogMiner and Flashback Transaction interface

16-ch16.indd 569 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

570 Oracle Database 12c DBA Handbook

 ■ Using the DBMS_REDEFINITION package to redefine a table online

 ■ Moving a datafile online

In the following sections, you will see examples of each of these operations.

Creating Indexes Online
You can create and rebuild indexes while the base tables are accessible to end users. DDL operations
are not allowed while the index is being built. To build an index online, use the ONLINE clause of
the CREATE INDEX command, as shown in the following example:

create index auth$name on author (authorname) online;

Rebuilding Indexes Online
When you use the REBUILD clause of the ALTER INDEX command, Oracle uses the existing
index as the data source for the new index. As a result, you must have adequate space to store
two copies of the index while the operation is taking place. You can use the ALTER INDEX
REBUILD command to change the storage characteristics and tablespace assignment for an index.

To rebuild the index online, use the REBUILD ONLINE clause of the ALTER INDEX command,
as shown in the following example:

alter index ix_auth$name rebuild online;

Coalescing Indexes Online
You can coalesce an index to reclaim space within the index. When you coalesce an index, you
cannot move it to another tablespace (as you can with a rebuild). Coalescing does not require
storage space for multiple copies of the index, so it may be useful when you are attempting to
reorganize an index in a space-constrained environment.

To coalesce an index, use the COALESCE clause of the ALTER INDEX command. All index
coalesces are online operations. The following is a sample coalesce:

alter index auth$name coalesce;

Rebuilding Index-Organized Tables Online
You can use the ALTER TABLE . . . MOVE ONLINE command to rebuild an index-organized table
(IOT) online. The overflow data segment, if present, is rebuilt if you specify the OVERFLOW
keyword. For example, if the BOOKSHELF table is an index-organized table, you can rebuild it
online via the following command:

alter table bookshelf move online;

When using this command, you cannot perform parallel DML. Also, the MOVE ONLINE
option is only available for nonpartitioned index-organized tables.

Redefining Tables Online
You can change a table’s definition while it is accessible by the application users. For example,
you can partition a previously nonpartitioned table while it is being used—a significant capability
for high-availability OLTP applications.

16-ch16.indd 570 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 571

As of Oracle Database 11g, there are very few restrictions on what types of tables cannot be
redefined online. Here are the key restrictions:

 ■ After redefining a table with materialized view logs, the dependent materialized views
must be refreshed with a complete refresh.

 ■ The overflow table of an IOT must be redefined at the same time as the base IOT.

 ■ Tables with fine-grained access control cannot be redefined online.

 ■ Tables with BFILE columns cannot be redefined online.

 ■ Tables with LONG and LONG RAW columns can be redefined, but the LONG and
LONG RAW columns must be converted to CLOBs and BLOBs.

 ■ Tables in the SYS and SYSTEM schemas cannot be redefined online.

 ■ Temporary tables cannot be redefined online.

The following example shows the steps involved in redefining a table online. First, verify that
the table can be redefined. For this example, the CUSTOMER table will be created in the SCOTT
schema and then redefined:

create table customer
(name varchar2(25) primary key,
 street varchar2(50),
 city varchar2(25),
 state char(2),
 zip number);

Next, verify that the table can be redefined by executing the CAN_REDEF_TABLE procedure
of the DBMS_REDEFINITION package. Its input parameters are the username and the table name:

execute dbms_redefinition.can_redef_table('SCOTT','CUSTOMER');

The table is a candidate for online redefinition if the procedure returns the message

PL/SQL procedure successfully completed.

If it returns an error, the table cannot be redefined online, and the error message will give the
reason.

Next, create an interim table, in the same schema, with the desired attributes of the redefined
table. For example, we can partition the CUSTOMER table (to simplify this example, the
TABLESPACE and STORAGE clauses for the partitions are not shown):

create table customer_interim
(name varchar2(25) primary key,
 street varchar2(50),
 city varchar2(25),
 state char(2),
 zip number)
partition by range (name)
 (partition part1 values less than ('l'),
 partition part2 values less than (maxvalue))
;

16-ch16.indd 571 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

572 Oracle Database 12c DBA Handbook

You can now execute the START_REDEF_TABLE procedure of the DBMS_REDEFINITION
package to start the redefinition process. Its input variables are the schema owner, the table to be
redefined, the interim table name, and the column mapping (similar to the list of column names
in a select query). If no column mapping is supplied, all the column names and definitions in the
original table and the interim table must be the same.

execute dbms_redefinition.start_redef_table -
 ('SCOTT','CUSTOMER','CUSTOMER_INTERIM');

Next, create any triggers, indexes, grants, or constraints required on the interim table. In this
example, the primary key has already been defined on CUSTOMER_INTERIM; you could add the
foreign keys, secondary indexes, and grants at this point in the redefinition process. Create the
foreign keys disabled until the redefinition process is complete.

NOTE
To avoid that manual step, you can use the COPY_TABLE_
DEPENDENTS procedure to create all dependent objects on the
interim table. Dependent objects supported via this method include
triggers, indexes, grants, and constraints.

When the redefinition process completes, the indexes, triggers, constraints, and grants on the
interim table will replace those on the original table. The disabled referential constraints on the
interim table will be enabled at that point.

To finish the redefinition, execute the FINISH_REDEF_TABLE procedure of the DBMS_
REDEFINITION package. Its input parameters are the schema name, original table name, and
interim table name:

execute dbms_redefinition.finish_redef_table -
 ('SCOTT','CUSTOMER','CUSTOMER_INTERIM');

You can verify the redefinition by querying the table:

select table_name, high_value
from dba_tab_partitions
where table_owner = 'SCOTT';

TABLE_NAME HIGH_VALUE
------------------------------ ----------
CUSTOMER2 'l'
CUSTOMER2 MAXVALUE

To abort the process after executing the START_REDEF_TABLE procedure, execute the
ABORT_REDEF_TABLE procedure (the input parameters are the schema, original table name,
and interim table name).

Moving a Datafile Online
As of Oracle Database 12c, you can move a datafile while it’s online. You might do this for a
number of reasons:

 ■ Migrating all datafiles to new storage

16-ch16.indd 572 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 16: Miscellaneous High Availability Features 573

 ■ Relocating infrequently used tablespaces to lower-cost or slower storage

 ■ Moving read-only datafiles to optical media

 ■ Moving datafiles into ASM storage from file system storage

Regardless of the reason, you want to keep your database as available as possible to users
who have no idea that one or more datafiles in a tablespace are being moved. Here is an example
of moving a datafile to an ASM diskgroup from a file system directory:

alter database move datafile
 '/u02/oradata/dw2010.dbf' to
 '+data12c/test12c/datafile/dw2010.imp';

When performing a move operation, ensure that there is enough space for a copy of the
datafile at the destination location, because the source file must remain available until the operation
is complete.

Summary
Many features of Oracle Database aid in maximizing ease of maintenance, availability, and
recoverability. Some of the Flashback features of Oracle Database 12c fall into all three categories.

If you routinely have extra disk space available in each tablespace, then enable the recycle
bin so that you can recover objects that were inadvertently dropped by a user, without having to
resort to a more costly and time-consuming recovery effort.

Similarly, if you have set aside part of your fast recovery area for incremental changes to your
database, then you can use Flashback Database to rewind the entire database to a point in time in
the very recent past. This operation will typically be a fraction of the time required when using the
only methods available in previous versions of the database, such as performing a full database
restore operation and then recovering to a point in time right before the logical corruptions
occurred.

Log Miner is a more precise tool—more like a scalpel than a hatchet—and if you have
ARCHIVELOG mode enabled, you can query the archived redo log files to find out who made
what changes and when. Having identified the changes, you can use Log Miner to extract the
DML and DDL commands needed to reverse a very narrow set of changes while maintaining the
logical consistency of the database.

Every version of Oracle Database brings new features that enable or enhance high availability.
Oracle Database 12c is no exception. Creating or rebuilding tables and indexes, in addition to
moving an entire datafile, can happen online with no downtime and minimal impact to online users.

16-ch16.indd 573 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 574

16-ch16.indd 574 13/05/15 10:05 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 575

PART
IV

Networked Oracle

17-ch17.indd 575 13/05/15 10:10 AM

This page intentionally left blank

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 577

CHAPTER
17

Oracle Net

17-ch17.indd 577 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

578 Oracle Database 12c DBA Handbook

D istributing computing power across servers and sharing information across networks
greatly enhances the value of the computing resources available. Instead of being a
stand-alone server, the server becomes an entry point for intranets, the Internet, and

associated websites.

Oracle’s networking tool, Oracle Net Services (Oracle Net), can be used to connect to distributed
databases. Oracle Net facilitates the sharing of data between databases, even if those databases
are on different types of servers running different operating systems and communications protocols.
It also allows for client/server applications to be created; the server can then function primarily for
database I/O while the application can be fielded to a middle-tier application server. Also, the
data presentation requirements of an application can be moved to front-end client machines. In
this chapter, you will see how to configure, administer, and tune Oracle Net.

The installation and configuration instructions for Oracle Net depend on the particular
hardware, operating system, and communications software you are using. The material provided
here will help you get the most out of your database networking, regardless of your configuration.

Overview of Oracle Net
Using Oracle Net distributes the workload associated with database applications. Because many
database queries are performed via applications, a server-based application forces the server to
support both the CPU requirements of the application and the I/O requirements of the database
(see Figure 17-1a). Using a client/server configuration (also referred to as a two-tier architecture)
allows this load to be distributed between two machines. The first, called the client, supports the
application that initiates the request from the database. The back-end machine on which the
database resides is called the server. The client bears the burden of presenting the data, whereas
the database server is dedicated to supporting queries, not applications. This distribution of
resource requirements is shown in Figure 17-1b.

When the client sends a database request to the server, the server receives and executes the
SQL statement that is passed to it. The results of the SQL statement, plus any error conditions that
are returned, are then sent back to the client. Because of the client resources required, the client/
server configuration sometimes is dubbed fat-client architecture. Although workstation costs have
dropped appreciably over recent years, the cost impact to a company can still be substantial.

The more common, cost-effective architecture used with Oracle Net is a thin-client configuration
(also referred to as a three-tier architecture). The application code is housed and executed using
Java applets on a separate server from the database server. The client resource requirements
become very low, and the cost is reduced dramatically. The application code becomes isolated
from the database. Figure 17-2 shows the thin-client configuration.

The client connects to the application server. Once the client is validated, display management
code is downloaded to the client in the form of Java applets. A database request is sent from the
client through the application server to the database server; the database server then receives and
executes the SQL statement that is passed to it. The results of the SQL statement, plus any error
conditions that are returned, are then sent back to the client through the application server. In
some versions of the three-tier architecture, some of the application processing is performed on
the application server and the rest is performed on the database server. The advantage of a thin-
client architecture is that you have low resource requirements and maintenance on the client side,
medium resource requirements and central maintenance on the application server, and high
resource but lower maintenance requirements on one or more back-end database servers.

17-ch17.indd 578 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 579

In addition to client/server and thin-client implementations, server/server configurations are
often needed. In this type of environment, databases on separate servers share data with each
other. You can then physically isolate each server from every other server without logically isolating
the servers. A typical implementation of this type involves corporate headquarters’ servers that
communicate with departmental servers in various locations. Each server supports client applications,
but it also has the ability to communicate with other servers in the network. This architecture is
shown in Figure 17-3.

When one of the servers sends a database request to another server, the sending server acts
like a client. The receiving server executes the SQL statement passed to it and returns the results
plus error conditions to the sender.

When run on the clients and the servers, Oracle Net allows database requests made from one
database (or application) to be passed to another database on a separate server. In most cases,
machines can function both as clients and as servers; the only exceptions are operating systems
with single-user architectures, such as network appliances. In such cases, those machines can
only function as clients.

The end result of an Oracle Net implementation is the ability to communicate with all databases
that are accessible via the network. You can then create synonyms that give applications true
network transparency: The user who submits the query will not know the location of the data that
is used to resolve it. In this chapter, you will see the main configuration methods and files used to
manage inter-database communications, along with usage examples. You will see more detailed
examples of distributed database management in Chapter 18.

FIGURE 17-1. Client/server architecture

a) Server-based application

b) Client/server application

Server

Server
Client

Network

17-ch17.indd 579 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

580 Oracle Database 12c DBA Handbook

Each object in a database is uniquely identified by its owner and name. For example, there
will only be one table named EMPLOYEE owned by the user HR; there cannot be two tables of
the same name and type within the same schema.

Within distributed databases, two additional layers of object identification must be added.
First, the name of the instance that accesses the database must be identified. Next, the name of
the server on which that instance resides must be identified. Putting together these four parts of
the object’s name—its server, its instance, its owner, and its name—results in a global object name.

FIGURE 17-2. Thin-client architecture

17-ch17.indd 580 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 581

In order to access a remote table, you must know the table’s global object name. DBAs and
application administrators can set up access paths to automate the selection of all four parts of the
global object name. In the following sections, you will see how to set up the access paths used by
Oracle Net.

The foundation of Oracle Net is the Transparent Network Substrate (TNS), which resolves all
server-level connectivity issues. Oracle Net relies on configuration files on the client and the
server to manage the database connectivity. If the client and server use different communications
protocols, the Oracle Connection Manager (described in a later section of this chapter) manages
the connections. The combination of the Oracle Connection Manager and the TNS allows Oracle
Net connections to be made independent of the operating system and communications protocol
run by each server. Oracle Net also has the capability to send and receive data requests in an
asynchronous manner; this allows it to support the shared server architecture.

Connect Descriptors
The server and instance portions of an object’s global object name in Oracle Net are identified by
means of a connect descriptor. A connect descriptor specifies the communications protocol, the
server name, and the instance’s service name to use when performing the query. Because of the
protocol-independence of Oracle Net, the descriptor also includes hardware connectivity
information. The generic format for an Oracle Net connect descriptor is shown in the following
example, which uses the TCP/IP protocol and specifies a connection to an instance whose service
name is LOC on a server named HQ (note that the keywords are protocol specific):

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

FIGURE 17-3. Server/server architecture

Server

Server

Network

17-ch17.indd 581 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

582 Oracle Database 12c DBA Handbook

In this connect descriptor, the protocol is set to TCP/IP, the server (HOST) is set to HQ, and the
port on that host that should be used for the connection is port 1521 (which is the Oracle default
registered port assignment for Oracle Net). The instance name is specified in a separate part of the
descriptor as the SID assignment. The instance name or SID can be specified, but neither is
required when the service name is specified. When a service name is specified, an instance name
is only needed if you want to connect to a specific instance in a RAC database. The SID parameter
is used when the service name is not specified as part of the database initialization parameters.

TIP
As part of your security strategy, you can change the default port for
the Oracle listener from 1521 to another unused port to potentially
thwart hackers. Changing this port may have no impact on legitimate
database users, depending on how they connect to the database.

The structure for this descriptor is consistent across all protocols. Also, the descriptors can be
automatically generated via the Net Configuration Assistant. As previously noted, the keywords
used by the connect descriptors are protocol specific. The keywords to use and the values to give
them are provided in the operating system–specific documentation for Oracle Net.

Net Service Names
Users are not expected to type in a connect descriptor each time they want to access remote data.
Instead, the DBA can set up net service names (or aliases), which refer to these connect descriptors.
Service names are stored in a file called tnsnames.ora. This file should be copied to all servers on
the database network. Every client and application server should have a copy of this file as well.

On the server, the tnsnames.ora file should be located in the directory specified by the TNS_
ADMIN environment variable. The file is usually stored in a common directory, such as the
$ORACLE_HOME/network/admin directory on Unix or Linux systems. For a Windows server or
client, this would be in the \network\admin subdirectory under your Oracle software home
directory.

A sample entry in the tnsnames.ora file is shown in the following listing. This example assigns
a net service name of LOC to the connect descriptor with the same name given earlier:

LOC=(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

A user wishing to connect to the LOC instance on the HQ server can now use the LOC net
service name, as shown in this example:

sqlplus hr/hr@loc;

The “@” tells the database to use the net service name that follows it to determine which database
to log into. If the username and password are correct for that database, a session is opened there
and the user can begin using the database.

17-ch17.indd 582 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 583

Net service names create aliases for connect descriptors, so you do not need to give the net
service name the same name as the instance. For example, you could give the LOC instance the
service name PROD or TEST, depending on its use within your environment. The use of synonyms
to further enhance location transparency will be described in the section “Using Database Links”
later in this chapter.

Replacing tnsnames.ora with Oracle Internet Directory
A directory is a specialized electronic database in which you store information about one or more
objects. Your e-mail address book is an example of a directory. Within each of your e-mail address
entries is information about the contact’s name, e-mail address, home and business addresses, and
so on. You can use the address book to locate a specific person with whom you want to correspond.

Oracle provides an electronic database tool called the Oracle Internet Directory (OID) for use
in resolving user, server, and database locations as well as password and other important
information storage. To support the deployment and maintenance of thousands of clients, the
emphasis has moved from supporting many separate tnsnames.ora files on distributed machines
to supporting one or more directories on centralized machines. See the section “Directory
Naming with Oracle Internet Directory,” later in this chapter, for more information about OID.

Listeners
Each database server on the network must contain a listener.ora file. The listener.ora file lists the
names and addresses of all the listener processes on the machine and the instances they support.
Listener processes receive connections from Oracle Net clients.

A listener.ora file has four parts:

 ■ Header section

 ■ Protocol address list

 ■ Instance definitions

 ■ Operational parameters

The listener.ora file is automatically generated by the Oracle Net Configuration Assistant tool
(netca on Linux). You can edit the resultant file as long as you follow its syntax rules. The following
listing shows sample sections of a listener.ora file—an address definition and an instance definition:

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY=loc.world)
)
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HR)
 (PORT=1521)
)
)
SID_LIST_LISTENER =
 (SID_DESC =

17-ch17.indd 583 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

584 Oracle Database 12c DBA Handbook

 (GLOBAL_DBNAME = loc.world)
 (ORACLE_HOME = /u00/app/oracle/product/12.1.0/grid)
 (SID_NAME = loc)
)
)

The first portion of this listing contains the protocol address list—one entry per instance. The
protocol address list defines the protocol addresses on which a listener is accepting connections,
including an interprocess calls (IPC) address-definition section. In this case, the listener is listening
for connections to the service identified as loc.world as well as any requests coming from the HR
machine on PORT 1521 using the TCP/IP protocol. The .world suffix is the default domain name
for Oracle Net connections.

NOTE
Using SID_LIST_LISTENER is not required in Oracle Database 10g
or later; it is required in previous versions of Oracle Net only if you
monitor and manage the instance with Oracle Enterprise Manager.

The second portion of the listing, beginning with the SID_LIST_LISTENER clause, identifies the
global database name as defined in the init.ora file for that database, the Oracle software home
directory for each instance the listener is servicing, and the instance name or SID. The GLOBAL_
DBNAME comprises the database name and database domain. The SID_LIST descriptor is retained
for static database registration, for backward compatibility with earlier versions, and for use by
Oracle Enterprise Manager. Databases dynamically register with the listener on database startup;
a default installation of Oracle Database 12c on Linux only includes a listener.ora file with the
LISTENER parameter, as in this sample listener.ora file from the RPT12C database used in examples
throughout this book:

listener.ora Network Configuration File:
/u00/app/oracle/product/12.1.0/grid/network/admin/listener.ora
Generated by Oracle configuration tools.
LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = dw)(PORT = 1521))
)
)
Cloud Control 12c agent settings
ENABLE_GLOBAL_DYNAMIC_ENDPOINT_LISTENER=ON # line added by Agent
VALID_NODE_CHECKING_REGISTRATION_LISTENER=SUBNET # line added by Agent

For the listener on the server dw (for the database instance RPT12C), this listener.ora file does
not even need to exist unless you want to add additional listeners or provide static registration
entries: if there is no listener.ora file, the default listener name is LISTENER, the default value for
PROTOCOL is TCP, the HOST parameter defaults to the server’s host name, and the default value
for PORT (the TCP/IP port number) is 1521. If you are using Oracle Cloud Control 12c to monitor
this server and its databases, the agent software will add lines to this file as you can see in the
previous example.

17-ch17.indd 584 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 585

NOTE
If you change the Oracle software home directory for an instance, you
need to change the listener.ora file for the server.

listener.ora Parameters
The listener.ora file supports a large number of parameters. The parameters should each be suffixed
with the listener name. For example, the default listener name is LISTENER, so the LOG_FILE
parameter is named LOG_FILE_LISTENER. The parameters in Table 17-1 apply whether you’re
using the Automatic Diagnostic Repository (ADR) or not.

Parameter Description

DESCRIPTION Serves as a container for listener protocol addresses.

ADDRESS Specifies a single listener protocol address. Embedded within a
DESCRIPTION.

IP Specifies which IP address the listener listens on when a host
name is specified and the HOST parameter specifies a host
name. Values are FIRST, V4_ONLY, and V6_ONLY.

QUEUESIZE Specifies the number of concurrent connection requests that
the listener can accept on a TCP/IP or IPC listening endpoint.

RECV_BUF_SIZE Specifies, in bytes, the buffer space for receive operations of
sessions. Embedded within a DESCRIPTION.

SEND_BUF_SIZE Specifies, in bytes, the buffer space for send operations of
sessions. Embedded within a DESCRIPTION.

SID_LIST Lists SID descriptions; configures service information for the
listener; required for OEM, external procedure calls, and
heterogeneous services.

SID_DESC Specifies service information for a specific instance or service.
Embedded within SID_LIST.

ENVS Specifies environment variables for the listener to set prior to
executing a dedicated server program or an executable specified
via the PROGRAM parameter. Embedded within SID_DESC.

GLOBAL_DBNAME Identifies the database service. Embedded within SID_DESC.

ORACLE_HOME Specifies the Oracle software home directory for the service.
Embedded within SID_DESC.

PROGRAM Names the service executable program. Embedded within
SID_DESC.

TABLE 17-1. listener.ora Parameters, ADR or non-ADR

17-ch17.indd 585 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

586 Oracle Database 12c DBA Handbook

Parameter Description

SID_NAME Specifies the Oracle instance name for the service. Embedded
within SID_DESC.

CONNECTION_RATE_listener_
name

Specifies the global rate for all listener endpoints that are rate
limited, specified in number of connections per second.

RATE_LIMIT Set to YES or NO and is embedded in the ADDRESS section.

SDU Specifies the session data unit (SDU) size for data packet
transfers. Values are 512 to 32768 bytes. Embedded within
SID_DESC.

DIAG_ADR_ENABLED_listener_
name

Set to ON or OFF to enable or disable ADR-related parameters.

ADMIN_RESTRICTIONS_
listener_name

Disables run-time modification of listener parameters. Values
are ON and OFF (the default).

CRS_NOTIFICATION_listener_
name

Set to ON or OFF to notify Cluster Ready Services (CRS) when
listener is started or stopped.

DEFAULT_SERVICE_listener_
name

Specifies a default service name for the client when the service
name is not specified.

INBOUND_CONNECT_
TIMEOUT_listener_name

Specifies the time, in seconds, for the client to complete its
connect request to the listener after the network connection
has been established.

LOGGING_listener_name Turns listener logging ON or OFF.

PASSWORDS_listener_name Specifies an encrypted password for the listener process. The
password can be generated via the Listener Control Utility
(lsnrctl) or Oracle Net Manager.

SAVE_CONFIG_ON_STOP_
listener_name

Set to TRUE or FALSE to specify whether runtime configuration
changes are automatically saved to the listener.ora file.

SSL_CLIENT_AUTHENTICATION Set to TRUE or FALSE to specify whether a client is
authenticated with SSL.

WALLET_LOCATION Specifies the location of certificates, keys, and trust points used
by SSL for secure connections. For the WALLET_LOCATION
parameter, you can specify the SOURCE, METHOD,
METHOD_DATA, DIRECTORY, KEY, PROFILE, and INFILE
subparameters.

TABLE 17-1. listener.ora Parameters, ADR or non-ADR (Continued)

You can modify the listener parameters after the listener has been started. If you use the
SAVE_CONFIG_ON_STOP option, any changes you make to a running listener will be written to
its listener.ora file. Examples of controlling the listener behavior are presented later in this chapter.

17-ch17.indd 586 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 587

If you are using ADR (by setting DIAG_ADR_ENABLED_listener_name to ON), then the
parameters in Table 17-2 apply and non-ADR debugging parameters are ignored.

As you can see, using ADR means you have to specify fewer parameters in listener.ora in
addition to letting Oracle manage your log and trace files for you. If you are not using ADR, then
the listener.ora tracing-related parameters listed in Table 17-3 apply.

Parameter Description

ADR_BASE_listener_name Base directory to store trace and log files when ADR is
enabled. Defaults to ORACLE_BASE, or ORACLE_HOME/
log if ORACLE_BASE is undefined.

DIAG_ADR_ENABLED_listener_name Set to ON (default) to use the ADR-related parameters;
otherwise OFF.

LOGGING_listener_name Defaults to ON for logging. This parameter is used for
non-ADR tracing as well.

TRACE_LEVEL_listener_name Turns tracing on with values other than OFF or 0.

 ■ 0/off: no trace
 ■ 4/user: user trace
 ■ 10/admin: administrative trace
 ■ 16/support: Oracle Support trace

TRACE_TIMESTAMP_listener_name Adds a timestamp to every trace event in the format
dd-mon-yyyy hh:mi:ss:ms

TABLE 17-2. listener.ora Parameters, ADR

Parameter Description

LOG_DIRECTORY_listener_name Directory to store log files.

TRACE_DIRECTORY_listener_name Directory to store trace files.

DIAG_ADR_ENABLED_listener_name Set to ON (default) to use the ADR-related parameters;
otherwise OFF.

LOG_FILE_listener_name The name of the log file for the specified listener.

TRACE_FILE_listener_name The name of the trace file for the specified listener.

TRACE_FILELEN_listener_name Limits the size of each listener trace file in KB.

TRACE_FILENO_listener_name Specifies the number of trace files to retain in conjunction
with the TRACE_FILELEN parameter. Trace files are cycled
much like online redo log files.

TABLE 17-3. listener.ora Parameters, non-ADR

17-ch17.indd 587 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

588 Oracle Database 12c DBA Handbook

Using the Oracle Net Configuration Assistant
The Oracle Net Configuration Assistant performs the initial network configuration steps after the
Oracle software installation and automatically creates the default, basic configuration files. You
can use the Oracle Net Manager tool to administer network services. The tools have graphical
user interfaces for configuring the following elements:

 ■ Listener

 ■ Naming methods

 ■ Local net service names

 ■ Directory usage

Figure 17-4 shows the initial screen of the Oracle Net Configuration Assistant. As shown in
Figure 17-4, Listener Configuration is the default option.

Configuring the Listener
Using the Oracle Net Configuration Assistant, you can configure a listener easily and quickly.
When you select the Listener configuration option on the Welcome screen and click Next, you
are given the choice to add, reconfigure, delete, or rename a listener. Select the Add option and
click Next. The next step is to select a listener name. Figure 17-5 shows the Listener Name screen
with the default listener name, LISTENER, displayed.

After selecting a listener name and clicking Next, you must select a protocol, as shown in
Figure 17-6. The default protocol selected is TCP.

FIGURE 17-4. Oracle Net Configuration Assistant: Welcome screen

17-ch17.indd 588 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 589

FIGURE 17-5. Listener Configuration, Listener Name screen

FIGURE 17-6. Listener Configuration, Select Protocols screen

17-ch17.indd 589 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

590 Oracle Database 12c DBA Handbook

After you select a protocol and click Next, you must designate a port number on which the
new listener will listen. The default port number presented is 1521, but you are given the option
to designate another port. After you click Next, the next three screens include a prompt to
configure another listener, a request to indicate a listener you want to start, and a confirmation
that the listener configuration is completed for this listener.

Naming Methods Configuration
Choosing the Naming Methods Configuration option of the Oracle Net Configuration Assistant
(refer to Figure 17-4) enables you to configure net service names. There are many options
available for naming methods. A couple of them are listed here:

Local The tnsnames.ora File

Host Name Uses a TCP naming service. You cannot use connection
pooling or the Oracle Connection Manager with this option.

Sun NIS, DCE CDS, Directory External naming services.

If you accept the Host Name option, you see an informational screen advising you that Host
Name naming does not require any additional configuration “at this time.” You are instructed that
any time you add a database service in the future, you must make an entry in your TCP/IP host
name resolution system.

Once you have selected the naming methods, the Oracle Net Configuration Assistant displays
a confirmation screen.

Local Net Service Name Configuration
You can choose the Oracle Net Configuration Assistant’s Local Net Service Name Configuration
option (refer to Figure 17-4) to manage net service names. Five options are available for the Local
Net Service Name Configuration tool:

 ■ Add

 ■ Reconfigure

 ■ Delete

 ■ Rename

 ■ Test

For the Add option, you must first specify the database version you are going to access and
the service name. Once you have entered the global service name or SID, you are prompted to
enter the protocol. You must specify the machine name of the host and designate the listener port.

The next screen offers you the option to verify that the Oracle database you have specified
can be successfully reached. You can choose to skip or perform the connection test. Once you
have either chosen to test the connection, and it has completed successfully, or opted to skip the
test, you are prompted to specify the service name for the new net service. By default, the service
name you entered earlier is used, but you can specify a different name if you so choose. Finally,
you are notified that your new local service name has been successfully created, and you are
asked if you want to configure another one.

You can use the Reconfigure option to select and modify an existing net service name. You are
prompted to select an existing net service name. The Database Version screen, the Service Name

17-ch17.indd 590 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 591

screen, and the Select Protocols screen are used as well as the TCP/IP Protocol screen. The option
to test the database connection is offered, as well as a screen to enable you to rename the net
service you are reconfiguring.

The Test option enables you to verify that your configuration information is correct, that the
database specified can be reached, and that a successful connection can be made.

Directory Usage Configuration
A directory service provides a central repository of information for the network. The most common
directory forms support the Lightweight Directory Access Protocol (LDAP). An LDAP server can
provide the following features:

 ■ Store net service names and their location resolution

 ■ Provide global database links and aliases

 ■ Act as a clearinghouse for configuration information for clients across the entire network

 ■ Aid in configuring other clients

 ■ Update client configuration files automatically

 ■ House client information such as usernames and passwords

The Oracle Net Configuration Assistant’s Directory Usage Configuration option supports both
Oracle Internet Directory and Microsoft Active Directory. The Directory Type screen is shown in
Figure 17-7 in a Linux environment; you would see an option for Microsoft Active Directory if
you were running Oracle on Windows Server.

FIGURE 17-7. Directory Usage Configuration, Directory Type screen

17-ch17.indd 591 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

592 Oracle Database 12c DBA Handbook

Next, as shown in Figure 17-8, you are prompted to supply the directory service location host
name, port, and SSL port. By default, the port is 389 and the SSL port is 636. Once you have
specified this information, the tool attempts to connect to your directory repository and verify that
you have already established a schema and a context. If you have not, you will receive an error
message instructing you to do so.

Using the Oracle Net Manager
There is some overlap between the Oracle Net Configuration Assistant described in the preceding
section and the Oracle Net Manager utility. Both tools can be used to configure a listener or a net
service name. Both provide ease in configuring a Names service, local profile, and directory service.
The Oracle Net Manager is not quite as user friendly but provides a more in-depth configuration
alternative. You start the Oracle Net Manager on Linux with the netmgr command.

As shown in Figure 17-9, the opening screen of the Oracle Net Manager lists the basic
functionality it provides, as follows:

 ■ Naming Allows you to define simple names to identify the location of a service

 ■ Naming Methods Allows you to define the way the simple names map to connect
descriptors

 ■ Listeners Supports the creation and configuration of listeners

FIGURE 17-8. Specifying an LDAP directory service

17-ch17.indd 592 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 593

You can use Oracle Net Manager to manage your configuration files and test your connections.
Options such as Oracle Advanced Security can be managed via the Oracle Net Manager. The
Oracle Advanced Security option provides end-to-end encryption of data in a distributed environment.
By default, your data will travel in clear text across the network unless you use Oracle’s encryption
or a hardware-based encryption.

You can create a new net service name for your tnsnames.ora file via the Oracle Net Service
Names Wizard. Once you have specified a net service name, you are prompted to select the
network protocol you want to use. The options are as follows:

 ■ TCP/IP (Internet Protocol)

 ■ TCP/IP with SSL (Secure Internet Protocol)

 ■ Named Pipes (Microsoft Networking)

 ■ IPC (Local Database)

FIGURE 17-9. Oracle Net Manager Console configuration window

17-ch17.indd 593 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

594 Oracle Database 12c DBA Handbook

The Oracle Net Manager will prompt you for each of the parameters required to establish a
database connection and will modify your local tnsnames.ora file to reflect the information you
provide. The information you will be prompted for is host, port number, service or SID name
(depending on the Oracle version), and the connection type (either database default, shared
server, or dedicated server). Finally, you are given the opportunity to test the new service name.
You can also test existing net service names by selecting the net service name from the displayed
list of services and then selecting the Test Connection option from the menu options.

The simpler you keep your client and server configurations, and the closer you adhere to the
default values, the simpler the management of your configuration files will be. The Oracle Net
Manager simplifies your configuration file administration. One word of caution: If you are using
your listener to listen for connections from the Internet through a firewall, be sure that you do not
leave a listener listening on the default port, 1521, because a hole through your firewall can leave
you open to potential remote listener reconfiguration. An unsecured listener using default values
can enable a hacker to obtain database information that could compromise your site.

Starting the Listener Server Process
The listener process is controlled by the Listener Control utility, executed via the lsnrctl command.
The options available for the lsnrctl command are described in the next section. To start the listener,
use this command:

lsnrctl start

This command will start the default listener (named LISTENER). If you wish to start a listener
with a different name, include that listener’s name as the second parameter in the lsnrctl command.
For example, if you created a listener called ANPOP_LSNR, you could start it via the following
command:

lsnrctl start anpop_lsnr

In the next section you will find descriptions of the other parameters available for the Listener
Control utility.

After starting a listener, you can check that it is running by using the status option of the
Listener Control utility. The following command can be used to perform this check:

[oracle@tettnang ~]$ lsnrctl status
LSNRCTL for Linux: Version 12.1.0.1.0 - Production on 10-JAN-2014 08:36:28
Copyright (c) 1991, 2013, Oracle. All rights reserved.

Connecting to (ADDRESS=(PROTOCOL=tcp)(HOST=)(PORT=1521))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 12.1.0.1.0 – Production
Start Date 01-OCT-2013 10:22:55
Uptime 100 days 23 hr. 13 min. 33 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File

17-ch17.indd 594 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 595

/u00/app/oracle/product/12.1.0/grid/network/admin/listener.ora
Listener Log File
/u00/app/oracle/diag/tnslsnr/tettnang/listener/alert/log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(KEY=EXTPROC1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=tettnang.epic.com)(PORT=1521)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=tettnang.epic.com)(PORT=5501))
 (Security=(my_wallet_directory=/u00/app/oracle/admin/XSAH2014/xdb_wallet))
 (Presentation=HTTP)(Session=RAW))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=tettnang.epic.com)(PORT=5500))
 (Security=(my_wallet_directory=/u00/app/oracle/admin/RPT12C/xdb_wallet))
 (Presentation=HTTP)(Session=RAW))
Services Summary...
Service "+ASM" has 1 instance(s).
 Instance "+ASM", status READY, has 1 handler(s) for this service...
Service "RPT12C" has 1 instance(s).
 Instance "RPT12C", status READY, has 1 handler(s) for this service...
Service "RPT12CXDB" has 1 instance(s).
 Instance "RPT12C", status READY, has 1 handler(s) for this service...
Service "XSAH2014.epic.com" has 1 instance(s).
 Instance "XSAH2014", status READY, has 1 handler(s) for this service...
Service "dwcdb" has 1 instance(s).
 Instance "dwcdb", status READY, has 1 handler(s) for this service...
Service "dwcdbXDB" has 1 instance(s).
 Instance "dwcdb", status READY, has 1 handler(s) for this service...
Service "rjbpdb1" has 1 instance(s).
 Instance "dwcdb", status READY, has 1 handler(s) for this service...
The command completed successfully
[oracle@tettnang ~]$

If the listener is named anything other than LISTENER in the listener.ora file, you must add the
name of the listener to the status command. For example, if the listener is named ANPOP_LSNR,
the command is

lsnrctl status anpop_lsnr

The status output will show if the listener has been started and the services it is currently
supporting, as defined by its listener.ora file. The listener parameter file and its log file location
will be displayed.

If you wish to see the operating system–level processes that are involved, use the following
command. This example uses the Unix ps -ef command to list the system’s active processes. The
grep tnslsnr command then eliminates those rows that do not contain the term “tnslsnr.”

[oracle@tettnang ~]$ ps -ef | grep tnslsnr
oracle 3756 1 0 2013 ? 00:06:52
 /u00/app/oracle/product/12.1.0/grid/bin/tnslsnr
 LISTENER -no_crs_notify –inherit
oracle 27106 21294 0 08:40 pts/0 00:00:00 grep tnslsnr
[oracle@tettnang ~]$

This output shows two processes: the listener process and the process that is checking for it.
The first line of output is wrapped to the second line and may be truncated by the operating system.

17-ch17.indd 595 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

596 Oracle Database 12c DBA Handbook

Controlling the Listener Server Process
You can use the Listener Control utility, lsnrctl, to start, stop, and modify the listener process on
the database server. Its command options are listed in Table 17-4. Each of these commands may
be accompanied by a value; for all except the set password command, that value will be a listener
name. If no listener name is specified, the default (LISTENER) will be used. Once within lsnrctl,
you can change the listener being modified via the set current_listener command.

Command Description

change_password Sets a new password for the listener. You will be prompted for the old password
for the listener.

exit Exits lsnrctl.

help Displays a list of the lsnrctl command options. You can also see additional
options via the help set and help show commands.

quit Exits lsnrctl.

reload Allows you to modify the listener services after the listener has been started. It
forces SQL*Net to read and use the most current listener.ora file.

save_config Creates a backup of your existing listener.ora file and then updates your
listener.ora file with parameters you have changed via lsnrctl.

services Displays the services available, along with their connection history. It also lists
whether each service is enabled for remote DBA or autologin access.

set Sets parameter values. Options include the following:
current_listener changes the listener process whose parameters are being set or
shown.
displaymode changes the format and level of detail for the services and status
commands.
inbound_connect_timeout sets the time, in seconds, for the client to complete
its connection to the listener before being timed out.
log_directory sets the directory for the listener log file.
log_file sets the name of the listener log file.
log_status sets whether logging is ON or OFF.
password sets the listener password.
raw_mode changes the displaymode format to show all data; only use raw_
mode in conjunction with Oracle Support.
save_config_on_stop saves your configuration changes to your listener.ora file
when you exit lsnrctl.
startup_waittime sets the number of seconds the listener sleeps before
responding to a lsnrctl start command.
trc_directory sets the directory for the listener trace file.
trc_file sets the name for the listener trace file.
trc_level sets the trace level (ADMIN, USER, SUPPORT, or OFF). See lsnrctl trace.

TABLE 17-4. Listener Control (lsnrctl) Utility Commands

17-ch17.indd 596 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 597

TIP
Oracle best practices dictate not using a listener password in Oracle
Database 12c. The default authentication mode for the listener is local
OS authentication, which requires the listener administrator to be a
member of the local dba group.

You can enter the lsnrctl command by itself to enter the lsnrctl utility shell, from which all
other commands can then be executed.

The command options listed in Table 17-4 give you a great deal of control over the listener
process, as shown in the following examples. In most of these examples, the lsnrctl command is
first entered by itself. This places the user in the lsnrctl utility (as indicated by the LSNRCTL prompt).
The rest of the commands are entered from within this utility. The following examples show the
use of the lsnrctl utility to stop, start, and generate diagnostic information about the listener.

To stop the listener:

[oracle@tettnang ~]$ lsnrctl stop
LSNRCTL for Linux: Version 12.1.0.1.0 -
 Production on 10-JAN-2014 08:44:31
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Connecting to (ADDRESS=(PROTOCOL=tcp)(HOST=)(PORT=1521))
The command completed successfully
[oracle@tettnang ~]$

To show status information for the listener:

lsnrctl status

Command Description

show Shows current parameter settings. Options are the same as the set options with
the sole omission of the password command.

spawn Spawns a program that runs with an alias in the listener.ora file.

start Starts the listener.

status Provides status information about the listener, including the time it was started,
its parameter filename, its log file, and the services it supports. This can be used
to query the status of a listener on a remote server.

stop Stops the listener.

trace Sets the trace level of the listener to one of four choices: OFF, USER (limited
tracing), ADMIN (high level of tracing), or SUPPORT (for ORACLE Support).

version Displays version information for the listener, TNS, and the protocol adapters.

TABLE 17-4. Listener Control (lsnrctl) Utility Commands (Continued)

17-ch17.indd 597 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

598 Oracle Database 12c DBA Handbook

To list the status of a listener on another host, add a service name from that host as a parameter to
the status command. The following example uses the HQ service name shown earlier in this chapter:

lsnrctl status hq

To list version information about the listener:

lsnrctl version

To list information about the services supported by the listener:

[oracle@tettnang ~]$ lsnrctl services
LSNRCTL for Linux: Version 12.1.0.1.0 -
 Production on 10-JAN-2014 08:46:57
Copyright (c) 1991, 2013, Oracle. All rights reserved.
Connecting to (ADDRESS=(PROTOCOL=tcp)(HOST=)(PORT=1521))
Services Summary...
Service "+ASM" has 1 instance(s).
 Instance "+ASM", status READY, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0 state:ready
 LOCAL SERVER
Service "RPT12C" has 1 instance(s).
 Instance "RPT12C", status READY, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0 state:ready
 LOCAL SERVER
Service "RPT12CXDB" has 1 instance(s).
. . .
 Instance "dwcdb", status READY, has 1 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0 state:ready
 LOCAL SERVER
The command completed successfully
[oracle@tettnang ~]$

The Oracle Connection Manager
The Oracle Connection Manager portion of Oracle Net acts as a router used to establish database
communication links between otherwise incompatible network protocols as well as to take
advantage of multiplexing and access control.

The advantage of the Oracle Connection Manager is that all servers do not have to use the same
communications protocol. Each server can use the communications protocol that is best suited to
its environment and will still be able to transfer data back and forth with other databases. This
communication takes place regardless of the communications protocols used on the remote servers;
the Oracle Connection Manager takes care of the differences between the protocols. The protocols
supported by the Oracle Connection Manager are IPC, Named Pipes, SDP, TCP/IP, and TCP/IP with SSL.

You can use multiple access paths to handle different client requests. The Oracle Connection
Manager will select the most appropriate path based on path availability and network load. The
relative cost of each path is specified via the Network Manager utility when the Oracle Connection
Manager is set up.

17-ch17.indd 598 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 599

In an intranet environment, the Oracle Connection Manager can be used as a firewall for Oracle
Net traffic. You can establish filtering rules to enable or disable specific client access using the
Oracle Connection Manager. The filtering rules can be based on any of the following criteria:

 ■ Destination host names or IP addresses for servers

 ■ Destination database service name

 ■ Source host names or IP addresses for clients

 ■ Whether the client is using the Oracle Advanced Security option

The Oracle Connection Manager is used to enhance your firewall security by filtering out
client access based on one or more aspects of the filtering rules you create. For example, you could
specify that an IP address is to be refused access using the CMAN_RULES parameter within the
cman.ora file.

The file sqlnet.ora may be used to specify additional diagnostics beyond the default diagnostics
provided.

Using the Oracle Connection Manager
Oracle Net uses the Oracle Connection Manager to support connections within homogenous
networks, reducing the number of physical connections maintained by the database. Two main
processes and a control utility are associated with the Oracle Connection Manager, as follows:

CMGW The gateway process that acts as a hub for the Connection Manager

CMADMIN A multithreaded process responsible for all administrative tasks and issues

CMCTL A utility that enables basic management functions for Oracle Connection
Manager administration

The CMGW Process
The Connection Manager Gateway (CMGW) process registers itself with the CMADMIN process
and listens for incoming connection requests. By default, this process listens on port 1630 using
the TCP/IP protocol. The CMGW process initiates connection requests to listeners from clients and
relays data between the client and server.

The CMADMIN Process
The multithreaded Connection Manager Administrative (CMADMIN) process performs many tasks
and functions. The CMADMIN processes CMGW registrations and registers source route addressing
information about the CMGW and listeners. The CMADMIN process is tasked with identifying all
listener processes that support at least one database. Using Oracle Internet Directory, the CMADMIN
performs the following tasks:

 ■ Locates local servers

 ■ Monitors registered listeners

 ■ Maintains client address information

 ■ Periodically updates the Connection Manager’s cache of available services

The CMADMIN process handles source route information about the CMGW and listeners.

17-ch17.indd 599 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

600 Oracle Database 12c DBA Handbook

Configuring the Oracle Connection Manager
The cman.ora file, located by default in the $ORACLE_HOME/network/admin directory on a
Unix system and in %ORACLE_HOME%\network\admin on a Windows system, contains the
configuration parameters for the Oracle Connection Manager. The file contains protocol addresses
of the listening gateway process, access control parameters, and profile or control parameters.

The complete set of cman.ora parameters is shown in Table 17-5.

Parameter Description

ADDRESS Specifies the protocol address (such as the protocol, the host, and
the port) of the Connection Manager.

RULE Specifies an access control rule list to filter incoming connections.
Subparameters allow source and destination host names, IP
addresses, and service names to be filtered.

PARAMETER_LIST Specifies attribute values when overriding the default settings. The
remainder of the parameters in this listing are subparameters within
the PARAMETER_LIST setting.

ASO_AUTHENTICATION_
FILTER

Specifies whether Oracle Advanced Security authentication settings
must be used by the client. The default is OFF.

CONNECTION_STATISTICS Specifies whether the SHOW_CONNECTIONS command displays
connection statistics. The default is NO.

EVENT_GROUP Specifies which event groups are logged. The default is NONE.

IDLE_TIMEOUT Specifies the amount of time, in seconds, that an established connection
can remain active without transmitting data. The default is 0.

INBOUND_CONNECT_
TIMEOUT

Specifies, in seconds, how long the Oracle Connection Manager
listener waits for a valid connection from a client or another instance of
Oracle Connection Manager. The default is 0.

LOG_DIRECTORY Specifies the destination directory for Oracle Connection Manager
log files. The default is the /network/log subdirectory under the
Oracle home directory.

LOG_LEVEL Specifies the logging level (OFF, USER, ADMIN, or SUPPORT). The
default is SUPPORT.

MAX_CMCTL_SESSIONS Specifies the maximum number of concurrent local or remote
sessions of the Oracle Connection Manager Control Utility allowable
for a given instance. The default is 4.

MAX_CONNECTIONS Specifies the maximum number of connections a gateway process
can handle. The default is 256.

MAX_GATEWAY_
PROCESSES

Specifies the maximum number of gateway processes that an
instance of Oracle Connection Manager supports. The default is 16.

TABLE 17-5. cman.ora Parameters

17-ch17.indd 600 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 601

Using the Connection Manager Control Utility (CMCTL)
The Connection Manager Control Utility provides administrative access to CMADMIN and
CMGW. The Connection Manager is started via the cmctl command. The command syntax is

cmctl command process_type

The default startup command from an operating system prompt is as follows:

cmctl start cman

The commands are broken into four basic types:

 ■ Operational commands such as start

 ■ Modifier commands such as set

 ■ Informational commands such as show

 ■ Command utility operations such as exit

Using the parameter REMOTE_ADMIN, you can control, but not start, remote managers. Unlike
the Listener utility discussed earlier in this chapter, you cannot interactively set a password for the
Oracle Connection Manager. To set a password for this tool, you put a plain-text password in the
cman.ora file. The available command options for the cmctl command are shown in Table 17-6.

Parameter Description

MIN_GATEWAY_
PROCESSES

Specifies the minimum number of gateway processes that an instance
of Oracle Connection Manager must support. The default is 2.

OUTBOUND_CONNECT_
TIMEOUT

Specifies, in seconds, the length of time that the Oracle Connection
Manager instance waits for a valid connection to be established with
the database server or with another Oracle Connection Manager
instance. The default is 0.

PASSWORD_instance_name The encrypted instance password, if set.

REMOTE_ADMIN Specifies whether remote access to an Oracle Connection Manager
is allowed. The default is NO.

SESSION_TIMEOUT Specifies the maximum time, in seconds, allowed for a user session.
The default is 0.

TRACE_DIRECTORY Specifies the directory for the trace files. The default is the /network/
trace subdirectory under the Oracle home directory.

TRACE_FILELEN Specifies, in KB, the size of the trace file. The default is 0.

TRACE_FILENO Specifies the number of trace files, used cyclically. The default is 0.

TRACE_LEVEL Specifies the trace level (OFF, USER, ADMIN, or SUPPORT). The
default is OFF.

TRACE_TIMESTAMP Adds a timestamp to every trace event in the trace files. The default
is OFF.

TABLE 17-5. cman.ora Parameters (Continued)

17-ch17.indd 601 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

602 Oracle Database 12c DBA Handbook

If the Connection Manager has been started, any client that has SOURCE_ROUTE set to YES in
its tnsnames.ora file can use the Connection Manager. The Connection Manager reduces system
resource requirements by maintaining logical connections while reusing physical connections.

Command Description

ADMINISTER Enables you to choose an instance of Oracle Connection Manager. The
format is administer -c followed by the instance name, with an optional
using password clause.

CLOSE
CONNECTIONS

Terminates connections. You can specify the source, destination, service,
state, and gateway process ID for the connections to terminate.

EXIT Exits the Oracle Connection Manager Control utility.

HELP Lists all CMCTL commands.

QUIT Exits the Oracle Connection Manager Control utility.

RELOAD Dynamically re-reads parameters and rules from the cman.ora file.

RESUME GATEWAYS Resumes suspended gateway processes.

SAVE_PASSWORD Saves the current password to the cman.ora configuration parameter file.

SET Displays a list of parameters that can be modified within CMCTL. You
can set values for ASO_AUTHENTICATION_FILTER, CONNECTION_
STATISTICS, EVENT, IDLE_TIMEOUT, INBOUND_CONNECT_TIMEOUT,
LOG_DIRECTORY, LOG_LEVEL, OUTBOUND_CONNECT_TIMEOUT,
PASSWORD, SESSION_TIMEOUT, TRACE_DIRECTORY, and TRACE_LEVEL.

SHOW Displays a list of parameters whose values can be displayed. You can
show their values individually by specifically listing them after the show
command (for example, show trace_level).

SHOW ALL Displays the values of all parameters and rules.

SHOW DEFAULTS Displays the default parameter settings.

SHOW EVENTS Displays the events.

SHOW GATEWAYS Displays the current status of specific gateway processes.

SHOW PARAMETERS Displays current parameter settings.

SHOW RULES Displays the current access control list.

SHOW SERVICES Displays information on the Oracle Connection Manager services,
including gateway handlers and the number of connections.

SHOW STATUS Displays basic information about the instance and its current statistics.

SHOW VERSION Displays the current version and name of the CMCTL utility.

SHUTDOWN Shuts down specific gateway processes or the entire Oracle Connection
Manager instance.

STARTUP Starts the Oracle Connection Manager.

SUSPEND GATEWAY Prevents gateway processes from accepting new client connections.

TABLE 17-6. cmctl Command Options

17-ch17.indd 602 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 603

Directory Naming with Oracle Internet Directory
Oracle Internet Directory facilitates support for LDAP-compliant directory servers for centralized
network names resolution management in a distributed Oracle network. For localized management,
you can still use the tnsnames.ora file.

Oracle Internet Directory Architecture
The file ldap.ora, located in the $ORACLE_HOME/network/admin directory on a Unix system
and in %ORACLE_HOME%\network\admin in a Windows environment, stores the configuration
parameters to access a directory server. Oracle supports both the Oracle Internet Directory and
Microsoft Active Directory LDAP protocols.

To resolve a connect descriptor using a centralized directory server, the steps are as follows:

1. Oracle Net, on behalf of the client, contacts the directory server to obtain the resolution
for the connect identifier to a connect descriptor.

2. The directory server takes the connect identifier, locates the associated connect descriptor,
and returns the descriptor to Oracle Net.

3. Oracle Net uses the resolved descriptor to make the connection request to the correct
listener.

The directory server uses a tree structure in which to store its data. Each node in the tree is an
entry. A hierarchical structure of entries is used, called a directory information tree (DIT), and
each entry is identified by a unique distinguished name (DN) that tells the directory server exactly
where the entry resides. DITs can be structured to use an existing Domain Name System (DNS),
organizational or geographical lines, or Internet naming scheme.

Using a DIT that is organized along organizational lines, for example, the DN for the HR server
could be this: (dn: cn=HR, cn=OracleContext, dc=us, dc=ourcompany, dc=com). The lowest
component of a DN is placed at the leftmost location of the DIT and moved progressively up the
tree. The following illustration shows the DIT for this example.

The commonly used LDAP attributes are as follows:

 ■ CommonName (cn) Common name of an entry

 ■ Country (c) Name of the country

17-ch17.indd 603 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

604 Oracle Database 12c DBA Handbook

 ■ Domain component (dc) Domain component

 ■ Organization (o) Name of organization

 ■ OrganizationalUnitName (ou) Name of unit within the organization

NOTE
The value cn=OracleContext is a special entry in the directory server
that supports directory-enabled features such as directory naming. The
Oracle Context is created using the Oracle Net Configuration Assistant
discussed earlier in this chapter.

Setting Up an Oracle Internet Directory
As detailed earlier, you can use the Oracle Net Configuration Assistant or the Oracle Net Manager
to perform the initial configuration tasks. Once the directory schema and Oracle Context have
been established, you can begin to register service names with the directory service using the
Oracle Net Manager. The Oracle Context area is the root of the directory subtree where all
information relevant to Oracle software is stored.

When the Oracle Context is installed, two entities are created: OracleDBCreators and
OracleNetAdmins. The OracleDBCreators entity with a DN of (cn=OracleDBCreators,
cn=OracleContext) is created. Any user who is a member of OracleDBCreators can register a
database server entry or directory client entry using the Oracle Database Configuration Assistant.
A user assigned as a member of OracleNetAdmins can create, modify, and delete net service
names and modify Oracle Net attributes of database servers using the Oracle Net Manager. If you
are a directory administrator, you can add users to these groups.

Clients who want to look up information in the directory must meet the following minimum
requirements:

 ■ They must be configured to use the directory server.

 ■ They must be able to access the Oracle Net entries in the Oracle Context.

 ■ They must have anonymous authentication with the directory server.

The clients can use the common names of database servers and net service entries to perform
the lookups, or additional directory location information may be required in the connection string.

Using Easy Connect Naming
Starting with Oracle Database 10g, you can use the easy connect naming method to eliminate the
need for service name files in a TCP/IP environment; in fact, you may not need a tnsnames.ora
file at all. Clients can connect to a database server by specifying the full connection information
in their connect strings in this format as follows with the SQL*Plus CONNECT command:

connect username/password@[//]host[:port]
 [/service_name][/server][/instance_name]

17-ch17.indd 604 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 605

The connection identifier elements are as follows:

Element Description

// Optional. Specify // for a URL.

Host Required. Specify the host name or the IP address.

Port Optional. Specify the port or use the default (1521).

service_name Optional. Specify the service name. The default value is the host name of
the database server.

server Optional. Also known as connect_type in OCI, specifies the type of
service handler: dedicated, shared, or pooled.

instance_name Optional. Corresponds to the INSTANCE_NAME initialization parameter.

For example, you can connect to the LOC service with this syntax:

connect username/password@hq:1521/loc

In order to use easy connect naming, you must have Oracle Net Services 10g (or later)
software installed on your client. You must be using the TCP/IP protocol, and no features requiring
a more advanced connect descriptor are supported.

CAUTION
Oracle Database 11g and 12c clients and database no longer support
the use of Oracle Names; however, earlier versions of the client can
still use Oracle Names to resolve naming for an Oracle Database 10g
database.

For URL or JDBC connections, prefix the connect identifier with a double slash (//):

connect username/password@[//][host][:port][/service_name]

Easy connect naming is automatically configured at installation. In your sqlnet.ora file, make
sure EZCONNECT is added to the list of values in the NAME.DIRECTORY_PATH parameter
listing; the default contents of sqlnet.ora for client installations of Oracle Database 11g and later
have these two lines:

SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

In other words, when resolving service names, the Oracle client will first attempt a lookup using
the tnsnames.ora file, then use Easy Connect.

Using Database Links
You should create database links to support frequently used connections to remote databases.
Database links specify the connect descriptor to be used for a connection, and they may also
specify the username to connect to in the remote database.

17-ch17.indd 605 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

606 Oracle Database 12c DBA Handbook

A database link is typically used to create local objects (such as views or synonyms) that
access remote databases via server/server communications. The local synonyms for remote
objects provide location transparency to the local users. When a database link is referenced by a
SQL statement, it opens a session in the remote database and executes the SQL statement there.
The data is then returned, and the remote session may stay open in case it is needed again.
Database links can be created as public links (by DBAs, making the links available to all users in
the local database) or as private links.

The following example creates a private database link called HR_LINK:

create database link hr_link
 connect to hr identified by hr
 using 'loc';

The CREATE DATABASE LINK command, as shown in this example, has three parameters:

 ■ The name of the link (HR_LINK, in this example)

 ■ The account to connect to

 ■ The net service name

A public database link can be created by adding the keyword PUBLIC to the CREATE
DATABASE LINK command, as shown in the following example:

create public database link hr_link
 connect to hr identified by hr
 using 'loc';

NOTE
Best practices for public database links would favor including the
USING clause but not the CONNECT TO clause. You could then
create a private database link with the same name that includes the
CONNECT TO clause but not the USING clause. Subsequent changes
to the service name for the data would require re-creating only the
public link, while the private links and the user passwords would be
unchanged.

If the LOC instance is moved to a different server, you can redirect the database links to LOC’s
new location simply by distributing a tnsnames.ora file that contains the modification or by
revising the listing in the directory server. You can generate the revised entry for the tnsnames.ora
file or directory server by using either the Oracle Net Configuration Assistant tool or the Oracle
Net Manager, described previously in this chapter.

To use these links, simply add them as suffixes to the table names in commands. The
following example creates a local view of a remote table, using the HR_LINK database link:

create view local_employee_view
as
select * from employee@hr_link
where office='Annapolis';

17-ch17.indd 606 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 607

The FROM clause in this example refers to EMPLOYEE@HR_LINK. Because the HR_LINK
database link specifies the server name, instance name, and owner name, the global object name
for the table is known. If no account name had been specified, the user’s account name would
have been used instead. If HR_LINK was created without the CONNECT TO clause, the current
username and password would be used to connect to the remote database.

In this example, a view was created in order to limit the records that users could retrieve. If no
such restriction is necessary, a synonym can be used instead. This is shown in the following
example:

create public synonym employee for employee@hr_link;

Local users who query the local public synonym EMPLOYEE will automatically have their queries
redirected to the EMPLOYEE table in the LOC instance on the HQ server. Location transparency
has thus been achieved.

By default, a single SQL statement can use up to four database links. This limit can be increased
via the OPEN_LINKS parameter in the database’s SPFILE or init.ora file. If this value is set to 0,
no distributed transactions are allowed.

Tuning Oracle Net
Tuning Oracle Net applications is fairly straightforward: Wherever possible, reduce the amount of
data that is sent across the network, particularly for online transaction-processing applications.
Also, reduce the number of times data is requested from the database. The basic procedures that
should be applied include the following:

 ■ The use of distributed objects, such as materialized views, to replicate static data to
remote databases.

 ■ The use of procedures to reduce the amount of data sent across the network. Rather than
data being sent back and forth, only the procedure’s error status is returned.

 ■ The use of homogenous servers wherever possible to eliminate the need for connection
managers.

 ■ For OLTP applications only, the use of shared servers to support more clients with fewer
processes.

The buffer size used by Oracle Net should take advantage of the packet sizes used by the
network protocols (such as TCP/IP). If you send large packets of data across the network, the
packets may be fragmented. Because each packet contains header information, reducing packet
fragmentation reduces network traffic.

You can tune the size of the service layer buffer. The specification for the service layer data
buffer is called SDU (Session Data Unit); if it is changed, this must be specified in your client and
server configuration files. Oracle Net builds data into buffers the size of the SDU, so altering that
size may improve your performance. The default size for the SDU is 8192 in Oracle Database
11g, and 2048 in earlier versions. For Oracle Database 12c, the default SDU size is 8192 for the
client and a dedicated server; for a shared server it is 65535. If you will frequently be sending
messages that are much larger than that, you can increase the SDU (up to a maximum of 2MB).

17-ch17.indd 607 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

608 Oracle Database 12c DBA Handbook

To configure the client to use a non-default SDU, add the new SDU setting to the client
configuration files. For the change to apply to all connections, add the following parameter to
the sqlnet.ora file:

DEFAULT_SDU_SIZE=32767

For the change to apply to only specific service names, modify their entries in the tnsnames
.ora file:

LOC =(DESCRIPTION=
 (SDU=32767)
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

On the database server, configure the default SDU setting in the sqlnet.ora file:

DEFAULT_SDU_SIZE=32767

For shared server processes, add the SDU setting to the DISPATCHERS setting in the instance
initialization parameter file:

DISPATCHERS="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp))(SDU=32767))"

For dedicated server processes, edit the entries in the listener.ora file:

SID_LIST_listener_name=
 (SID_LIST=
 (SID_DESC=
(SDU=32767)
(SID_NAME=loc)))

Oracle Net Services provides support for the Reliable Datagram Sockets (RDS) and Socket
Direct Protocol (SDP) protocols on InfiniBand high-speed networks (such as those found in Oracle
Exadata and Exalogic appliances). Applications using SDP place most of the messaging burden on
the network interface card, thus reducing the CPU requirements of the application. If you are
using an InfiniBand high-speed network (such as for communications among your application tiers),
see the Oracle documentation for hardware and software configuration details.

Limiting Resource Usage
To limit the impact of unauthorized users on your system, you can reduce the duration for which
resources can be held prior to authentication. The time-limiting parameters listed earlier in this
chapter help to mitigate the performance problems caused by these unauthorized accesses. In the
listener.ora file, set the INBOUND_CONNECT_TIMEOUT_listener_name parameter to terminate
connections that are not authenticated by the listener within the specified time period. Failed
connections will be logged to the listener log file. In the server-side sqlnet.ora file, set the
SQLNET.INBOUND_CONNECT_TIMEOUT parameter to terminate connection attempts that
cannot establish and authenticate connections within the specified interval. Set the server-side
SQLNET.INBOUND_CONNECT_TIMEOUT parameter to a higher value than the INBOUND_
CONNECT_TIMEOUT_listener_name parameter in the listener.ora file.

17-ch17.indd 608 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 17: Oracle Net 609

Using Compression
Once you’ve tuned the amount of data that needs to flow from client to server and vice versa,
you can leverage a new feature of the Advanced Compression package in Oracle Database 12c:
Advanced Network Compression. If you have additional CPU resources on both the client and
server, then compressing the actual data stream will improve throughput and reduce elapsed time
for Oracle Net messaging.

The settings you can use in sqlnet.ora to implement Advanced Network Compression are listed
in Table 17-7.

Because the Advanced Network Compression feature is included as part of the Oracle
Advanced Compression option, you must license the Advanced Compression option to leverage
the Advanced Network Compression features.

Debugging Connection Problems
Oracle Net connections require that a number of communication mechanisms be properly configured.
The connections involve host-to-host communication, proper identification of services and databases,
and proper configuration of the listener server processes. In the event of connection problems when
using Oracle Net, it is important to eliminate as many of these components as possible.

Start by making sure that the host the connection is trying to reach is accessible via the network.
This can be checked via the ssh command:

ssh host_name

If this command is successful, you will be prompted for a username and password on the
remote host. If the ping command is available to you, you may use it instead. The following
command will check to see if the remote host is available and will return a status message:

ping host_name

If the host is available on the network, the next step is to check if the listener is running; you can
use the tnsping utility provided by Oracle to verify Oracle Net connectivity to a remote database
listener. The tnsping utility has two parameters: the net service name (from tnsnames.ora) to connect
to, and the number of connections to attempt. The output from tnsping will include a listing showing
the time required to connect to the remote database.

Parameter Description

SQLNET.COMPRESSION Enables or disables compression, values are ON or
OFF. This must be set on both the client and server for
compression to occur.

SQLNET.COMPRESSION_LEVELS Specifies the compression level as either LOW or HIGH.
Both the client and the server must have this set to
HIGH for high compression levels to be used.

SQLNET.COMPRESSION_THRESHOLD Specifies the minimum data size, in bytes, at which
compression will occur. The default is 1024 bytes.

TABLE 17-7. Advanced Network Compression Settings in sqlnet.ora

17-ch17.indd 609 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

610 Oracle Database 12c DBA Handbook

For example, to determine if the Linux Oracle database server tettnang is accessible from a
Windows client, use the tnsping command as follows:

C:\> tnsping tettnang
TNS Ping Utility for 64-bit Windows: Version 12.1.0.1.0 -
 Production on 10-JAN-2014 09:12:36
Copyright (c) 1997, 2013, Oracle. All rights reserved.
Used parameter files:
c:\app\orabase3\product\12.1.0\dbhome_1\network\admin\sqlnet.ora
Used EZCONNECT adapter to resolve the alias
Attempting to contact
 (DESCRIPTION=(CONNECT_DATA=(SERVICE_NAME=))
 (ADDRESS=(PROTOCOL=TCP)(HOST=10.6.160.207)(PORT=1521)))
OK (40 msec)
C:\>

Note how tnsping under Windows used Easy Connect to obtain the TCP/IP address of the
server tettnang, filled in default values, and located the listener on the Linux server successfully.

In addition to tnsping, you can use the trcroute utility to discover the path a connection takes
to a remote database. The trcroute utility (similar to the Linux utility traceroute) reports on the
TNS addresses of every node it travels through and reports any errors that occur. The command
format is as follows:

trcroute net_service_name

In client/server communications, the same principles for debugging connection problems
apply. First, verify that the remote host is accessible; most communications software for clients
includes a telnet or ping command. If the remote host is not accessible, the problem may be on
the client side. Verify that other clients are able to access the host on which the database resides.
If they can, the problem is isolated to the client. If they cannot, the problem lies on the server
side, and the server, its listener processes, and its database instances should be checked.

Summary
Using Oracle over a network is hard to avoid unless you’re doing all your work on the database
console. Therefore, it’s imperative that you understand all components of the network infrastructure
that connect Oracle Database to other Oracle Databases or clients.

Depending on the architecture of your network you may choose one of several different methods
to connect to your database, whether by using a local tnsnames.ora file, the Easy Connect syntax,
or an enterprise LDAP server. In any case you’ll configure your sqlnet.ora file on the client to specify
the allowed connect methods.

On the other side of the connection is the database whose listener hands off connection
requests from the dispatcher(s) running on the server. In a clustered environment you will have a
single address mapped in your DNS server to each node of the cluster. This ensures availability
and reliability of your client connections.

With Oracle Database 12c you can dramatically improve throughput by specifying a compression
level on both the client and server side. The Advanced Network Compression feature is similar in
implementation to Advanced Compression in the database: less bandwidth used with minimal CPU
overhead to perform the compress and decompress operations.

17-ch17.indd 610 13/05/15 10:10 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 611

CHAPTER
18

Managing Large Databases

18-ch18.indd 611 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

612 Oracle Database 12c DBA Handbook

In Chapter 6, we talked about bigfile tablespaces and how they not only allow the total size
of the database to be much larger than in previous versions of Oracle, but also ease
administration by moving the maintenance point from the datafile to the tablespace.

In Chapter 4, I presented an overview of Automatic Storage Management (ASM) and how it
can ease administration, enhance performance, and improve availability. The DBA can add one
or more disk volumes to a rapidly growing database without bringing down the instance.

In this chapter, we’ll revisit many of these database features, but with an emphasis on how
they can be leveraged in a VLDB (Very Large Database) environment. Although these features
surely provide benefits in all Oracle installations, they are especially useful in databases whose
most heavily used resource is the amount of disk space allocated. First, we’ll review the concepts
behind bigfile tablespaces and delve more deeply into how they are constructed using a new
ROWID format. I’ll also show how transportable tablespaces are a distinct advantage in a VLDB
environment because they bypass some of the export/import steps required in versions prior to
Oracle9i to move the contents of a tablespace from one database to another. When tablespaces in
a VLDB environment approach the exabyte size, both the extra space required for a traditional
export and import operation and the time it takes to perform the export may become prohibitive.
If you are using Oracle Database 11g or Oracle Database 12c, your tablespaces may even be
transportable between different hardware and software platforms with minimal or no extra effort.

Next, we will review the various types of nontraditional (non-heap-based) tables that are often
leveraged in a VLDB environment. Index-organized tables (IOTs) combine the best features of a
traditional table with the fast access of an index into one segment; we’ll review some examples of
how IOTs can now be partitioned in Oracle 12c. Global temporary tables dramatically reduce
space usage in the undo tablespace and redo logs for recovery purposes because the table contents
only persist for the duration of a transaction or a session. External tables make it easy to access
data in a non-Oracle format as if the data was in a table; as of Oracle 10g, external tables can be
created using Oracle Data Pump (see Chapter 13 for an in-depth discussion of Data Pump).
Finally, the amount of space occupied by a table can be dramatically reduced by using an internal
compression algorithm when the rows are loaded using direct-path SQL*Loader and CREATE
TABLE AS SELECT statements.

Table and index partitioning not only improves query performance but tremendously improves
the manageability of tables in a VLDB environment by allowing you to perform maintenance
operations on one partition while users may be accessing other partitions of the table. We will
cover all the different types of partitioning schemes, including some of the partitioning features first
introduced in Oracle 10g: hash-partitioned global indexes, list-partitioned IOTs, and LOB support
in all types of partitioned IOTs. Oracle 11g brought even more partitioning options to the table:
composite list-hash, list-list, list-range, and range-range. Other new partitioning schemes in
Oracle Database 11g and Oracle Database 12c include automated interval partitioning, reference
partitioning, application-controlled partitioning, and virtual column partitioning.

Bitmap indexes, available since Oracle 7.3, provide query benefits not only for tables with
columns of low cardinality, but also for special indexes called bitmap join indexes that pre-join
two or more tables on one or more columns. Oracle 10g removed one of the remaining obstacles
for using bitmap indexes in a heavy, single-row insert, update, or delete environment: mitigating
performance problems due to bitmap index fragmentation issues.

18-ch18.indd 612 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 613

Creating Tablespaces in a VLDB Environment
The considerations for creating tablespaces in a small database (terabyte range or smaller) also
apply to VLDBs: Spread out I/O across multiple devices, use a logical volume manager (LVM)
with RAID capabilities, or use ASM. In this section, I will present more detail and examples for
bigfile tablespaces. Because a bigfile tablespace contains only one datafile, the ROWID format
for objects stored in a bigfile tablespace is different, allowing for a tablespace size as large as
eight million terabytes, depending on the tablespace’s block size.

Bigfile tablespaces are best suited for an environment that uses ASM, Oracle Managed Files
(OMF), and Recovery Manager (RMAN) with a fast recovery area. See Chapter 6 for a detailed
review of ASM; Chapter 14 presents RMAN from a command-line and Enterprise Manager Cloud
Control perspective and leverages the fast recovery area for all backups. Finally, Chapter 6 describes
OMF from a space-management perspective.

In the next few sections, I will present an in-depth look at creating a bigfile tablespace and
specifying its characteristics; in addition, I will discuss the impact of bigfile tablespaces on both
initialization parameters and data dictionary views. Finally, I will show you how the DBVERIFY
utility has been revised as of Oracle 10g to allow you to analyze a single bigfile datafile using
parallel processes.

Bigfile Tablespace Basics
Using bigfile tablespaces with a block size of 32KB, a datafile can be as large as 128 terabytes,
with a maximum database size of 8 exabytes (EB). In contrast, a database using only smallfile
tablespaces can have a maximum datafile size of 128 gigabytes (GB) and therefore a maximum
database size of 8 petabytes (PB). Because a bigfile tablespace can only have one datafile, you
never need to decide whether to add a datafile to the single datafile for the tablespace; once you
turn on AUTOEXTEND, the single datafile will only increase in size at the increment you specify.
If you are using ASM and OMF, you won’t even need to know the name of the single datafile.

Given that the maximum number of datafiles in a database on most platforms is 65,533, and
the number of blocks in a bigfile tablespace datafile is 232, you can calculate the maximum
amount of space (M) in a single Oracle database as the maximum number of datafiles (D) multiplied
by the maximum number of blocks per datafile (F) multiplied by the tablespace block size (B):

M = D * F * B

Therefore, the maximum database size, given the maximum block size and the maximum number
of datafiles, is

65,533 datafiles * 4,294,967,296 blocks per datafile * 32,768 block size =
9,223,231,299,366,420,480 = 8EB

For a smallfile tablespace, the number of blocks in a smallfile tablespace datafile is only 222.
Therefore, our calculation yields

65,535 datafiles * 4,194,304 blocks per datafile * 32,768 block size =
9,007,061,815,787,520 = 8PB

In Table 18-1, you can see a comparison of maximum datafile sizes for smallfile tablespaces and
bigfile tablespaces given the tablespace block size. If for some reason your database size approaches
8EB, you may want to consider either some table archiving or splitting the database into multiple
databases based on function. With even the largest commercial Oracle databases in the petabyte (PB)
range in 2015, you may very well not bump up against the 8EB limit any time in the near future!

18-ch18.indd 613 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

614 Oracle Database 12c DBA Handbook

Creating and Modifying Bigfile Tablespaces
Here is an example of creating a bigfile tablespace in a non-ASM environment:

SQL> create bigfile tablespace dmarts
 2 datafile '+DATA' size 2500g
 3 autoextend on next 500g maxsize unlimited
 4 extent management local autoallocate
 5 segment space management auto;

Tablespace created.

In the example, you can see that EXTENT MANAGEMENT and SEGMENT SPACE MANAGEMENT
are explicitly set, even though AUTO is the default for segment space management; bigfile tablespaces
must be created as locally managed with automatic segment space management. Because the default
allocation policy for both bigfile and smallfile tablespaces is AUTOALLOCATE, you don’t need to
specify it either. As a rule of thumb, AUTOALLOCATE is best for tablespaces whose table usage and
growth patterns are indeterminate; as I’ve pointed out in Chapter 6, you use UNIFORM extent
management only if you know the precise amount of space you need for each object in the tablespace
as well as the number and size of extents.

Even though the datafile for this bigfile tablespace is set to autoextend indefinitely, the disk
volume where the datafile resides may be limited in space; when this occurs, the tablespace may
need to be relocated to a different disk volume. Therefore, you can see the advantages of using
ASM: You can easily add another disk volume to the disk group where the datafile resides, and
Oracle will automatically redistribute the contents of the datafile and allow the tablespace to
grow—all of this occurring while the database (and the tablespace itself) is available to users.

By default, tablespaces are created as smallfile tablespaces; you can specify the default
tablespace type when the database is created or at any time with the ALTER DATABASE
command, as in this example:

SQL> alter database set default bigfile tablespace;
Database altered.

Tablespace
Block Size

Maximum Smallfile
Datafile Size

Maximum Bigfile
Datafile Size

 2KB 8GB 8TB

 4KB 16GB 16TB

 8KB 32GB 32TB

16KB 64GB 64TB

32KB 128GB 128TB

TABLE 18-1. Maximum Tablespace Datafile Sizes

18-ch18.indd 614 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 615

Bigfile Tablespace ROWID Format
To facilitate the larger address space for bigfile tablespaces, a new extended ROWID format is
used for rows of tables in bigfile tablespaces. First, we will review the ROWID format for smallfile
tablespaces in previous versions of Oracle and for Oracle 12c. The format for a smallfile ROWID
consists of four parts:

OOOOOO FFF BBBBBB RRR

Table 18-2 defines each part of a smallfile ROWID.
In contrast, a bigfile tablespace only has one datafile, and its relative datafile number is always

1024. Because the relative datafile number is fixed, it is not needed as part of the ROWID; as a
result, the part of the ROWID used for the relative datafile number can be used to expand the size
of the block number field. The concatenation of the smallfile relative datafile number (FFF) and
the smallfile data block number (BBBBBB) results in a new construct called an encoded block
number. Therefore, the format for a bigfile ROWID consists of only three parts:

OOOOOO LLLLLLLLL RRR

Table 18-3 defines each part of a bigfile ROWID.

Smallfile ROWID Component Definition

OOOOOO Data object number identifying the database segment
(such as table, index, or materialized view)

FFF Relative datafile number within the tablespace of the
datafile that contains the row

BBBBBB The data block containing the row, relative to the datafile

RRR Slot number, or row number, of the row inside a block

TABLE 18-2. Smallfile ROWID Format

Bigfile ROWID Component Definition

OOOOOO Data object number identifying the database segment
(such as table, index, or materialized view)

LLLLLLLLL Encoded block number, relative to the tablespace and
unique within the tablespace

RRR Slot number, or row number, of the row inside a block

TABLE 18-3. Bigfile ROWID Format

18-ch18.indd 615 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

616 Oracle Database 12c DBA Handbook

DBMS_ROWID and Bigfile Tablespaces
Because two different types of tablespaces can now coexist in the database along with their
corresponding ROWID formats, some changes have occurred to the DBMS_ROWID package.

The names of the procedures in the DBMS_ROWID package are the same and operate as
before, except for a new parameter, TS_TYPE_IN, which identifies the type of tablespace to which
a particular row belongs: TS_TYPE_IN can be either BIGFILE or SMALLFILE.

For an example of extracting ROWIDs from a table in a bigfile tablespace, we have a table
called OE.ARCH_ORDERS in a bigfile tablespace named DMARTS:

SQL> select tablespace_name, bigfile from dba_tablespaces
 2 where tablespace_name = 'DMARTS';

TABLESPACE_NAME BIG
------------------------------ ---
DMARTS YES

As with tables in smallfile tablespaces in previous versions of Oracle and in Oracle 12c,
we can use the pseudo-column ROWID to extract the entire ROWID, noting that the format of
the ROWID is different for bigfile tables, even though the length of the ROWID stays the same.
This query will also extract the block number in decimal format:

SQL> select rowid,
 2 dbms_rowid.rowid_block_number(rowid,'BIGFILE') blocknum,
 3 order_id, customer_id
 4 from oe.arch_orders
 5 where rownum < 11;

ROWID BLOCKNUM ORDER_ID CUSTOMER_ID
------------------ ---------- ---------- -----------
AAASAVAAAAAAAAUAAA 20 2458 101
AAASAVAAAAAAAAUAAB 20 2397 102
AAASAVAAAAAAAAUAAC 20 2454 103
AAASAVAAAAAAAAUAAD 20 2354 104
AAASAVAAAAAAAAUAAE 20 2358 105
AAASAVAAAAAAAAUAAF 20 2381 106
AAASAVAAAAAAAAUAAG 20 2440 107
AAASAVAAAAAAAAUAAH 20 2357 108
AAASAVAAAAAAAAUAAI 20 2394 109
AAASAVAAAAAAAAUAAJ 20 2435 144

10 rows selected.

For the row with the ORDER_ID of 2358, the data object number is AAASAV, the encoded
block number is AAAAAAAAU, and the row number of the row, or slot, in the block is AAE;
the translated decimal block number is 20.

NOTE
ROWIDs use base-64 encoding.

18-ch18.indd 616 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 617

The other procedures in the DBMS_ROWID package that use the variable TS_TYPE_IN to
specify the tablespace type are ROWID_INFO and ROWID_RELATIVE_FNO.

The procedure ROWID_INFO returns five attributes for the specified ROWID via output
parameters. In Table 18-4 you can see the parameters of the ROWID_INFO procedure.

In the following example, we’ll use an anonymous PL/SQL block to extract the values for
OBJECT_NUMBER, RELATIVE_FNO, BLOCK_NUMBER, and ROW_NUMBER for a row in the
table OE.ARCH_ORDERS:

variable object_number number
variable relative_fno number
variable block_number number
variable row_number number

declare
 oe_rownum rowid;
 rowid_type number;
begin
 select rowid into oe_rownum from oe.arch_orders
 where order_id = 2358 and rownum = 1;
 dbms_rowid.rowid_info (rowid_in => oe_rownum,
 ts_type_in => 'BIGFILE',
 rowid_type => rowid_type,
 object_number => :object_number,
 relative_fno => :relative_fno,
 block_number => :block_number,
 row_number => :row_number);
end;

PL/SQL procedure successfully completed.

SQL> print

ROWID_INFO Parameter Description

ROWID_IN ROWID to be described

TS_TYPE_IN Tablespace type (SMALLFILE or BIGFILE)

ROWID_TYPE Returns ROWID type (restricted or extended)

OBJECT_NUMBER Returns data object number

RELATIVE_FNO Returns relative file number

BLOCK_NUMBER Returns block number in this file

ROW_NUMBER Returns row number in this block

TABLE 18-4. ROWID_INFO Parameters

18-ch18.indd 617 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

618 Oracle Database 12c DBA Handbook

OBJECT_NUMBER

 73749

RELATIVE_FNO

 1024

BLOCK_NUMBER

 20

ROW_NUMBER

 4

SQL>

Note that the return value for RELATIVE_FNO is always 1024 for a bigfile tablespace, and
the BLOCK_NUMBER is 20, as you saw in the previous example that used the DBMS_ROWID
.ROWID_BLOCK_NUMBER function.

Using DBVERIFY with Bigfile Tablespaces
The DBVERIFY utility, available since Oracle version 7.3, checks the logical integrity of an offline
or online database. The files can only be datafiles; DBVERIFY cannot analyze online redo log files
or archived redo log files. In previous versions of Oracle, DBVERIFY could analyze all of a
tablespace’s datafiles in parallel by spawning multiple DBVERIFY commands. However, because
a bigfile tablespace has only one datafile, DBVERIFY has been enhanced to analyze parts of a
bigfile tablespace’s datafiles in parallel.

Using the dbv command at the Unix or Windows prompt, you can use two new parameters:
START and END, representing the first and last block, respectively, of the file to analyze. As a
result, you need to know how many blocks are in the bigfile tablespace’s datafile; the dynamic
performance view V$DATAFILE comes to the rescue, as you can see in the following example:

SQL> select file#, blocks, name from v$datafile;

 FILE# BLOCKS NAME
---------- ---------- --
 1 96000 +DATA/dw/datafile/system.256.630244579
 2 109168 +DATA/dw/datafile/sysaux.257.630244581
 3 7680 +DATA/dw/datafile/undotbs1.258.630244583
 4 640 +DATA/dw/datafile/users.259.632441707
 5 12800 +DATA/dw/datafile/example.265.630244801
 6 64000 +DATA/dw/datafile/users_crypt.267.630456963
 7 12800 +DATA/dw/datafile/inet_star.268.632004213
 8 6400 +DATA/dw/datafile/inet_intl_star.269.632009933
 9 6400 /u02/oradata/xport_dw.dbf
 10 3200 +DATA/dw/datafile/dmarts.271.633226419

10 rows selected.

18-ch18.indd 618 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 619

In the next example, you will see how to analyze datafile #9, the datafile for another bigfile
tablespace in our database, XPORT_DW. At the operating system command prompt, you can
analyze the file with five parallel processes, each processing 500 blocks, except for the last one:

$ dbv file=/u02/oradata/xport_dw.dbf start=1 end=1500 &
[1] 6444
$ dbv file=/u02/oradata/xport_dw.dbf start=1501 end=3000 &
[2] 6457
$ dbv file=/u02/oradata/xport_dw.dbf start=3001 end=4500 &
[2] 6466
$ dbv file=/u02/oradata/xport_dw.dbf start=4501 end=6000 &
[2] 6469
$ dbv file=/u02/oradata/xport_dw.dbf start=6001 &
[5] 6499

In the fifth command, we did not specify end=; if you do not specify end=, it is assumed that you
will be analyzing the datafile from the starting point to the end of the file. All five of these commands
run in parallel. You can also run DBVERIFY against datafiles in ASM disk groups, as in this example:

[oracle@kthanid ~]$ dbv file='+data12c/bob/datafile/users.259.863215269' \
 start=1 end=1000

DBVERIFY: Release 12.1.0.2.0 - Production on Mon Nov 17 07:44:05 2014
Copyright (c) 1982, 2014, Oracle and/or its affiliates. All rights reserved.
DBVERIFY - Verification starting : FILE =
 +data12c/bob/datafile/users.259.863215269

DBVERIFY - Verification complete

Total Pages Examined : 640
Total Pages Processed (Data) : 68
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 33
Total Pages Failing (Index): 0
Total Pages Processed (Lob) : 2
Total Pages Failing (Lob) : 0
Total Pages Processed (Other): 520
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 17
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Total Pages Encrypted : 0
Highest block SCN : 0 (0.0)
[oracle@kthanid ~]$

Bigfile Tablespace Initialization Parameter Considerations
Although there are no new initialization parameters specific to bigfile tablespaces, the values of
one initialization parameter and a CREATE DATABASE parameter can potentially be reduced
because only one datafile is needed for each bigfile tablespace. The initialization parameter is
DB_FILES, and the CREATE DATABASE parameter is MAXDATAFILES.

18-ch18.indd 619 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

620 Oracle Database 12c DBA Handbook

DB_FILES and Bigfile Tablespaces
As you already know, DB_FILES is the maximum number of datafiles that can be opened for this
database. If you use bigfile tablespaces instead of smallfile tablespaces, the value of this parameter
can be lower; as a result, because there are fewer datafiles to maintain, memory requirements are
a bit lower in the System Global Area (SGA).

MAXDATAFILES and Bigfile Tablespaces
When creating a new database or a new control file, you can use the MAXDATAFILES parameter
to control the size of the control file section allocated to maintain information about datafiles.
Using bigfile tablespaces, you can make the size of the control file and the space needed in the
SGA for datafile information smaller; more importantly, the same value for MAXDATAFILES using
bigfile tablespaces means that the total database size can be larger.

Bigfile Tablespace Data Dictionary Changes
The changes to data dictionary views due to bigfile tablespaces include a new row in DATABASE_
PROPERTIES and a new column in DBA_TABLESPACES and USER_TABLESPACES.

DATABASE_PROPERTIES and Bigfile Tablespaces
The data dictionary view DATABASE_PROPERTIES, as the name implies, contains a number of
characteristics about the database, such as the names of the default and permanent tablespaces
and various National Language Settings (NLS). Because of bigfile tablespaces, there is a new
property in DATABASE_PROPERTIES called DEFAULT_TBS_TYPE that indicates the default tablespace
type for the database if no type is specified in a CREATE TABLESPACE command. In the following
example, you can find out the default new tablespace type:

SQL> select property_name, property_value, description
 2 from database_properties
 3 where property_name = 'DEFAULT_TBS_TYPE';

PROPERTY_NAME PROPERTY_VALUE DESCRIPTION
------------------ ---------------- ------------------------
DEFAULT_TBS_TYPE BIGFILE Default tablespace type

1 row selected.

*_TABLESPACES, V$TABLESPACE, and Bigfile Tablespaces
The data dictionary views DBA_TABLESPACES and USER_TABLESPACES have a new column called
BIGFILE. The value of this column is YES if the corresponding tablespace is a bigfile tablespace,
as you saw in the query against DBA_TABLESPACES earlier in this chapter. The dynamic performance
view V$TABLESPACE also contains this column.

Advanced Oracle Table Types
Many other table types provide benefits in a VLDB environment. Index-organized tables, for
example, eliminate the need for both a table and its corresponding index, replacing them with
a single structure that looks like an index but contains data like a table. Global temporary tables
create a common table definition available to all database users; in a VLDB, a global temporary
table shared by thousands of users is preferable to each user creating their own definition of the

18-ch18.indd 620 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 621

table, potentially putting further space pressure on the data dictionary. External tables allow you
to use text-based files outside of the database without actually storing the data in an Oracle table.
Partitioned tables, as the name implies, store tables and indexes in separate partitions to keep the
availability of the tables high while keeping maintenance time low. Finally, materialized views
preaggregate query results from a view and store the query results in a local table; queries that
use the materialized view may run significantly faster because the results from executing the view
do not need to be re-created. We will cover all these table types to varying levels of detail in the
following sections.

Index-Organized Tables
You can store index and table data together in a table known as an index-organized table (IOT).
Significant reductions in disk space are achieved with IOTs because the indexed columns are not
stored twice (once in the table and once in the index); instead, they are stored once in the IOT
along with any non-indexed columns. IOTs are suitable for tables where the primary access method
is through the primary key, although creating indexes on other columns of the IOT is allowed, to
improve access by those columns.

In the following example, you will create an IOT with a two-part (composite) primary key:

create table oe.sales_summ_by_date
(sales_date date,
 dept_id number,
 total_sales number(18,2),
 constraint ssbd_pk primary key
 (sales_date, dept_id))
organization index tablespace xport_dw;

Each entry in the IOT contains a date, a department number, and a total sales amount for the
day. All three of these columns are stored in each IOT row, but the IOT is built based on only the
date and department number. Only one segment is used to store an IOT; if you build a secondary
index on this IOT, a new segment is created.

Because the entire row in an IOT is stored as the index itself, there is no ROWID for each row;
the primary key identifies the rows in an IOT. Instead, Oracle creates logical ROWIDs derived from
the value of the primary key; the logical ROWID is used to support secondary indexes on the IOT.

If you still want to use an IOT for a frequently accessed set of columns but also include a
number of infrequently accessed non-indexed columns, you can include these columns in an
overflow segment by specifying the INCLUDING and OVERFLOW TABLESPACE clauses as in this
example:

create table oe.sales_summ_by_date_full
(sales_date date,
 dept_id number,
 total_sales number(18,2),
 total_tax number(18,2),
 country_code number(8),
 constraint ssbd2_pk primary key
 (sales_date, dept_id))
organization index
including total_sales
tablespace xport_dw
overflow tablespace xport_ov;

18-ch18.indd 621 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

622 Oracle Database 12c DBA Handbook

The columns starting with TOTAL_TAX will be stored in an overflow segment in the XPORT_OV
tablespace.

No special syntax is required to use an IOT; although it is built and maintained much like an
index, it appears as a table to any SQL SELECT statement or other DML statements. Also, IOTs can
be partitioned; information about partitioning IOTs is presented later in this chapter, in the section
“Partitioned Index-Organized Tables.”

Global Temporary Tables
Temporary tables have been available since Oracle8i. They are temporary in the sense of the data
that is stored in the table, not in the definition of the table itself. The command CREATE GLOBAL
TEMPORARY TABLE creates a temporary table; all users who have permissions on the table itself
can perform DML on a temporary table. However, each user sees their own and only their own
data in the table. When a user truncates a temporary table, only the data that they inserted is
removed from the table. Global temporary tables are useful in situations where a large number of
users need a table to hold temporary data for their session or transaction, while only needing one
definition of the table in the data dictionary. Global temporary tables have the added advantage of
reducing the need for redo or undo space for the entries in the table in a recovery scenario. The
entries in a global temporary table, by their nature, are not permanent and therefore do not need
to be recovered during instance or media recovery.

There are two different flavors of temporary data in a temporary table: temporary for the
duration of the transaction, and temporary for the duration of the session. The longevity of the
temporary data is controlled by the ON COMMIT clause; ON COMMIT DELETE ROWS removes
all rows from the temporary table when a COMMIT or ROLLBACK is issued, and ON COMMIT
PRESERVE ROWS keeps the rows in the table beyond the transaction boundary. However, when
the user’s session is terminated, all of the user’s rows in the temporary table are removed.

In the following example, you create a global temporary table to hold some intermediate
totals for the duration of the transaction. Here is the SQL command to create the table:

SQL> create global temporary table subtotal_hrs
 2 (emp_id number,
 3 proj_hrs number)
 4 on commit delete rows;

Table created.

For the purposes of this example, you will create a permanent table that holds the total hours
by employee by project for a given day. Here is the SQL command for the permanent table:

SQL> create table total_hours (emp_id number, wk_dt date, tot_hrs number);

In the following scenario, you will use the global temporary table to keep the intermediate
results, and at the end of the transaction, you will store the totals in the TOTAL_HOURS table.
Here is the sequence of commands:

SQL> insert into subtotal_hrs values (101, 20);
1 row created.

SQL> insert into subtotal_hrs values (101, 10);
1 row created.

18-ch18.indd 622 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 623

SQL> insert into subtotal_hrs values (120, 15);
1 row created.

SQL> select * from subtotal_hrs;

 EMP_ID PROJ_HRS
---------- ----------
 101 20
 101 10
 120 15

SQL> insert into total_hours
 2 select emp_id, sysdate, sum(proj_hrs) from subtotal_hrs
 3 group by emp_id;
2 rows created.

SQL> commit;
Commit complete.

SQL> select * from subtotal_hrs;
no rows selected

SQL> select * from total_hours;

 EMP_ID WK_DT TOT_HRS
---------- --------- ----------
 101 19-AUG-04 30
 120 19-AUG-04 15

SQL>

Notice that after the COMMIT, the rows are retained in TOTAL_HOURS but are not retained
in SUBTOTAL_HRS because you specified ON COMMIT DELETE ROWS when you created
the table.

NOTE
DDL can be performed on a global temporary table as long as there
are no sessions currently inserting rows into the global temporary
table.

There are a few other things to keep in mind when using temporary tables. Although you can
create an index on a temporary table, the entries in the index are dropped along with the data
rows, as with a regular table. Also, due to the temporary nature of the data in a temporary table,
no recovery-related redo information is generated for DML on temporary tables; however, undo
information is created in the undo tablespace and redo information to protect the undo. If all you
do is insert and select from your global temporary tables, very little redo is generated. Because the
table definition itself is not temporary, it persists between sessions until it is explicitly dropped.

As of Oracle Database 12c, statistics on a global temporary table can be specific to a
session. This is important for global temporary tables whose contents and cardinality in one

18-ch18.indd 623 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

624 Oracle Database 12c DBA Handbook

session vary widely from other sessions; in Oracle Database 11g there was only one set of
statistics for a global temporary table, which made query optimization more difficult for queries
containing global temporary tables.

External Tables
Sometimes you want to access data that resides outside of the database in a text format, but you
want to use it as if it were a table in the database. Although you could use a utility such as
SQL*Loader to load the table into the database, the data may be quite volatile or your user base’s
expertise might not include executing SQL*Loader at the Windows or Unix command line.

To address these needs, you can use external tables, which are read-only tables whose definition
is stored within the database but whose data stays external to the database. There are a few
drawbacks to using external tables: You cannot index external tables, and you cannot execute
UPDATE, INSERT, and DELETE statements against an external table. However, in a data warehouse
environment where an external table is read in its entirety for a merge operation with an existing
table, these drawbacks do not apply.

You might use an external table to gather employee suggestions in a web-based front end that
does not have access to the production database; in this example, you will create an external
table that references a text-based file containing two fields: the employee ID and the comment.

First, you must create a directory object to point to the operating system directory where the
text file is stored. In this example, you will create the directory EMPL_COMMENT_DIR to reference
a directory on the Unix file system, as follows:

SQL> create directory empl_comment_dir as
 2 '/u10/Employee_Comments';
Directory created.

The text file in this directory is called empl_sugg.txt, and it looks like this:

$ cat empl_sugg.txt
101, The cafeteria serves lousy food.
138, We need a raise.
112, There are not enough bathrooms in Building 5.
138, I like the new benefits plan.
$

Because this text file has two fields, you will create the external table with two columns,
the first being the employee number and the second being the text of the comments. Here is the
CREATE TABLE command:

SQL> create table empl_sugg
 2 (employee_id number,
 3 empl_comment varchar2(250))
 4 organization external
 5 (type oracle_loader
 6 default directory empl_comment_dir
 7 access parameters
 8 (records delimited by newline
 9 fields terminated by ','
 10 (employee_id char,

18-ch18.indd 624 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 625

 11 empl_comment char)
 12)
 13 location('empl_sugg.txt')
 14);
Table created.
SQL>

The first three lines of the command look like a standard CREATE TABLE command. The
ORGANIZATION EXTERNAL clause specifies that this table’s data is stored external to the
database. Using the oracle_loader clause specifies the access driver to create and to load an
external table as read-only. The file specified in the LOCATION clause, empl_sugg.txt, is located
in the Oracle directory empl_comment_dir, which you created earlier. The access parameters
specify that each row of the table is on its own line in the text file and that the fields in the text
file are separated by a comma.

NOTE
Using an access driver of oracle_datapump instead of oracle_loader
allows you to unload your data to an external table; other than
this initial unload, the external table is accessible for read access
only through the oracle_datapump access driver and has the same
restrictions as an external table created with the oracle_loader access
driver.

Once the table is created, the data is immediately accessible in a SELECT statement, as if it
had been loaded into a real table, as you can see in this example:

SQL> select * from empl_sugg;

EMPLOYEE_ID EMPL_COMMENT
----------- --
 101 The cafeteria serves lousy food.
 138 We need a raise.
 112 There are not enough bathrooms in Building 5.
 138 I like the new benefits plan.

SQL>

Any changes made to the text file will automatically be available the next time you execute
the SELECT statement.

Partitioned Tables
In a VLDB environment, partitioned tables help to make the database more available and
maintainable. A partitioned table is split up into more manageable pieces, called partitions, and
can be further subdivided into subpartitions. The corresponding indexes on partitioned tables can
be nonpartitioned, partitioned the same way as the table, or partitioned differently from the table.

Partitioned tables can also improve the performance of the database: Each partition of a
partitioned table can be accessed using parallel execution. Multiple parallel execution servers can
be assigned to different partitions of the table or to different index partitions.

18-ch18.indd 625 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

626 Oracle Database 12c DBA Handbook

For performance reasons, each partition of a table can and should reside in its own tablespace.
Other attributes of a partition, such as storage characteristics, can differ; however, the column
datatypes and constraints for each partition must be identical. In other words, attributes such as
datatype and check constraints are at the table level, not the partition level. Other advantages of
storing partitions of a partitioned table in separate tablespaces include the following:

 ■ It reduces the possibility of data corruption in more than one partition if one tablespace
is damaged.

 ■ Each partition can be backed up and recovered independently.

 ■ You have more control of partition-to–physical device mapping to balance the I/O load.
Even in an ASM environment, you could place each partition in a different disk group; in
general, however, Oracle recommends two disk groups, one for user data and the other
for flashback and recovery data. There are few reasons to limit a partition to a subset of
the tens or hundreds of disks in a typical RAID-based disk group.

Partitioning is transparent to applications, and no changes to SQL statements are required to take
advantage of partitioning. However, in situations where specifying a partition would be advantageous,
you can specify both the table name and the partition name in a SQL statement; this improves both
parse and SELECT performance. Examples of syntax using explicit partition names in a SELECT
statement are found later in this chapter, in the section “Splitting, Adding, and Dropping Partitions.”

Creating Partitioned Tables
Several methods of partitioning are available in the Oracle database, and many of them were
introduced in Oracle Database 10g, such as list-partitioned IOTs; other methods are new to
Oracle 11g, such as composite list-hash, list-list, list-range, and range-range partitioning. In the
next few sections, we’ll cover the basics of range partitioning, hash partitioning, list partitioning,
six types of composite partitioning, as well as interval partitioning, reference partitioning,
application-controlled partitioning, and virtual column partitioning. I’ll also show you how to
selectively compress partitions within the table to save on I/O and disk space. Oracle Database
12c adds another new type of partitioning: interval-reference partitioning.

Using Range Partitioning Range partitioning is used to map rows to partitions based on ranges
of one or more columns in the table being partitioned. Also, the rows to be partitioned should be
fairly evenly distributed among each partition, such as by months of the year or by quarter. If the
column being partitioned is skewed (for example, by population within each state code), another
partitioning method may be more appropriate.

To use range partitioning, you must specify the following three criteria:

 ■ Partitioning method (range)

 ■ Partitioning column or columns

 ■ Bounds for each partition

In the following example, you want to partition the catalog request table CAT_REQ by season,
resulting in a total of four partitions per year:

create table cat_req
 (cat_req_num number not null,
 cat_req_dt date not null,

18-ch18.indd 626 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 627

 cat_cd number not null,
 cust_num number null,
 req_nm varchar2(50),
 req_addr1 varchar2(75),
 req_addr2 varchar2(75),
 req_addr3 varchar2(75))
partition by range (cat_req_dt)
 (partition cat_req_spr_2014
 values less than (to_date('20140601','YYYYMMDD'))
 tablespace prd01,
 partition cat_req_sum_2014
 values less than (to_date('20140901','YYYYMMDD'))
 tablespace prd02,
 partition cat_req_fal_2014
 values less than (to_date('20141201','YYYYMMDD'))
 tablespace prd03,
 partition cat_req_win_2015
 values less than (maxvalue)
 tablespace prd04);

In the preceding example, the partitioning method is RANGE, the partitioning column is
REQ_DATE, and the VALUES LESS THAN clause specifies the upper bound that corresponds to
the dates for each season of the year: March through May (partition CAT_REQ_SPR_2014), June
through August (partition CAT_REQ_SUM_2014), September through November (partition CAT_
REQ_FAL_2014), and December through February (partition CAT_REQ_WIN_2015). Each partition
is stored in its own tablespace—either PRD01, PRD02, PRD03, or PRD04.

You use MAXVALUE to catch any date values after 12/1/2014; if you had specified TO_
DATE('20150301','YYYYMMDD') as the upper bound for the fourth partition, then any attempt to
insert rows with date values after 2/28/2015 would fail. On the other hand, any rows inserted with
dates before 6/1/2014 would end up in partition CAT_REQ_SPR_2014, even rows with a catalog
request date of 10/1/1963! This is one case where the front-end application may provide some
assistance in data verification, both at the low end and the high end of the date range.

The data dictionary view DBA_TAB_PARTITIONS shows you the partition components of the
CAT_REQ table, as you can see in the following query:

SQL> select table_owner, table_name,
 2 partition_name, tablespace_name
 3 from dba_tab_partitions
 4 where table_name = 'CAT_REQ';

TABLE_OWNER TABLE_NAME PARTITION_NAME TABLESPACE_NAME
--------------- ------------ -------------------- ---------------
OE CAT_REQ CAT_REQ_FAL_2014 PRD03
OE CAT_REQ CAT_REQ_SPR_2014 PRD01
OE CAT_REQ CAT_REQ_SUM_2014 PRD02
OE CAT_REQ CAT_REQ_WIN_2015 PRD04

4 rows selected.

18-ch18.indd 627 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

628 Oracle Database 12c DBA Handbook

Finding out the dates used in the VALUES LESS THAN clause when the partitioned table was
created can be done in the same data dictionary view, as you can see in the following query:

SQL> select partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ';

PARTITION_NAME HIGH_VALUE
-------------------- --
CAT_REQ_FAL_2014 TO_DATE(' 2014-12-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SPR_2014 TO_DATE(' 2014-06-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SUM_2014 TO_DATE(' 2014-09-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_WIN_2015 MAXVALUE

4 rows selected.

In a similar fashion, you can use the data dictionary view DBA_PART_KEY_COLUMNS to find
out the columns used to partition the table, as in the following example:

SQL> select owner, name, object_type, column_name,
 2 column_position from dba_part_key_columns
 3 where owner = 'OE' and name = 'CAT_REQ';

OWNER NAME OBJECT_TYPE COLUMN_NAME COL
--------- ------------- -------------- --------------- ---
OE CAT_REQ TABLE CAT_REQ_DT 1

1 row selected.

I will show you how to modify the partitions of a partitioned table later in this chapter, in the
section “Managing Partitions.”

Using Hash Partitioning Hash partitioning is a good option if the distribution of your data does
not easily fit into a range partitioning scheme or the number of rows in the table is unknown, but
you otherwise want to take advantage of the benefits inherent in partitioned tables. Rows are
evenly spread out to two or more partitions based on an internal hashing algorithm using the
partition key as input. The more distinct the values are in the partitioning column, the better the
distribution of rows across the partitions.

18-ch18.indd 628 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 629

To use hash partitioning, you must specify the following three criteria:

 ■ Partitioning method (hash)

 ■ Partitioning column or columns

 ■ The number of partitions and a list of target tablespaces in which to store the partitions

For this example, you are creating a new customer table whose primary key is generated using
a sequence. You want the new rows to be evenly distributed across four partitions; therefore, hash
partitioning would be the best choice. Here is the SQL you use to create a hash-partitioned table:

create table oe.cust
 (cust_num number not null primary key,
 ins_dt date,
 first_nm varchar2(25),
 last_nm varchar2(35),
 mi char(1),
 addr1 varchar2(40),
 addr2 varchar2(40),
 city varchar2(40),
 state_cd char(2),
 zip_cd varchar2(10))
partition by hash (cust_num)
partitions 4
store in (prd01, prd02, prd03, prd04);

You do not necessarily have to specify the same number of partitions as tablespaces; if you
specify more partitions than tablespaces, the tablespaces are reused for subsequent partitions in a
round-robin fashion. If you specify fewer partitions than tablespaces, the extra tablespaces at the
end of the tablespace list are ignored.

If you run the same queries that you ran for range partitioning, you may find some unexpected
results, as you can see in this query:

SQL> select partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE_NAME HIGH_VALUE
-------------------- --------------- --------------------
SYS_P1130 PRD01
SYS_P1131 PRD02
SYS_P1132 PRD03
SYS_P1133 PRD04

4 rows selected.

Because you are using hash partitioning, the HIGH_VALUE column is NULL.

18-ch18.indd 629 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

630 Oracle Database 12c DBA Handbook

TIP
Oracle strongly recommends that the number of partitions in a hash-
partitioned table be to a power of 2 to get an even distribution of rows
in each table; Oracle uses the low-order bits of the partition key to
determine the destination partition for the row.

Using List Partitioning List partitioning gives you explicit control of how each value in the
partitioning column maps to a partition by specifying discrete values from the partitioning column.
Range partitioning is usually not suitable for discrete values that do not have a natural and
consecutive range of values, such as state codes. Hash partitioning is not suitable for assigning
discrete values to a particular partition because, by its nature, a hash partition may map several
related discrete values into different partitions.

To use list partitioning, you must specify the following three criteria:

 ■ Partitioning method (list)

 ■ Partitioning column

 ■ Partition names, with each partition associated with a discrete list of literal values that
place it in the partition

NOTE
As of Oracle 10g, list partitioning can be used for tables with LOB
columns.

In the following example, you will use list partitioning to record sales information for the data
warehouse into three partitions based on sales region: the Midwest, the western seaboard, and the
rest of the country. Here is the CREATE TABLE command:

create table oe.sales_by_region_by_day
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by list (state_cd)
 (partition midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 partition westcoast values ('CA','OR','WA')
 tablespace prd02,
 partition other_states values (default)
 tablespace prd03);

Sales information for Wisconsin, Illinois, and the other Midwestern states will be stored in the
MIDWEST partition; California, Oregon, and Washington state will end up in the WESTCOAST
partition. Any other value for state code, such as MI, will end up in the OTHER_STATES partition
in tablespace PRD03.

Using Composite Range-Hash Partitioning As the name implies, range-hash partitioning uses
range partitioning to divide rows first using the range method and then subpartitioning the rows

18-ch18.indd 630 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 631

within each range using a hash method. Composite range-hash partitioning is good for historical
data with the added benefit of increased manageability and data placement within a larger
number of total partitions.

To use composite range-hash partitioning, you must specify the following criteria:

 ■ Primary partitioning method (range)

 ■ Range partitioning column(s)

 ■ Partition names identifying the bounds of the partition

 ■ Subpartitioning method (hash)

 ■ Subpartitioning column(s)

 ■ Number of subpartitions for each partition or subpartition name

In the following example, you will track house and garden tool rentals. Each tool is identified
by a unique tool number; at any given time, only about 400 tools are available for rental,
although there may be slightly more than 400 on a temporary basis. For each partition, you want
to use hash partitioning for each of eight subpartitions, using the tool name in the hashing
algorithm. The subpartitions will be spread out over four tablespaces: PRD01, PRD02, PRD03,
and PRD04. Here is the CREATE TABLE command to create the range-hash partitioned table:

create table oe.tool_rentals
 (tool_num number,
 tool_desc varchar2(50),
 rental_rate number(6,2))
partition by range (tool_num)
 subpartition by hash (tool_desc)
 subpartition template (subpartition s1 tablespace prd01,
 subpartition s2 tablespace prd02,
 subpartition s3 tablespace prd03,
 subpartition s4 tablespace prd04,
 subpartition s5 tablespace prd01,
 subpartition s6 tablespace prd02,
 subpartition s7 tablespace prd03,
 subpartition s8 tablespace prd04)
(partition tool_rentals_p1 values less than (101),
 partition tool_rentals_p2 values less than (201),
 partition tool_rentals_p3 values less than (301),
 partition tool_rentals_p4 values less than (maxvalue));

The range partitions are logical only; there are a total of 32 physical partitions, one for each
combination of logical partition and subpartition in the template list. Note the SUBPARTITION
TEMPLATE clause; the template is used for creating the subpartitions in every partition that
doesn’t have an explicit subpartition specification. It can be a real timesaver and reduce typing
errors if the subpartitions are explicitly specified for each partition. Alternatively, you could
specify the following clause, if you do not need the subpartitions explicitly named:

subpartitions 8 store in (prd01, prd02, prd03, prd04)

18-ch18.indd 631 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

632 Oracle Database 12c DBA Handbook

The physical partition information is available in DBA_TAB_SUBPARTITIONS, as for any
partitioned table. Here is a query to find out the partition components of the TOOL_RENTALS
table:

SQL> select table_name, partition_name, subpartition_name,
 2 tablespace_name
 3 from dba_tab_subpartitions
 4 where table_name = 'TOOL_RENTALS';

TABLE_NAME PARTITION_NAME SUBPARTITION_NAME TABLESPACE
--------------- -------------------- ---------------------- ----------
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S1 PRD01
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S2 PRD02
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S3 PRD03
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S4 PRD04
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S5 PRD01
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S6 PRD02
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S7 PRD03
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S8 PRD04
TOOL_RENTALS TOOL_RENTALS_P2 TOOL_RENTALS_P2_S1 PRD01
TOOL_RENTALS TOOL_RENTALS_P2 TOOL_RENTALS_P2_S2 PRD02
. . .
TOOL_RENTALS TOOL_RENTALS_P4 TOOL_RENTALS_P4_S8 PRD04

32 rows selected.

At the logical partition level, you still need to query DBA_TAB_PARTITIONS to obtain the
range values, as you can see in the following query:

SQL> select table_name, partition_name,
 2 subpartition_count, high_value
 3 from dba_tab_partitions
 4 where table_name = 'TOOL_RENTALS';

TABLE_NAME PARTITION_NAME SUBPARTITION_COUNT HIGH_VALUE
---------------- ------------------- ------------------ -------------
TOOL_RENTALS TOOL_RENTALS_P1 8 101
TOOL_RENTALS TOOL_RENTALS_P2 8 201
TOOL_RENTALS TOOL_RENTALS_P3 8 301
TOOL_RENTALS TOOL_RENTALS_P4 8 MAXVALUE

4 rows selected.

Also note that either the partition name or subpartition name can be specified to perform
manual partition pruning, as in these two examples:

select * from oe.tool_rentals partition (tool_rentals_p1);
select * from oe.tool_rentals subpartition (tool_rentals_p3_s2);

In the first query, a total of eight subpartitions are searched, TOOL_RENTALS_P1_S1 through
TOOL_RENTALS_P1_S8; in the second query, only one out of the 32 total subpartitions is searched.

18-ch18.indd 632 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 633

Using Composite Range-List Partitioning Similar to composite range-hash partitioning,
composite range-list partitioning uses range partitioning to divide rows first using the range
method and then subpartitioning the rows within each range using the list method. Composite
range-list partitioning is good for historical data to place the data in each logical partition, further
subdividing each logical partition using a discontinuous or discrete set of values.

NOTE
Range-list partitioning was introduced in Oracle 10g.

To use composite range-list partitioning, you must specify the following criteria:

 ■ Primary partitioning method (range)

 ■ Range partitioning column(s)

 ■ Partition names identifying the bounds of the partition

 ■ Subpartitioning method (list)

 ■ Subpartitioning column

 ■ Partition names, with each partition associated with a discrete list of literal values that
place it in the partition

In the following example, we will expand on the previous “Sales by Region” list partitioning
example and make the partitioned table more scalable by using the sales date for range partitioning,
and we will use the state code for subpartitioning. Here is the CREATE TABLE command to
accomplish this:

create table sales_by_region_by_quarter
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by range (sales_dt)
 subpartition by list (state_cd)
 (partition q1_2014 values less than (to_date('20140401','YYYYMMDD'))
 (subpartition q1_2014_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q1_2014_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q1_2014_other_states values (default)
 tablespace prd03
),
 partition q2_2014 values less than (to_date('20140701','YYYYMMDD'))
 (subpartition q2_2014_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q2_2014_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q2_2014_other_states values (default)
 tablespace prd03
),
 partition q3_2014 values less than (to_date('20141001','YYYYMMDD'))

18-ch18.indd 633 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

634 Oracle Database 12c DBA Handbook

 (subpartition q3_2014_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q3_2014_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q3_2014_other_states values (default)
 tablespace prd03
),
 partition q4_2014 values less than (maxvalue)
 (subpartition q4_2014_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q4_2014_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q4_2014_other_states values (default)
 tablespace prd03
)
);

Each row stored in the table SALES_BY_REGION_BY_QUARTER is placed into one of 12
subpartitions, depending first on the sales date, which narrows the subpartition choice to three
subpartitions. The value of the state code then determines which of the three subpartitions will be
used to store the row. If a sales date falls beyond the end of 2014, it will still be placed in one of
the subpartitions of Q4_2014 until you create a new partition and subpartitions for Q1_2015.
Reorganizing partitioned tables is covered later in this chapter.

Using Composite List-Hash, List-List, and List-Range Partitioning Using list-hash, list-list,
and list-range composite partitioning is similar to using range-hash, range-list, and range-range
partitioning as discussed earlier in this section, except that you use the PARTITION BY LIST
clause instead of the PARTITION BY RANGE clause as the primary partitioning strategy.

NOTE
Composite list-hash partitioning and all subsequent partitioning
methods in this chapter are new as of Oracle 11g.

As an example, we’ll re-create the SALES_BY_REGION_BY_QUARTER table (which uses a
range-list scheme) using a list-range partitioning scheme instead, as follows:

create table sales_by_region_by_quarter_v2
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by list (state_cd)
 subpartition by range(sales_dt)
 (partition midwest values ('WI','IL','IA','IN','MN')
 (
 subpartition midwest_q1_2014 values less than
 (to_date('20140401','YYYYMMDD')),
 subpartition midwest_q2_2014 values less than
 (to_date('20140701','YYYYMMDD')),
 subpartition midwest_q3_2014 values less than
 (to_date('20141001','YYYYMMDD')),

18-ch18.indd 634 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 635

 subpartition midwest_q4_2014 values less than (maxvalue)
),
 partition westcoast values ('CA','OR','WA')
 (
 subpartition westcoast_q1_2014 values less than
 (to_date('20140401','YYYYMMDD')),
 subpartition westcoast_q2_2014 values less than
 (to_date('20140701','YYYYMMDD')),
 subpartition westcoast_q3_2014 values less than
 (to_date('20141001','YYYYMMDD')),
 subpartition westcoast_q4_2014 values less than (maxvalue)
),
 partition other_states values (default)
 (
 subpartition other_states_q1_2014 values less than
 (to_date('20140401','YYYYMMDD')),
 subpartition other_states_q2_2014 values less than
 (to_date('20140701','YYYYMMDD')),
 subpartition other_states_q3_2014 values less than
 (to_date('20141001','YYYYMMDD')),
 subpartition other_states_q4_2014 values less than (maxvalue)
)
);

This alternate partitioning scheme makes sense if the regional managers perform their
analyses by date only within their regions.

Using Composite Range-Range Partitioning As the name implies, the range-range partitioning
method uses a range of values in two table columns. Both columns would otherwise lend
themselves to a range-partitioned table, but the columns do not need to have the same datatype.
For example, a medical analysis table can use a primary range column of patient birth date, and a
secondary range column of patient birth weight in ounces. Here is an example of a patient table
using these two attributes:

create table patient_info
 (patient_id number,
 birth_date date,
 birth_weight_oz number)
partition by range (birth_date)
 subpartition by range (birth_weight_oz)
 (
 partition bd_1950 values less than (to_date('19501231','YYYYMMDD'))
 (
 subpartition bd_1950_4lb values less than (64),
 subpartition bd_1950_6lb values less than (96),
 subpartition bd_1950_8lb values less than (128),
 subpartition bd_1950_12lb values less than (192),
 subpartition bd_1950_o12lb values less than (maxvalue)
),
 partition bd_1960 values less than (to_date('19601231','YYYYMMDD'))
 (

18-ch18.indd 635 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

636 Oracle Database 12c DBA Handbook

 subpartition bd_1960_4lb values less than (64),
 subpartition bd_1960_6lb values less than (96),
 subpartition bd_1960_8lb values less than (128),
 subpartition bd_1960_12lb values less than (192),
 subpartition bd_1960_o12lb values less than (maxvalue)
),
 partition bd_1970 values less than (to_date('19701231','YYYYMMDD'))
 (
 subpartition bd_1970_4lb values less than (64),
 subpartition bd_1970_6lb values less than (96),
 subpartition bd_1970_8lb values less than (128),
 subpartition bd_1970_12lb values less than (192),
 subpartition bd_1970_o12lb values less than (maxvalue)
),
 partition bd_1980 values less than (to_date('19801231','YYYYMMDD'))
 (
 subpartition bd_1980_4lb values less than (64),
 subpartition bd_1980_6lb values less than (96),
 subpartition bd_1980_8lb values less than (128),
 subpartition bd_1980_12lb values less than (192),
 subpartition bd_1980_o12lb values less than (maxvalue)
),
 partition bd_1990 values less than (to_date('19901231','YYYYMMDD'))
 (
 subpartition bd_1990_4lb values less than (64),
 subpartition bd_1990_6lb values less than (96),
 subpartition bd_1990_8lb values less than (128),
 subpartition bd_1990_12lb values less than (192),
 subpartition bd_1990_o12lb values less than (maxvalue)
),
 partition bd_2000 values less than (to_date('20001231','YYYYMMDD'))
 (
 subpartition bd_2000_4lb values less than (64),
 subpartition bd_2000_6lb values less than (96),
 subpartition bd_2000_8lb values less than (128),
 subpartition bd_2000_12lb values less than (192),
 subpartition bd_2000_o12lb values less than (maxvalue)
),
 partition bd_2010 values less than (to_date('20101231','YYYYMMDD'))
 (
 subpartition bd_2010_4lb values less than (64),
 subpartition bd_2010_6lb values less than (96),
 subpartition bd_2010_8lb values less than (128),
 subpartition bd_2010_12lb values less than (192),
 subpartition bd_2010_o12lb values less than (maxvalue)
),
 partition bd_2020 values less than (maxvalue)
 (
 subpartition bd_2020_4lb values less than (64),
 subpartition bd_2020_6lb values less than (96),

18-ch18.indd 636 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 637

 subpartition bd_2020_8lb values less than (128),
 subpartition bd_2020_12lb values less than (192),
 subpartition bd_2020_o12lb values less than (maxvalue)
)
);

Using Interval Partitioning Interval partitioning automates the creation of new range partitions.
For example, November, 2014 will almost certainly follow October, 2014, so using Oracle’s
interval partitioning saves you the effort and creates and maintains new partitions when needed.
Here is an example of a range-partitioned table with four partitions and an interval definition of
one month:

create table order_hist_interval
 (order_num NUMBER(15),
 cust_id NUMBER(12),
 order_dt date,
 order_total NUMBER(10,2)
)
 partition by range (order_dt)
 interval(numtoyminterval(1,'month'))
 (partition p0 values less than (to_date('20060101','YYYYMMDD')),
 partition p1 values less than (to_date('20070101','YYYYMMDD')),
 partition p2 values less than (to_date('20090101','YYYYMMDD')),
 partition p3 values less than (to_date('20110101','YYYYMMDD'))
);

Rows inserted with an ORDER_DT of July 1, 2014, or earlier will reside in one of the four
initial partitions of ORDER_HIST_INTERVAL. Rows inserted with an ORDER_DT after July 1,
2014, will trigger the creation of a new partition with a range of one month each; the upper
bound of each new partition will always be the first of the month, based on the value of the
highest partition’s upper limit. Looking in the data dictionary, this table looks somewhat like a
pre-Oracle 11g range-partitioned table:

SQL> select table_name, partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'ORDER_HIST_INTERVAL';

TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
HIGH_VALUE

ORDER_HIST_INTERVAL P0
TO_DATE(' 2006-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P1
TO_DATE(' 2007-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P2
TO_DATE(' 2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P3
TO_DATE(' 2012-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'

18-ch18.indd 637 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

638 Oracle Database 12c DBA Handbook

However, suppose you add a row for November 11, 2014, as in this example:

SQL> insert into order_hist_interval
 2 values (19581968,1963411,to_date('20141111','YYYYMMDD'),420.11);

1 row created.

SQL>

There is now a new partition, as you can see when you query DBA_TAB_PARTITIONS again:

SQL> select table_name, partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'ORDER_HIST_INTERVAL';

TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
HIGH_VALUE

ORDER_HIST_INTERVAL P0
TO_DATE(' 2006-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P1
TO_DATE(' 2007-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P2
TO_DATE(' 2009-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P3
TO_DATE(' 2011-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL SYS_P41
TO_DATE(' 2014-12-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'

Note that partitions for July, August, September, and October of 2014 will not be created until
order history rows are inserted containing dates within those months.

Using Reference Partitioning Reference partitioning leverages the parent-child relationships
between tables to optimize partition characteristics and ease maintenance for tables that are
frequently joined. In this example, the partitioning defined for the parent table ORDER_HIST is
inherited by the ORDER_ITEM_HIST table:

create table order_hist
 (order_num number(15) not null,
 cust_id number(12),
 order_dt date,
 order_total number(10,2),
 constraint order_hist_pk primary key(order_num)
)
 partition by range (order_dt)
 (partition q1_2014 values less than (to_date('20140401','YYYYMMDD')),
 partition q2_2014 values less than (to_date('20140701','YYYYMMDD')),
 partition q3_2014 values less than (to_date('20141001','YYYYMMDD')),
 partition q4_2014 values less than (to_date('20150101','YYYYMMDD'))

18-ch18.indd 638 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 639

)
;

create table order_item_hist
 (order_num number(15),
 line_item_num number(3),
 product_num number(10),
 item_price number(8,2),
 item_qty number(8),
 constraint order_item_hist_fk
 foreign key (order_num) references order_hist(order_num)
)
partition by reference(order_item_hist_fk)
;

Oracle automatically creates corresponding partitions with the same name for the ORDER_
ITEM_HIST as in ORDER_HIST.

Using Interval-Reference Partitioning As you might expect, interval-reference partitioning
(new to Oracle Database 12c) combines the features of both interval partitioning and reference
partitioning discussed in previous sections. The key difference is that the parent table is interval-
partitioned instead of range-partitioned. This gives you yet another option to manage parent-child
tables with automated interval partitioning. Here is the example from the previous section
rewritten to use interval-reference partitioning:

create table order_hist_interval_ref
 (order_num NUMBER(15) not null,
 cust_id NUMBER(12),
 order_dt date,
 order_total NUMBER(10,2)
)
 partition by range (order_dt)
 interval(numtoyminterval(1,'month'))
 (partition p0 values less than (to_date('20060101','YYYYMMDD')),
 partition p1 values less than (to_date('20070101','YYYYMMDD')),
 partition p2 values less than (to_date('20090101','YYYYMMDD')),
 partition p3 values less than (to_date('20110101','YYYYMMDD'))
);

create table order_item_hist
 (order_num number(15),
 line_item_num number(3),
 product_num number(10),
 item_price number(8,2),
 item_qty number(8),
 constraint order_item_hist_fk
 foreign key (order_num) references order_hist_interval(order_num)
)
partition by reference(order_item_hist_fk)
;

18-ch18.indd 639 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

640 Oracle Database 12c DBA Handbook

Any partition maintenance in the parent table (ORDER_HIST_INTERVAL) is automatically
reflected in the child table (ORDER_ITEM_HIST). For example, converting a partition in the parent
table from an interval partition to a conventional partition causes the same transformation in the
child table.

Using Application-Controlled (System) Partitioning Application-controlled partitioning, also
known as system partitioning, relies on the application logic to place rows into the appropriate
partition. Only the partition names and the number of partitions are specified when the table is
created, as in this example:

create table order_hist_sys_part
 (order_num NUMBER(15) not null,
 cust_id NUMBER(12),
 order_dt date,
 order_total NUMBER(10,2)
)
 partition by system
 (partition p1 tablespace users1,
 partition p2 tablespace users2,
 partition p3 tablespace users3,
 partition p4 tablespace users4
)
;

Any INSERT statements on this table must specify the partition number; otherwise, the INSERT
will fail. Here is an example:

SQL> insert into order_hist_sys_part
 2 partition (p3)
 3 values (49809233,93934011,sysdate,122.12);

1 row created.

SQL>

Using Virtual Column Partitioning Virtual columns, available starting in Oracle Database 11g,
can also be used as a partition key; any partition method that uses a regular column can use a
virtual column. In this example, you create a partitioned table for order items based on the total
cost of the line item—in other words, number of items multiplied by the item price:

create table line_item_value
 (order_num number(15) not null,
 line_item_num number(3) not null,
 product_num number(10),
 item_price number(8,2),
 item_qty number(8),
 total_price as (item_price * item_qty)
)
partition by range (total_price)
(
 partition small values less than (100),
 partition medium values less than (500),

18-ch18.indd 640 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 641

 partition large values less than (1000),
 partition xlarge values less than (maxvalue)
);

Using Compressed Partitioned Tables Partitioned tables can be compressed just as nonpartitioned
tables can; in addition, the partitions of a partitioned table can be selectively compressed. For
example, you may only want to compress the older, less often accessed partitions of a partitioned
table and leave the most recent partition uncompressed to minimize the CPU overhead for retrieval
of recent data. In this example, you will create a new version of the CAT_REQ table you created
earlier in this chapter, compressing the first two partitions only. Here is the SQL command:

create table cat_req_2

 (cat_req_num number not null,
 cat_req_dt date not null,
 cat_cd number not null,
 cust_num number null,
 req_nm varchar2(50),
 req_addr1 varchar2(75),
 req_addr2 varchar2(75),
 req_addr3 varchar2(75))
partition by range (cat_req_dt)
 (partition cat_req_spr_2014
 values less than (to_date('20140601','YYYYMMDD'))
 tablespace prd01 compress,
 partition cat_req_sum_2014
 values less than (to_date('20140901','YYYYMMDD'))
 tablespace prd02 compress,
 partition cat_req_fal_2014
 values less than (to_date('20141201','YYYYMMDD'))
 tablespace prd03 nocompress,
 partition cat_req_win_2015
 values less than (maxvalue)
 tablespace prd04 nocompress);

You do not have to specify NOCOMPRESS, because it is the default. To find out which partitions
are compressed, you can use the column COMPRESSION in the data dictionary table DBA_TAB_
PARTITIONS, as you can see in the following example:

SQL> select table_name, partition_name, compression
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ_2';

TABLE_NAME PARTITION_NAME COMPRESS
---------------- -------------------- --------
CAT_REQ_2 CAT_REQ_FAL_2014 DISABLED
CAT_REQ_2 CAT_REQ_SPR_2014 ENABLED
CAT_REQ_2 CAT_REQ_SUM_2014 ENABLED
CAT_REQ_2 CAT_REQ_WIN_2015 DISABLED

4 rows selected.

18-ch18.indd 641 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

642 Oracle Database 12c DBA Handbook

Indexing Partitions
Local indexes on partitions reflect the structure of the underlying table and in general are easier to
maintain than nonpartitioned or global partitioned indexes. Local indexes are equipartitioned
with the underlying partitioned table; in other words, the local index is partitioned on the same
columns as the underlying table and therefore has the same number of partitions and the same
partition bounds as the underlying table.

Global partitioned indexes are created irrespective of the partitioning scheme of the underlying
table and can be partitioned using range partitioning or hash partitioning. In this section, first I’ll
show you how to create a local partitioned index; next, I’ll show you how to create both range-
partitioned and hash-partitioned global indexes. In addition, I’ll show you how to save space in
a partitioned index by using key compression.

Creating Local Partitioned Indexes A local partitioned index is very easy to set up and
maintain because the partitioning scheme is identical to the partitioning scheme of the base table.
In other words, the number of partitions in the index is the same as the number of partitions and
subpartitions in the table; in addition, for a row in a given partition or subpartition, the index
entry is always stored in the corresponding index’s partition or subpartition.

Figure 18-1 shows the relationship between a partitioned local index and a partitioned table.
The number of partitions in the table is exactly the same as the number of partitions in the index.

In the following example, you will create a local index on the CUST table you created earlier
in the chapter. Here is the SQL statement that retrieves the table partitions for the CUST table:

SQL> select partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE_NAME HIGH_VALUE
-------------------- --------------- --------------------
SYS_P1130 PRD01

FIGURE 18-1. Local partitioned index on a partitioned table

18-ch18.indd 642 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 643

SYS_P1131 PRD02
SYS_P1132 PRD03
SYS_P1133 PRD04

4 rows selected.

The command for creating the local index on this table is very straightforward, as you can see
in this example:

SQL> create index oe.cust_ins_dt_ix on oe.cust (ins_dt)
 2 local store in (idx_1, idx_2, idx_3, idx_4);
Index created.

The index partitions are stored in four tablespaces stored outside of an ASM disk group—
IDX_1 through IDX_4—to further improve the performance of the table, because each index
partition is stored in a tablespace separate from any of the table partitions. You can find out about
the partitions for this index by querying DBA_IND_PARTITIONS, as follows:

SQL> select partition_name, tablespace_name from dba_ind_partitions
 2 where index_name = 'CUST_INS_DT_IX';

PARTITION_NAME TABLESPACE_NAME
-------------------- ---------------
SYS_P1130 IDX_1
SYS_P1131 IDX_2
SYS_P1132 IDX_3
SYS_P1133 IDX_4

4 rows selected.

Notice that the index partitions are automatically named the same as their corresponding
table partitions. One of the benefits of local indexes is that when you create a new table partition,
the corresponding index partition is built automatically; similarly, dropping a table partition
automatically drops the index partition without invalidating any other index partitions, as would
be the case for a global index.

Creating Range-Partitioned Global Indexes Creating a range-partitioned global index involves
rules similar to those you use when creating range-partitioned tables. In a previous example, you
created a range-partitioned table called CAT_REQ that contained four partitions based on the
CAT_REQ_DT column. In this example, you will create a partitioned global index that will only
contain two partitions (in other words, not partitioned the same way as the corresponding table):

create index cat_req_dt_ix on oe.cat_req(cat_req_dt)
 global partition by range(cat_req_dt)
 (partition spr_sum_2014
 values less than (to_date('20140901','YYYYMMDD'))
 tablespace idx_4,
 partition fal_win_2014
 values less than (maxvalue)
 tablespace idx_8);

18-ch18.indd 643 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

644 Oracle Database 12c DBA Handbook

Note that you specify two tablespaces to store the partitions for the index that are different
from the tablespaces used to store the table partitions. If any DDL activity occurs on the underlying
table, global indexes are marked as UNUSABLE and need to be rebuilt unless you include the
UPDATE GLOBAL INDEXES clause (INVALIDATE GLOBAL INDEXES is the default). In the section
“Managing Partitions” later in this chapter, we will review the UPDATE INDEX clause when you
are performing partition maintenance operations on partitioned indexes.

Figure 18-2 shows the relationship between a partitioned global index and a partitioned table.
The number of partitions in the table may or may not be the same as the number of partitions in
the index.

Creating Hash-Partitioned Global Indexes As with range-partitioned global indexes, hash-
partitioned global index CREATE statements share the syntax with hash-partitioned table CREATE
statements. Hash-partitioned global indexes can improve performance in situations where a small
number of a nonpartitioned index’s leaf blocks are experiencing high contention in an OLTP
environment. Queries that use either an equality or IN operator in the WHERE clause can benefit
significantly from a hash-partitioned global index.

NOTE
Hash-partitioned global indexes are new as of Oracle 10g.

Building on our example using hash partitioning for the table CUST, you can create a hash-
partitioned global index on the ZIP_CD column:

create index oe.cust_zip_cd_ix2 on oe.cust2(zip_cd)
 global partition by hash(zip_cd)
 (partition z1 tablespace idx_1,
 partition z2 tablespace idx_2,
 partition z3 tablespace idx_3,
 partition z4 tablespace idx_4,
 partition z5 tablespace idx_5,

FIGURE 18-2. Global partitioned index on a partitioned table

18-ch18.indd 644 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 645

 partition z6 tablespace idx_6,
 partition z7 tablespace idx_7,
 partition z8 tablespace idx_8);

Note that the table CUST2 is partitioned using the CUST_NUM column, and it places its four
partitions in PRD01 through PRD04; this index partition uses the ZIP_CD column for the hashing
function and stores its eight partitions in IDX_1 through IDX_8.

Creating Nonpartitioned Global Indexes Creating a nonpartitioned global index is the same
as creating a regular index on a nonpartitioned table; the syntax is identical. Figure 18-3 shows
the relationship between a nonpartitioned global index and a partitioned table.

Using Key Compression on Partitioned Indexes If your index is nonunique and has a large
number of repeating values for the index key or keys, you can use key compression on the index
just as you can with a traditional nonpartitioned index. When only the first instance of the index
key is stored, both disk space and I/O are reduced. In the following example, you can see how
easy it is to create a compressed partitioned index:

create index oe.cust_ins_dt_ix on oe.cust (ins_dt)
 compress local
 store in (idx_1, idx_2, idx_3, idx_4);

You can specify that a more active index partition not be compressed by using NOCOMPRESS,
which may save a noticeable amount of CPU for recent index entries that are more frequently
accessed than the others in the index.

Partitioned Index-Organized Tables
Index-organized tables (IOTs) can be partitioned using either the range, list, or hash partitioning
method; creating partitioned index-organized tables is syntactically similar to creating partitioned
heap-organized tables. In this section, we’ll cover some of the notable differences in how partitioned
IOTs are created and used.

FIGURE 18-3. Global nonpartitioned index on a partitioned table

18-ch18.indd 645 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

646 Oracle Database 12c DBA Handbook

For a partitioned IOT, the ORGANIZATION INDEX, INCLUDING, and OVERFLOW clauses
are used as they are for standard IOTs. In the PARTITION clause, you can specify the OVERFLOW
clause as well as any other attributes of the overflow segment specific to a partition.

Since Oracle Database 10g, there is no longer the restriction that the set of partitioning
columns must be a subset of the IOT’s primary key columns; in addition, LIST partitioning is
supported in addition to range and hash partitioning. In previous releases of Oracle, LOB columns
were supported only in range-partitioned IOTs; as of Oracle 10g, they are supported in hash and
list partitioning methods as well.

Managing Partitions
Fourteen maintenance operations can be performed on a partitioned table, including splitting a
partition, merging partitions, and adding a new partition. These operations may or may not be
available depending on the partitioning scheme used (range, hash, list, or one of the six composite
methods). For composite partitions, these operations sometimes apply to both the partition and
the subpartition, and sometimes to the subpartition only.

For partitioned indexes, there are seven different types of maintenance operations that vary
depending on both the partitioning method (range, hash, list, or composite) as well as whether the
index is a global index or a local index. In addition, each type of partitioned index may support
automatic updates when the partitioning scheme is changed, thus reducing the occurrences of
unusable indexes.

In the next couple sections, I’ll present a convenient chart for both partitioned tables and
partitioned indexes that shows you what kinds of operations are allowed on which partition types.
For some of the more common maintenance operations, I’ll give you some examples of how they
are used, extending some of the examples I have presented earlier in this chapter.

Maintaining Table Partitions To maintain one or more table partitions or subpartitions, you use
the ALTER TABLE command just as you would on a nonpartitioned table. In Table 18-5 are the
types of partitioned table operations and the keywords you would use to perform them. The format
of the ALTER TABLE command is as follows:

alter table <tablename> <partition_operation> <partition_operation_options>;

Table 18-6 contains the subpartition table operations.

CAUTION
Using the ADD PARTITION clause only works if there are no existing
entries for new partitions in the DEFAULT partition.

In many cases, partitioned table maintenance operations invalidate the underlying index;
while you can always rebuild the index manually, you can specify UPDATE INDEXES in the table
partition maintenance command. Although the table maintenance operation will take longer, the
most significant benefit of using UPDATE INDEXES is to keep the index available during the
partition maintenance operation.

18-ch18.indd 646 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 647

Partition
Operation

Range &
Composite
Range-*

Interval &
Composite
Interval-* Hash

List &
Composite
List-* Reference

Add a
partition

ADD
PARTITION

ADD
PARTITION

ADD
PARTITION

N/A

Coalesce
a partition

N/A N/A COALESCE
PARTITION

N/A N/A

Drop a
partition

DROP
PARTITION

DROP
PARTITION

DROP
PARTITION

N/A N/A

Exchange
a partition

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

Merge
partitions

MERGE
PARTITIONS

MERGE
PARTITIONS

N/A MERGE
PARTITIONS

N/A

Modify
default
attributes

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

Modify real
attributes

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

Modify list
partitions:
Add values

N/A N/A N/A MODIFY
PARTITION . . .
ADD VALUES

N/A

Modify list
partitions:
Drop values

N/A N/A N/A MODIFY
PARTITION . . .
DROP VALUES

N/A

Move
a partition

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

Rename
a partition

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

Split
a partition

SPLIT
PARTITION

SPLIT
PARTITION

N/A SPLIT
PARTITION

N/A

Truncate
a partition

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TABLE 18-5. Maintenance Operations for Partitioned Tables

Splitting, Adding, and Dropping Partitions In many environments, a “rolling window”
partitioned table will contain the latest four quarters’ worth of rows. When the new quarter starts,
a new partition is created, and the oldest partition is archived and dropped. In the following
example, you will split the last partition of the CAT_REQ table you created earlier in this chapter

18-ch18.indd 647 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

648 Oracle Database 12c DBA Handbook

Partition
Operation Composite *-Range Composite *-Hash Composite *-List

Add a
subpartition

MODIFY
PARTITION . . . ADD
SUBPARTITION

MODIFY PARTITION . . .
ADD SUBPARTITION

MODIFY
PARTITION . . . ADD
SUBPARTITION

Coalesce a
subpartition

N/A MODIFY PARTITION . . .
COALESCE SUBPARTITION

N/A

Drop a
subpartition

DROP SUBPARTITION N/A DROP
SUBPARTITION

Exchange a
subpartition

EXCHANGE
SUBPARTITION

N/A EXCHANGE
SUBPARTITION

Merge
subpartitions

MERGE
SUBPARTITIONS

N/A MERGE
SUBPARTITIONS

Modify
default
attributes

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modify real
attributes

MODIFY
SUBPARTITION

MODIFY SUBPARTITION MODIFY
SUBPARTITION

Modify list
subpartitions:
Add values

N/A N/A MODIFY
SUBPARTITION . . .
ADD VALUES

Modify list
subpartitions:
Drop values

N/A N/A MODIFY
SUBPARTITION . . .
DROP VALUES

Move a
subpartition

MOVE SUBPARTITION MOVE SUBPARTITION MOVE
SUBPARTITION

Rename a
subpartition

RENAME
SUBPARTITION

RENAME SUBPARTITION RENAME
SUBPARTITION

Split a
subpartition

SPLIT SUBPARTITION N/A SPLIT SUBPARTITION

Truncate a
subpartition

TRUNCATE
SUBPARTITION

TRUNCATE SUBPARTITION TRUNCATE
SUBPARTITION

TABLE 18-6. Maintenance Operations for Subpartitions of Partitioned Tables

at a specific date and maintain the new partition with MAXVALUE, back up the oldest partition,
and then drop the oldest partition. Here are the commands you can use:

SQL> alter table oe.cat_req split partition
 2 cat_req_win_2015 at (to_date('20150101','YYYYMMDD')) into
 3 (partition cat_req_win_2015 tablespace prd04,

18-ch18.indd 648 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 649

 4 partition cat_req_spr_2015 tablespace prd01);
Table altered.

SQL> create table oe.arch_cat_req_spr_2014 as
 2 select * from oe.cat_req partition(cat_req_spr_2014);
Table created.

SQL> alter table oe.cat_req
 2 drop partition cat_req_spr_2014;
Table altered.

The data dictionary view DBA_TAB_PARTITIONS reflects the new partitioning scheme, as you
can see in this example:

SQL> select partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ';

PARTITION_NAME HIGH_VALUE
-------------------- --
CAT_REQ_FAL_2014 TO_DATE(' 2014-12-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SUM_2014 TO_DATE(' 2014-09-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_WIN_2015 TO_DATE(' 2015-01-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')
CAT_REQ_SPR_2015 MAXVALUE

4 rows selected.

Note that if you had dropped any partition other than the oldest partition, the next highest
partition “takes up the slack” and contains any new rows that would have resided in the
dropped partition; regardless of what partition is dropped, the rows in the partition are no
longer in the partitioned table. To preserve the rows, you would use MERGE PARTITION
instead of DROP PARTITION.

Coalescing a Table Partition You can coalesce a partition in a hash-partitioned table to
redistribute the contents of the partition to the remaining partitions and reduce the number of
partitions by one. For the new CUST table you created earlier in this chapter, you can do this in
one easy step:

SQL> alter table oe.cust coalesce partition;
Table altered.

18-ch18.indd 649 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

650 Oracle Database 12c DBA Handbook

The number of partitions in CUST is now three instead of four:

SQL> select partition_name, tablespace_name
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE
-------------------- ----------
SYS_P1130 PRD01
SYS_P1131 PRD02
SYS_P1132 PRD03

3 rows selected.

Merging Two Table Partitions You may find out through various Oracle advisors that one
partition of a partitioned table is infrequently used or not used at all; in this situation, you may
want to combine two partitions into a single partition to reduce your maintenance effort. In this
example, you will combine the partitions MIDWEST and WESTCOAST in the partitioned table
SALES_BY_REGION_BY_DAY into a single partition, MIDWESTCOAST:

SQL> alter table oe.sales_by_region_by_day
 2 merge partitions midwest, westcoast
 3 into partition midwestcoast tablespace prd04;
Table altered.

Looking at the data dictionary view DBA_TAB_PARTITIONS, you can see that the table now
has only two partitions:

SQL> select table_name, partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_owner = 'OE' and
 4 table_name = 'SALES_BY_REGION_BY_DAY';

TABLE_NAME PARTITION_NAME TABLESPACE HIGH_VALUE
---------------------- ----------------- ---------- ---------------------
SALES_BY_REGION_BY_DAY MIDWESTCOAST PRD04 'WI', 'IL', 'IA', 'IN
 ', 'MN', 'CA', 'OR',
 'WA'

SALES_BY_REGION_BY_DAY OTHER_STATES PRD03 default

2 rows selected.

Maintaining Index Partitions To maintain one or more index partitions or subpartitions, you
use the ALTER INDEX command just as you would on a nonpartitioned index. Table 18-7 lists the
types of partitioned index operations and the keywords you would use to perform them for the
different types of partitioned indexes (range, hash, list, and composite). The format of the ALTER
INDEX command is

alter index <indexname> <partition_operation> <partition_operation_options>;

18-ch18.indd 650 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 651

As with table partition maintenance commands, not all operations are available for every index
partition type. You should note that many of the index partition maintenance options do not apply
to local index partitions. By its nature, a local index partition matches the partitioning scheme of
the table and will change when you modify the table’s partitioning scheme.

Splitting a Global Index Partition Splitting a global index partition is much like splitting a
table’s partition. One particular global index partition may be a hotspot due to the index entries
being stored in that particular partition; as with a table partition, you can split the index partition
into two or more partitions. In the following example, you’ll split one of the partitions of the
global index OE.CAT_REQ_DT_IX into two partitions:

SQL> alter index oe.cat_req_dt_ix split partition
 2 fal_win_2014 at (to_date('20141201','YYYYMMDD')) into
 3 (partition fal_2014 tablespace idx_7,
 4 partition win_2015 tablespace idx_8);
Index altered.

Partition
Operation

Index
Type Range Hash/List Composite

Add a partition Global N/A ADD PARTITION
(hash)

N/A

Local N/A N/A N/A

Drop a partition Global DROP PARTITION N/A N/A

Local N/A N/A N/A

Modify default
attributes

Global MODIFY DEFAULT
ATTRIBUTES

N/A N/A

Local MODIFY DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES [FOR
PARTITION]

Modify real
attributes

Global MODIFY PARTITION N/A N/A

Local MODIFY PARTITION MODIFY
PARTITION

MODIFY [SUB]
PARTITION

Rebuild a partition Global REBUILD PARTITION N/A N/A

Local REBUILD PARTITION REBUILD
PARTITION

REBUILD
SUBPARTITION

Rename a partition Global RENAME PARTITION N/A N/A

Local RENAME PARTITION RENAME
PARTITION

RENAME [SUB]
PARTITION

Split a partition Global SPLIT PARTITION N/A N/A

Local N/A N/A N/A

TABLE 18-7. Maintenance Operations for Partitioned Indexes

18-ch18.indd 651 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

652 Oracle Database 12c DBA Handbook

The index entries for the FAL_WIN_2014 partition will now reside in two new partitions,
FAL_2014 and WIN_2015.

Renaming a Local Index Partition Most characteristics of a local index are updated automatically
when the corresponding table partition is modified. However, a few operations still may need to
be performed on a local index partition, such as rebuilding the partition or renaming a partition
that was originally named with a default system-assigned name. In this example, you will rename
the local index partitions in the index OE.CUST_INS_DT_IX using more meaningful names:

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1130 to cust_ins_dt_ix_P1;
Index altered.

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1131 to cust_ins_dt_ix_P2;
Index altered.

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1132 to cust_ins_dt_ix_P3;
Index altered.

Materialized Views
Another type of table, called a materialized view, shares the characteristics of a table and a view.
It is like a view in that it derives its results from a query against one or more tables; it is like a
table in that it persists the result set of a view in a segment. Materialized views are useful in both
OLTP and DSS systems. Frequent user queries against operational data may be able to use
materialized views instead of the repeated joining of many highly normalized tables, and in a
data warehouse environment the historical data can be aggregated ahead of time to make DSS
queries run in a fraction of the time it would take to aggregate the data “on the fly.”

The data in a materialized view can be refreshed on demand or incrementally, depending on
the business need. Depending on the complexity of the view’s underlying SQL statement, the
materialized view can be quickly brought up to date with incremental changes via a materialized
view log.

To create a materialized view, you use the CREATE MATERIALIZED VIEW command; the
syntax for this command is similar to creating a standard view. Because a materialized view stores
the result of a query, you can also specify storage parameters for the view as if you were creating
a table. In the CREATE MATERIALIZED VIEW command, you also specify how the view will be
refreshed. The materialized view can be refreshed either on demand or whenever one of the base
tables changes. Also, you can force a materialized view to use materialized view logs for an
incremental update, or you can force a complete rebuild of the materialized view when a refresh
occurs.

Materialized views can automatically be used by the optimizer if the optimizer determines
that a particular materialized view already has the results of a query that a user has submitted; the
user does not even have to know that their query is using the materialized view directly instead of
the base tables. However, to use query rewrite, the user must have the QUERY REWRITE system
privilege and you have to set the value of the initialization parameter QUERY_REWRITE_ENABLED
to TRUE.

18-ch18.indd 652 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 653

Using Bitmap Indexes
An alternative to B-tree indexes, called bitmap indexes, provides query optimization benefits in
environments that frequently perform joins on columns with low cardinality. In this section, we’ll
review the basics of bitmap indexes, create a bitmap index, and look at how bitmap indexes can
be created ahead of time against columns in two or more tables.

Understanding Bitmap Indexes
A bitmap index is extremely useful in a VLDB environment when the column being indexed has a
very low number of possible values, such as gender, where the possible values are usually M and
F. A bitmap index uses a string of binary ones and zeros to represent the existence or nonexistence
of a particular column value. Using bitmap indexes makes multiple AND and OR operations
against several table columns very efficient in a query. Bitmap indexes are common in data
warehouse and other VLDB environments where many low-cardinality columns exist, DML
commands are done in bulk, and the query conditions frequently use columns with bitmap indexes.

The space requirements for a bitmap index are low as long as the cardinality is low; for example,
a bitmap index on the GENDER column of the EMPLOYEES table would contain two bitmaps
with a length equal to the number of rows in the table. If the EMPLOYEES table had 15 rows, the
bitmaps for the GENDER column might look like the following:

GENDER_BM_IX:
 F: 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0
 M: 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

As you can see, the size of the bitmap index is directly proportional to the cardinality of the
column being indexed; however, bitmap index blocks with all zeros are compressed to reduce
storage space for bitmap indexes. A bitmap index on the LAST_NAME column of the EMPLOYEES
table would be significantly larger, and many of the benefits of a bitmap index in this case might
be outweighed by the space consumed by the index! Although there are exceptions to every rule,
the cardinality can be up to ten percent of the rows and bitmap indexes will still perform well; in
other words, a table with 1000 rows and 100 distinct values in a particular column will still most
likely benefit from a bitmap index.

NOTE
The Oracle optimizer dynamically converts bitmap index entries
to ROWIDs during query processing. This allows the optimizer to
use bitmap indexes with B-tree indexes on columns that have many
distinct values.

Previous to Oracle 10g, the performance of a bitmap would often deteriorate over time with
frequent DML activity against the table containing the bitmap index. To take advantage of the
improvements to the internal structure of bitmap indexes, you must set the COMPATIBLE initialization
parameter to 10.0.0.0 or greater (to match your current release: if you’re using Oracle Database 12c,
you should have COMPATIBLE set to 12.1.0 or higher). Bitmap indexes that performed poorly
before the COMPATIBLE parameter was adjusted should be rebuilt; bitmap indexes that performed
adequately before the COMPATIBLE parameter was changed will perform better after the change.
Any new bitmap indexes created after the COMPATIBLE parameter is adjusted will take advantage
of all improvements.

18-ch18.indd 653 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

654 Oracle Database 12c DBA Handbook

Using Bitmap Indexes
Bitmap indexes are easy to create; the syntax is identical to that for creating any other index, with
the addition of the BITMAP keyword. In the following example, you will add a GENDER column
to the EMPLOYEES table and then create a bitmap index on it:

SQL> alter table hr.employees
 2 add (gender char(1));
Table altered.

SQL> create bitmap index
 2 hr.gender_bm_ix on hr.employees(gender);
Index created.

Using Bitmap Join Indexes
As of Oracle9i, you can create an enhanced type of bitmap index called a bitmap join index.
A bitmap join index is a bitmap index representing the join between two or more tables. For each
value of a column in the first table of the join, the bitmap join index stores the ROWIDs of the
corresponding rows in the other tables with the same value as the column in the first table. Bitmap
join indexes are an alternative to materialized views that contain a join condition; the storage
required for storing the related ROWIDs can be significantly lower than storing the result of the
view itself.

In this example, you find out that the HR department is frequently joining the EMPLOYEES
and DEPARTMENTS table on the DEPARTMENT_ID column. As an alternative to creating a
materialized view, you decide to create a bitmap join index. Here is the SQL command to create
the bitmap join index:

SQL> create bitmap index
 2 hr.emp_dept_bj_ix on hr.employees(hr.departments.department_id)
 3 from hr.employees, hr.departments
 4 where hr.employees.department_id = hr.departments.department_id;
Index created.

There are a few restrictions on bitmap join indexes:

 ■ Only one of the tables in the bitmap join index can be updated concurrently by different
transactions when the bitmap join index is being used.

 ■ No table can appear more than once in the join.

 ■ Bitmap join indexes cannot be created on an IOT or a temporary table.

 ■ A bitmap join index cannot be created with the UNIQUE attribute.

 ■ The join column(s) used for the index must be the primary key or have a unique constraint
in the table being joined to the table with the bitmap index.

18-ch18.indd 654 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 18: Managing Large Databases 655

Summary
Chances are your database gets bigger rather than smaller every day. More customers are buying
your merchandise online, for example, or more patients are being seen by doctors in your health
system every day, and all of this information either should or must be retained over time for analytical
or legal reasons. Therefore, Oracle Database 12c makes it easy to manage and access both current
and historical data.

Bigfile tablespaces break past the limitations in datafile size for a tablespace (32GB for an 8KB
block size, for example). Not only does this reduce the number of datafiles you need in your database
but also enables maintenance of the tablespace at the tablespace level instead of the datafile level.

Table and index partitioning is the key feature of Oracle Database 12c (and the previous few
versions!) that enables the timely access of rows from tables with millions or billions of rows.
Even with an indexed table you may have to traverse billions of index entries to find the rows you
need when all you need are the last three months’ worth of rows in a patient visit table. Using an
encounter date as the partitioning key means that even a full table scan on the last three months’
worth of patient visits (the latest three partitions) will take seconds instead of hours.

Finally, bitmap indexes can speed up a class of queries where you typically have a low number
of values in a column and you want to quickly filter a large percentage of those rows by using a
very compact bitmap index whose format is literally a single bit for the existence of that column’s
value in the current row of the table. Bitmap join indexes take it a step further by pre-joining a
column that’s common to two tables, further speeding up any future joins between those two tables.

18-ch18.indd 655 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 656

18-ch18.indd 656 13/05/15 10:11 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 657

CHAPTER
19

Managing Distributed
Databases

19-ch19.indd 657 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

658 Oracle Database 12c DBA Handbook

In a distributed environment, databases on separate servers (hosts) may be accessed during a
single transaction or query. Each server can be physically isolated without being logically
isolated from the other servers.

A typical distributed database implementation involves corporate headquarters servers that
replicate data to departmental servers in various locations. Each database supports local client
applications and also has the ability to communicate with other databases in the network. This
architecture is shown in Figure 19-1.

Oracle Net allows this architecture to become reality. Run on all the servers involved, Oracle
Net allows database requests made from one database (or application) to be passed to another
database on a separate server. With this functionality, you can communicate with all the databases
that are accessible via your network. You can then create synonyms that give applications true
network transparency; the user who submits a query will not know the location of the data that is
used to resolve it.

You can configure Oracle to support multimaster replication (in which all databases involved
own the data and can serve as the source for data propagation) or single-master replication (in
which only one database owns the data). When designing a replication configuration, you should
try to restrict the ownership of data as much as possible. As the number of sources for propagation
increases, the potential for errors to occur increases, as does the potential administration workload.
In the following sections, you will see examples of the different replication capabilities available,
followed by management techniques.

FIGURE 19-1. Server/server architecture

19-ch19.indd 658 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 659

Remote Queries
To query a remote database, you must create a database link in the database in which the query
will originate. The database link specifies the service name for the remote database and may also
specify the username to connect to in the remote database. When a database link is referenced by
a SQL statement, Oracle opens a session in the remote database, executes the SQL statement there,
and returns the data. You can create database links as public links (created by DBAs, making the
links available to all users in the local database) or as private links.

The following example creates a public database link called HR_LINK:

create public database link HR_LINK
connect to HR identified by employeeservices202
using 'hq';

NOTE
As of Oracle Database 11g, passwords are case-sensitive unless you
set the initialization parameter SEC_CASE_SENSITIVE_LOGON to
FALSE (the default is TRUE).

The CREATE DATABASE LINK command shown in this example has several parameters:

 ■ The optional keyword PUBLIC, which allows DBAs to create links for all users in a
database. An additional optional keyword, SHARED, is described later in this chapter.

 ■ The name of the link (HR_LINK, in this example).

 ■ The account to connect to. You can configure the database link to use the local username
and password in the remote database. This link connects to a fixed username in the
remote database.

 ■ The service name (HQ, in this example).

To use the newly created link, simply add it as a suffix to table names in commands. The following
example queries a remote table by using the HR_LINK database link:

select * from employees@hr_link
where office = 'ANNAPOLIS';

When you execute this query, Oracle will establish a session via the HR_LINK database link and
query the EMPLOYEES table in that database. The WHERE clause will be applied to the EMPLOYEES
rows, and the matching rows will be returned. The execution of the query is shown graphically in
Figure 19-2.

The FROM clause in this example refers to EMPLOYEES@HR_LINK. Because the HR_LINK
database link specifies the server name, instance name, and owner name, the full name of the
table is known. If no account name had been specified in the database link, the user’s account
name and password in the local database would have been used during the attempt to log into
the remote database.

The management of database links is described in the section “Managing Distributed Data,”
later in this chapter.

19-ch19.indd 659 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

660 Oracle Database 12c DBA Handbook

Remote Data Manipulation: Two-Phase Commit
To support data manipulation across multiple databases, Oracle relies on Two-Phase Commit
(2PC). 2PC allows groups of transactions across several nodes to be treated as a unit; either the
transactions all COMMIT or they all get rolled back. A set of distributed transactions is shown in
Figure 19-3. In that figure, two UPDATE transactions are performed. The first UPDATE goes
against a local table (EMPLOYEES); the second, against a remote table (EMPLOYEES@HR_LINK).
After the two transactions are performed, a single COMMIT is then executed. If either transaction
cannot COMMIT, both transactions will be rolled back.

Distributed transactions yield two important benefits: databases on other servers can be
updated, and those transactions can be grouped together with others in a logical unit. The second
benefit occurs because of the database’s use of 2PC. Here are the two phases:

 ■ The prepare phase An initiating node called the global coordinator notifies all sites
involved in the transaction to be ready either to COMMIT or to roll back the transaction.

 ■ The commit phase If there is no problem with the prepare phase, all sites COMMIT
their transactions. If a network or node failure occurs, all sites roll back their transactions.

The use of 2PC is transparent to the users. If the node that initiates the transaction forgets
about the transaction, a third phase, the forget phase, is performed. The detailed management of
distributed transactions is discussed in the section “Managing Distributed Transactions,” later in
this chapter.

FIGURE 19-2. Sample remote query

Local query:

Local Database Remote Database

19-ch19.indd 660 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 661

Dynamic Data Replication
To improve the performance of queries that use data from remote databases, you may wish to
replicate that data on the local server. There are several options for accomplishing this, depending
on which Oracle features you are using.

You can use database triggers to replicate data from one table into another. For example, after
every INSERT into a table, a trigger may fire to insert that same record into another table—and
that table may be in a remote database. Thus, you can use triggers to enforce data replication in
simple configurations. If the types of transactions against the base table cannot be controlled, the
trigger code needed to perform the replication will be unacceptably complicated.

When using Oracle’s distributed features, you can use materialized views to replicate data
between databases. You do not have to replicate an entire table or limit yourself to data from just
one table. When replicating a single table, you may use a WHERE clause to restrict which records
are replicated, and you may perform GROUP BY operations on the data. You can also join the
table with other tables and replicate the result of the queries.

NOTE
You cannot use materialized views to replicate data using LONG,
LONG RAW, or user-defined datatypes.

FIGURE 19-3. Sample distributed transaction

Remote Database

19-ch19.indd 661 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

662 Oracle Database 12c DBA Handbook

The data in the local materialized view of the remote table(s) will need to be refreshed. You
can specify the refresh interval for the materialized view, and the database will automatically take
care of the replication procedures. In many cases, the database can use a materialized view log to
send over only transaction data (changes to the table); otherwise, the database will perform
complete refreshes on the local materialized view. The dynamic replication of data via materialized
views is shown in Figure 19-4.

You can use Data Guard to create and manage a standby database whose content is updated
whenever the primary database’s data changes. The standby database can be used as a read-only
database to support reporting requirements and then returned to its status as a standby database.
See Chapter 15 for details on the use and management of standby databases.

Managing Distributed Data
Before you can worry about managing transactions against remote databases, you have to get the
data there and make it globally accessible to other databases. The following sections describe the
requisite management tasks: enforcing location transparency and managing the database links,
triggers, and materialized views.

FIGURE 19-4. Replication with materialized views

19-ch19.indd 662 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 663

NOTE
The examples in this chapter assume that you are using tnsnames.ora
files for your database service name resolution.

The Infrastructure: Enforcing Location Transparency
To properly design your distributed databases for long-term use, you must start by making the
physical location of the data transparent to the application. The name of a table within a database
is unique within the schema that owns it. However, a remote database may have an account with
the same name, which may own a table with the same name.

Within distributed databases, two additional layers of object identification must be added.
First, the name of the instance that accesses the database must be identified. Next, the name of
the host on which that instance resides must be identified. Putting together these four parts of the
object’s name—its host, its instance, its owner, and its name—results in a global object name. To
access a remote table, you must know that table’s global object name.

The goal of location transparency is to make the first three parts of the global object name—
the host, the instance, and the schema—transparent to the user. The first three parts of the global
object name are all specified via database links, so any effort at achieving location transparency
should start there. First, consider a typical database link:

create public database link hr_link
connect to HR identified by employeeservices202
using 'hq';

NOTE
If the GLOBAL_NAMES initialization parameter is set to TRUE, the
database link name must be the same as the global name of the
remote database.

By using a service name (in this example, HQ), the host and instance name remain transparent
to the user. These names are resolved via the local host’s tnsnames.ora file. A partial entry in this
file for the service name HQ is shown in the following listing:

HQ =(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ_MW)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

The two lines in bold in this listing fill in the two missing pieces of the global object name. When
a user references the HQ service name, the host name is HQ_MW and the service name is LOC. The
SERVICE_NAME can be the instance name of the remote database. It is specified by the initialization
parameter SERVICE_NAMES, and it can include several services. The default value for SERVICE_
NAME is DB_UNIQUE_NAME.DB_DOMAIN. In a RAC database environment, each node can have
additional service names in addition to the service name. A service specified by SERVICE_NAMES
can run on several (or all, or just one) of the RAC instances. You would specify INSTANCE_NAME in
tnsnames.ora instead of SERVICE_NAME if you want a specific database instance.

19-ch19.indd 663 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

664 Oracle Database 12c DBA Handbook

This tnsnames.ora file uses parameters for the TCP/IP protocol; other protocols may use different
keywords, but their usage is the same. The tnsnames.ora entries provide transparency for the server
and instance names.

The HR_LINK database link created via the code given earlier in this section will provide
transparency for the first two parts of the global object name. But what if the data moves from the
HR schema, or the HR account’s password changes? The database link would have to be dropped
and re-created. The same would be true if account-level security were required; you may need to
create and maintain multiple database links.

To resolve the transparency of the schema portion of the global object name, you can modify
the database link syntax. Consider the database link in the following listing:

create public database link HR_LINK
connect to current_user
using 'hq';

This database link uses the CONNECT TO CURRENT_USER clause. It will use what is known
as a connected user database link: the remote database authenticates the connection request
using the user’s credentials on the server where the user executes the query. The previous
examples were fixed user connections—the same credentials are used to authenticate the
connection request regardless of the user making the request. Here is an example of using the
connected user database link; not surprisingly, it looks identical to using a fixed user database
link:

select * from employees@hr_link;

When the user references this link, the database will attempt to resolve the global object
name in the following order:

1. It will search the local tnsnames.ora file to determine the proper host name, port, and
instance name or service name.

2. It will check the database link for a CONNECT TO specification. If the CONNECT TO
CURRENT_USER clause is found, it will attempt to connect to the specified database using
the connected user’s username and password.

3. It will search the FROM clause of the query for the object name.

Connected user links are often used to access tables whose rows can be restricted according
to the username that is accessing the tables. For example, if the remote database had a table
named HR.EMPLOYEES, and every employee were allowed to see their own row in the table,
then a database link with a specific connection, such as:

create public database link hr_link
connect to HR identified by employeeservices202
using 'hq';

would log in as the HR account (the owner of the table). If this specific connection is used, you
cannot restrict the user’s view of the records on the remote host. However, if a connected user

19-ch19.indd 664 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 665

link is used, and a view is created on the remote host using the USER pseudo-column, then only
that user’s data would be returned from the remote host. A sample database link and view of this
type is shown in the following listing:

-- In the local database:
--
create public database link hr_link
connect to current_user
using 'hq';

create view remote_emp as
 select * from employees@hr_link
 where login_id=user;

Either way, the data being retrieved can be restricted. The difference is that when a connected
user link is used, the data can be restricted based on the username in the remote database; if a
fixed connection is used, the data can be restricted after it has been returned to the local database.
The connected user link reduces the amount of network traffic needed to resolve the query and
adds an additional level of location transparency to the data.

NOTE
If you are using the Virtual Private Database features of the Oracle
Database, you can restrict access to rows and columns without
maintaining views for this purpose. See Chapter 10 for details on
Virtual Private Database options.

Connected user database links raise a different set of maintenance issues. The tnsnames.ora
file must be synchronized across the servers (which in turn drive the adoption of an LDAP solution
such as OID), and the username/password combinations in multiple databases must be synchronized.
These issues are addressed in the next sections.

Database Domains
A domain name service allows hosts within a network to be hierarchically organized. Each node
within the organization is called a domain, and each domain is labeled by its function. These
functions may include COM for companies and EDU for schools. Each domain may have many
subdomains. Therefore, each host will be given a unique name within the network; its name
contains information about how it fits into the network hierarchy. Host names within a network
typically have up to four parts; the leftmost portion of the name is the host’s name, and the rest of
the name shows the domain to which the host belongs.

For example, a host may be named HQ.MYCORP.COM. In this example, the host is named
HQ and identified as being part of the MYCORP subdomain of the COM domain.

The domain structure is significant for two reasons. First, the host name is part of the global
object name. Second, Oracle allows you to specify the DNS version of the host name in database
link names, simplifying the management of distributed database connections.

To use DNS names in database links, you first need to add two parameters to your initialization
file for the database. The first of these, DB_NAME, should be set to the instance name. The second

19-ch19.indd 665 13/05/15 10:12 AM

http://HQ.MYCORP.COM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

666 Oracle Database 12c DBA Handbook

parameter, DB_DOMAIN, is set to the DNS name of the database’s host or is set to WORLD by
default; the value cannot be NULL. DB_DOMAIN specifies the network domain in which the host
resides. If a database named LOC is created on the HQ.MYCORP.COM server, its entries will be

DB_NAME = loc
DB_DOMAIN = hq.mycorp.com

NOTE
In a RAC environment, the INSTANCE_NAME cannot be the same
as the DB_NAME. Typically, a sequential number is appended to the
DB_NAME for each instance. See Chapter 12 for more information on
configuring a RAC database.

To enable the usage of the database domain name, you must set the GLOBAL_NAMES
parameter to TRUE in your SPFILE or initialization parameter file, as in this example:

GLOBAL_NAMES = true

NOTE
GLOBAL_NAMES is set to FALSE by default in Oracle Database 12c.

Once you have set these parameters, the database must be shut down and restarted for
changes to DB_NAME or DB_DOMAIN.

NOTE
If you set GLOBAL_NAMES to TRUE, all your database link names
must follow the rules described in this section; in other words,
GLOBAL_NAMES ensures that database links have the same name as
the database to which you connect using the link.

When you use this method of creating global database names, the names of the database links
are the same as the databases to which they point. Therefore, a database link that points to the LOC
database instance listed earlier would be named LOC.HQ.MYCORP.COM. Here is an example:

create public database link loc.hq.mycorp.com
using 'LOCSVC';

LOCSVC is the service name in tnsnames.ora. Oracle will append the local database’s
DB_DOMAIN value to the name of the database link. For example, if the database is in the
HQ.MYCORP.COM domain, and the database link is named LOC, the database link will resolve
to LOC.HQ.MYCORP.COM whenever it is referenced.

Using global database names establishes a link between the database name, database domain,
and database link names. This, in turn, may make it easier to identify and manage database links.
For example, you can create a public database link (with no connect string, as shown in the
preceding example) in each database that points to every other database. Users within a database

19-ch19.indd 666 13/05/15 10:12 AM

http://HQ.MYCORP.COM
http://LOC.HQ.MYCORP.COM
http://HQ.MYCORP.COM
http://LOC.HQ.MYCORP.COM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 667

no longer need to guess at the proper database link to use; if they know the global database name,
they know the database link name. If a table is moved from one database to another, or if a
database is moved from one host to another, it is easy to determine which of the old database
links must be dropped and re-created. Using global database names is part of migrating from
standalone databases to true networks of databases.

Using Shared Database Links
If you use a shared server configuration for your database connections and your application will
employ many concurrent database link connections, you may benefit from using shared database
links. A shared database link uses shared server connections to support the database link connections.
If you have multiple concurrent database link accesses into a remote database, you can use shared
database links to reduce the number of server connections required.

To create a shared database link, use the SHARED keyword of the CREATE DATABASE LINK
command. As shown in the following listing, you will also need to specify a schema and password
for the remote database:

create shared database link hr_link_shared
connect to current_user
authenticated by hr identified by employeeservices202
using 'hq';

The HR_LINK_SHARED database link uses the connected user’s username and password when
accessing the HQ database, since this link specifies the CONNECT TO CURRENT_USER clause.
In order to prevent unauthorized attempts to use shared links, the AUTHENTICATED BY clause is
required for shared links. In this example, the account used for authentication is an application user’s
account, but you can also use an empty schema (that no user will ever log into) for authentication.
The authentication account must have the CREATE SESSION system privilege. When users use the
HR_LINK_SHARED link, connections will use the HR account on the remote database.

If you change the password on the authentication account, you will need to drop and re-create
each database link that references the account. To simplify maintenance, create an account that is
only used for authentication of shared database link connections. The account should only have
the CREATE SESSION privilege; it should not have any privileges on any of the application tables.

If your application uses database links infrequently, you should use traditional database links
without the SHARED clause. Without the SHARED clause, each database link connection requires
a separate connection to the remote database. In general, use shared database links when the
number of users accessing a database link is expected to be much larger than the number of
server processes in the local database.

Managing Database Links
You can retrieve information about public database links via the DBA_DB_LINKS data dictionary
view. You can view private database links via the USER_DB_LINKS data dictionary view. Whenever
possible, separate your users among databases by application so that they may all share the same
public database links. As a side benefit, these users will usually also be able to share public grants
and synonyms.

19-ch19.indd 667 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

668 Oracle Database 12c DBA Handbook

The columns of the DBA_DB_LINKS data dictionary view are listed in the following table. The
password for the link to use is not viewable via DBA_DB_LINKS; it is encrypted in the SYS.LINK$
table since Oracle Database 10g Release 2.

Column Name Description

OWNER The owner of the database link

DB_LINK The name of the database link (such as HR_LINK in this chapter’s examples)

USERNAME The name of the account to use to open a session in the remote database if
a specific connection is used

HOST The connect string that will be used to connect to the remote database

CREATED The creation date for the database link

NOTE
The number of database links that can be used by a single query is
limited by the OPEN_LINKS parameter in the database’s initialization
file. Its default value is 4.

The managerial tasks involved for database links depend on the level to which you have
implemented location transparency in your databases. In the best-case scenario, connected user
links are used with service names or aliases; minimal link management in this scenario requires a
consistent tnsnames.ora file among all hosts in the domain (or all hosts using the same LDAP server
for name resolution) and that user account/password combinations are the same within the domain.

Synchronizing account/password combinations across databases may be difficult, but there
are several alternatives. First, you may force all changes to user account passwords to go through
a central authority. This central authority would have the responsibility for updating the password
for the account in all databases in the network—a time-consuming but valuable task.

Second, you may audit user password changes made via the ALTER USER command by auditing
the usage of that command (see Chapter 10). If a user’s password changes in one database, it must
be changed on all databases available in the network that are accessed via connected user links.

If any part of the global object name—such as a username—is embedded in the database link,
a change affecting that part of the global object name requires that the database link be dropped
and re-created. For example, if the HR user’s password were changed, the HR_LINK database link
with a specific connection defined earlier would be dropped with:

drop database link hr_link;

and the link would have to be re-created using the new account password:

create public database link hr_link
connect to HR identified by employeeservices404
using 'hq';

You cannot create a database link in another user’s account. Suppose you attempt to create a
database link in OE’s account, as shown here:

create database link oe.hr_link
connect to hr identified by oe2hr
using 'hq';

19-ch19.indd 668 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 669

In this case, Oracle will not create the HR_LINK database link in OE’s account. Instead, Oracle
will create a database link named OE.HR_LINK in the account that executed the CREATE
DATABASE LINK command. To create private database links, you must be logged into the
database in the account that will own the link.

NOTE
To see which links are currently in use in your session, query
V$DBLINK.

Managing Database Triggers
If your data replication needs require synchronized changes in multiple databases, you can use
database triggers to replicate data from one table into another. Database triggers are executed when
specific actions happen. Triggers can be executed for each row of a transaction, for an entire
transaction as a unit, or when system-wide events occur. When dealing with data replication, you
will usually be concerned with triggers affecting each row of data.

Before creating a replication-related trigger, you must create a database link for the trigger to
use. In this case, the link is created in the database that owns the data, accessible to the owner of
the table being replicated:

create public database link trigger_link
connect to current_user
using 'rmt_db_1';

This link, named TRIGGER_LINK, uses the service name RMT_DB_1 to specify the connection to
a remote database. The link will attempt to connect to the database RMT_DB_1 using the same
username and password as the account using the link.

The trigger shown in the following listing uses this link. The trigger is fired after every row is
inserted into the EMPLOYEES table. Because the trigger executes after the row has been inserted,
the row’s data has already been validated in the local database. The trigger inserts the same row
into a remote table with the same structure, using the TRIGGER_LINK database link just defined.
The remote table must already exist.

create trigger copy_data
after insert on employees
for each row
begin
 insert into employees@trigger_link
 values
 (:new.Empno, :new.Ename, :new.Deptno,
 :new.Salary, :new.Birth_Date, :new.Soc_Sec_Num);
end;
/

This trigger uses the NEW keyword to reference the values from the row that was just inserted into
the local EMPLOYEES table.

19-ch19.indd 669 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

670 Oracle Database 12c DBA Handbook

NOTE
If you use trigger-based replication, your trigger code must account
for potential error conditions at the remote site, such as duplicate key
values, space-management problems, or a shut down database.

select trigger_type,
 triggering_event,
 table_name
 from dba_triggers
 where trigger_name = 'COPY_DATA';

Sample output from this query is as follows:

TYPE TRIGGERING_EVENT TABLE_NAME
---------------- ---------------------- ------------
AFTER EACH ROW INSERT EMPLOYEES

You can query the text of the trigger from DBA_TRIGGERS, as shown in this example:

set long 1000
select trigger_body
 from dba_triggers
 where trigger_name = 'COPY_DATA';

TRIGGER_BODY

begin
 insert into employees@trigger_link
 values
 (:new.Empno, :new.Ename, :new.Deptno,
 :new.Salary, :new.Birth_Date, :new.Soc_Sec_Num);
end;

It is theoretically possible to create a trigger to replicate all possible permutations of data-
manipulation actions on the local database, but this quickly becomes difficult to manage. For a
complex environment, you should consider the use of materialized views. For the limited
circumstances described earlier, triggers are a very easy solution to implement. The overhead of
using triggers for replication purposes is significant, however, so if you use this method, be sure to
perform enough tests on bigger tables to determine if the overhead is acceptable.

NOTE
If you use triggers for your data replication, the success of a transaction
in the master database is dependent on the success of the remote
transaction.

Managing Materialized Views
You can use materialized views to aggregate, pre-join, or replicate data. In an enterprise database
environment, data generally flows from an online transaction-processing database into a data
warehouse. Normally, the data is prestaged, cleansed, or otherwise processed and then moved
into the data warehouse. From there, the data may be copied to other databases or data marts.

19-ch19.indd 670 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 671

You can use materialized views to pre-compute and store aggregate information within a
database, to dynamically replicate data between distributed databases, and synchronize data
updates within replicated environments. In replication environments, materialized views enable
local access to data that would normally have to be accessed remotely. A materialized view may
be based on another materialized view.

In large databases, materialized views help to improve the performance of queries that
involve aggregates (including sum, count, average, variance, standard deviation, minimum, and
maximum) or table joins. Oracle’s query optimizer will automatically recognize that the
materialized view could be used to satisfy the query—a feature known as query rewrite.

NOTE
For best results, make sure the statistics on the materialized view
are kept current. Since Oracle Database 10g, statistics on all
database objects are collected on a regular basis during predefined
maintenance windows as part of the automated maintenance tasks
infrastructure (AutoTask windows).

You can use initialization parameters to configure the optimizer to automatically rewrite queries
to use the materialized views whenever possible. Because materialized views are transparent to
SQL applications, they can be dropped or created without any impact on the execution of the
SQL code. You can also create partitioned materialized views, and you can base materialized
views on partitioned tables.

Unlike regular views, materialized views store data and take up physical space in your
database. Materialized views are populated with data generated from their base queries, and they
are refreshed on demand or on a scheduled basis. Therefore, whenever the data accessed by the
base query changes, the materialized views should be refreshed to reflect the data changes. The
data refresh frequency depends on how much data latency your business can tolerate in the
processes supported by the materialized views. You’ll see how to establish your refresh rate later
in this chapter.

The materialized view will create several objects in the database. The user creating the
materialized view must have the CREATE MATERIALIZED VIEW, CREATE TABLE, and CREATE
VIEW privileges as well as the SELECT privilege on any tables that are referenced but are owned
by another schema. If the materialized view is going to be created in another schema, the user
creating the materialized view must have the CREATE ANY MATERIALIZED VIEW privilege and
the SELECT privilege to the tables that are referenced in the materialized view if the tables are
owned by another schema. To enable query rewrite on a materialized view that references tables
within another schema, the user enabling query rewrite must have the GLOBAL QUERY REWRITE
privilege or be explicitly granted the QUERY REWRITE privilege on any referenced table within
another schema. The user must also have the UNLIMITED TABLESPACE privilege. Materialized
views can be created in the local database, and pull data from the remote master database, or
materialized views can reside on the same database server on which the data is located.

If you plan to use the query rewrite feature, you must put the following entry in your
initialization parameter file:

query_rewrite_enabled=true

19-ch19.indd 671 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

672 Oracle Database 12c DBA Handbook

NOTE
If the OPTIMIZER_FEATURES_ENABLE parameter is set to 10.0.0 or
higher, then QUERY_REWRITE_ENABLED defaults to TRUE.

A second parameter, QUERY_REWRITE_INTEGRITY, sets the degree to which Oracle must
enforce query rewriting. At the safest level, Oracle does not use query rewrite transformations that
rely on unenforced relationships. The valid values for QUERY_REWRITE_INTEGRITY are ENFORCED
(Oracle enforces and guarantees consistency and integrity), TRUSTED (query rewrite is supported
for declared relationships), and STALE_TOLERATED (query rewrite is supported even if the
materialized views are inconsistent with their underlying data). By default, QUERY_REWRITE_
INTEGRITY is set to ENFORCED.

Materialized View Planning
Before you can create a materialized view, you must make several decisions, including:

 ■ Whether the materialized view is to be populated with data during creation or after

 ■ How often the materialized view is to be refreshed

 ■ What type of refreshes to perform

 ■ Whether to maintain a materialized view log or not

 ■ Whether the refresh should be in-place or out-of-place

You can either have data loaded to the materialized view upon its creation using the BUILD
IMMEDIATE option of the CREATE MATERIALIZED VIEW command, or add the BUILD
DEFERRED clause to pre-create the materialized view but not populate it until the first time it is
used. The advantage of populating the view on creation is that the data will be available
immediately when you make the materialized view available. However, if the materialized view
is not going to be used right away and the underlying data changes rapidly, the data in the
materialized view will become stale rapidly. If you wait to have the materialized view populated,
the view will not be populated with data until the package DBMS_MVIEW.REFRESH is
automatically executed, and your users must wait for the view to populate before any data is
returned, thus causing a one-time performance degradation. If a standard view already exists and
you want to convert it to a materialized view, you can use the PREBUILT keyword option.

You must also decide how much stale data is tolerable in terms of your company’s needs. You
can base your decision on how frequently the data changes in the table on which the materialized
view is based. If your management does not have to have up-to-the-minute information on which
to base decisions, you might only need to refresh your materialized view once an hour or once a
day. If it is critical for the data to be absolutely accurate at all times, you may need to perform fast
refreshes every five minutes throughout the day and night.

There are four forms of refresh when specifying a refresh method during materialized view
creation: REFRESH COMPLETE, REFRESH FAST, REFRESH FORCE, and NEVER REFRESH. In a fast
(incremental) refresh, materialized view logs are used to track the data changes that have occurred
within the table since the last refresh. Only changed information is populated back to the materialized
view, on a periodic basis, based on the refresh criteria you have established. The materialized view
log is maintained in the same database and schema as the master table for the materialized view.
Because the fast refresh just applies changes made since the last refresh, the time taken to perform
the refresh should generally be very short.

19-ch19.indd 672 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 673

A new type of incremental refresh introduced in Oracle Database 12c is called partition change
tracking (PCT), which is somewhat of a hybrid between log-based incremental refreshes and full
refreshes. If a base table is partitioned, only the corresponding materialized view partition needs
to be refreshed.

In a complete refresh, the data within the materialized view is completely replaced each time
the refresh is run. The time required to perform a complete refresh of the materialized view can be
substantial. You can either have the refresh performed each time transactions are committed on
the master table (REFRESH ON COMMIT) or have it performed only when the DBMS_MVIEW
.REFRESH procedure is run (REFRESH ON DEMAND).

When you specify REFRESH FORCE, the refresh process first evaluates whether or not a fast
refresh can be run. If it can’t, a complete refresh will be performed. If you specify NEVER
REFRESH as the refresh option, the materialized view will not be refreshed. If you do not have a
materialized view log created and populated, only complete refreshes can be executed. Oracle
Database 12c introduces another type of refresh: out-of-place materialized view refresh. During
any type of refresh (COMPLETE, FAST, FORCE, or PCT), the current copy of the materialized view
is maintained while a new version is built. Once completed, the current version is dropped and
the new copy is renamed. This dramatically improves the availability of the materialized view,
with the cost being the additional storage required to build a new copy of the materialized view.

Creating a Materialized View
A sample command used to create the materialized view is shown in the following listing. In this
example, the materialized view is given a name (STORE_DEPT_SAL_MV) and its storage parameters
are specified as well as its refresh interval and the time at which it will be populated with data. In
this case, the materialized view is told to use the complete refresh option and to not populate the
data until the DBMS_MVIEW.REFRESH procedure is run. Query rewrite is enabled. This materialized
view’s base query is as follows:

create materialized view store_dept_sal_mv
tablespace mviews
build deferred
refresh complete
enable query rewrite
as
select d.dname, sum(sal) as tot_sum
from dept d, emp e
where d.deptno = e.deptno
group by d.dname;

NOTE
A materialized view query cannot reference tables or views owned by
the user SYS.

The following example shows another example of a materialized view creation, using the
REFRESH FAST ON COMMIT clause. To support fast refreshes when commits occur, you will
need to create a materialized view log on the base table. See “Managing Materialized View Logs”
later in this chapter for details.

create materialized view store_dept_sal_mv
tablespace mymviews

19-ch19.indd 673 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

674 Oracle Database 12c DBA Handbook

parallel
build immediate
refresh fast on commit
enable query rewrite
as
select d.dname, sum(sal) as tot_sum
 from dept d, emp e
 where d.deptno = e.deptno
group by d.dname;

In this example, the same base query is used, but the materialized view is created with
REFRESH FAST ON COMMIT so that a fast refresh occurs every time a transaction is committed in
any of the materialized view’s base queries. This materialized view will be populated with data on
creation, and the inserted rows will be loaded in parallel. Query rewrite is enabled as well.

NOTE
The fast refresh option will not be used unless a materialized view
log is created on the base table for the materialized view. Oracle can
perform fast refreshes of joined tables in materialized views.

For both of these examples, the materialized view uses the default storage parameters for its
tablespace. You can alter the materialized view’s storage parameters via the ALTER
MATERIALIZED VIEW command, as in this example:

alter materialized view store_dept_sal_mv pctfree 5;

The two most frequently used operations against a materialized view are query execution and
fast refresh. Each of these actions requires different resources and has different performance
requirements. You may index the base table of the materialized view; for example, adding an
index to improve query performance. If you have a materialized view that only uses join conditions
and fast refresh, indexes on the primary key columns may improve the fast refresh operations. If
your materialized view uses both joins and aggregates and is fast refreshable, as shown in the last
example, an index is automatically created for the materialized view unless you specify USING
NO INDEX in the CREATE MATERIALIZED VIEW command.

To drop a materialized view, use the DROP MATERIALIZED VIEW command:

drop materialized view STORE_DEPT_SAL_MV;

Using the out-of-place option for a materialized view (new as of Oracle Database 12c), the
creation of a materialized view created out-of-place is the same as for a materialized view that
will be refreshed in-place, with the difference being the parameters you specify in the call to
DBMS_MVIEW.REFRESH.

Using DBMS_MVIEW and DBMS_ADVISOR
There are multiple supplied packages you can use to manage and evaluate your materialized
views, including DBMS_MVIEW, DBMS_ADVISOR, and DBMS_DIMENSION.

The DBMS_MVIEW package subprograms are shown in Table 19-1; this package is used to
perform management tasks such as evaluating, registering, or refreshing a materialized view.

19-ch19.indd 674 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 675

Subprogram Description

BEGIN_TABLE_REORGANIZATION A process to preserve the data needed for a materialized
view refresh is performed, used prior to reorganizing the
master table.

END_TABLE_REORGANIZATION Ensures that the materialized view master table is in the
proper state and that the master table is valid, at the end of
a master table reorganization.

ESTIMATE_MVIEW_SIZE Estimates the size of a materialized view, in bytes and rows.

EXPLAIN_MVIEW Explains what is possible with an existing or proposed
materialized view. (Is it fast refreshable? Is query rewrite
available?)

EXPLAIN_REWRITE Explains why a query failed to rewrite, or which materialized
views will be used if it rewrites.

I_AM_A_REFRESH The value of the I_AM_REFRESH package state is returned,
called during replication.

PMARKER Used for Partition Change Tracking. Returns a partition
marker from a ROWID.

PURGE_DIRECT_LOAD_LOG Used with data warehousing, this subprogram purges rows
from the direct loader log after they are no longer needed
by a materialized view.

PURGE_LOG Purges rows from the materialized view log.

PURGE_MVIEW_FROM_LOG Purges rows from the materialized view log.

REFRESH Refreshes one or more materialized views that are not
members of the same refresh group.

REFRESH_ALL_MVIEWS Refreshes all materialized views that do not reflect changes
to their master table or master materialized view.

REFRESH_DEPENDENT Refreshes all table-based materialized views that depend on
either a specified master table or master materialized view.
The list can contain one or more master tables or master
materialized views.

REGISTER_MVIEW Enables an individual materialized view’s administration.

UNREGISTER_MVIEW Used to unregister a materialized view at a master site or
master materialized view site.

TABLE 19-1. DBMS_MVIEW Subprograms

19-ch19.indd 675 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

676 Oracle Database 12c DBA Handbook

To refresh a single materialized view, use DBMS_MVIEW.REFRESH. Its two main parameters
are the name of the materialized view to be refreshed and the method to use. For the method,
you can specify 'c' for a complete refresh, 'f' for fast refresh, and '?' for force. Here’s an example:

begin
 dbms_mview.refresh(
 'store_dept_sal_mv',
 method => 'c'
);
end;

If you are refreshing multiple materialized views via a single call to DBMS_MVIEW.REFRESH,
list the names of all the materialized views in the first parameter and their matching refresh
methods in the second parameter, as in this example:

execute dbms_mview.refresh('mv1,mv2,mv3','cfc');

In this example, the materialized view MV2 will be refreshed via a fast refresh, whereas the other
will use a complete refresh.

Refreshing a materialized view using out-of-place refresh is very similar to refreshing a
materialized view using in-place refresh, the only difference being one parameter to the
procedure DBMS_MVIEW.REFRESH, as in this example:

begin
 dbms_mview.refresh(
 'store_dept_sal_mv',
 method => 'c',
 out_of_place => true
);
end;

Since the outside table (the future version of the materialized view to be refreshed) is loaded
using direct path I/O, it can be significantly faster than an in-place complete refresh.

You can use a separate procedure in the DBMS_MVIEW package to refresh all the materialized
views that are scheduled to be automatically refreshed. This procedure, named REFRESH_ALL,
will refresh each materialized view separately. It does not accept any parameters. The following
listing shows an example of its execution:

execute dbms_mview.refresh_all;

Because the materialized views will be refreshed via REFRESH_ALL consecutively, they are
not all refreshed at the same time (in other words, not in parallel). Therefore, a database or server
failure during this procedure may cause the local materialized views to be out of sync with each
other. In this case, simply rerun this procedure after the database has been recovered. As an
alternative, you can create refresh groups, as described in the next section.

Using the SQL Access Advisor
You can use the SQL Access Advisor to generate recommendations for the creation and indexing
of materialized views. The SQL Access Advisor may recommend specific indexes (and types of
indexes) to improve the performance of joins and other queries. The SQL Access Advisor may also

19-ch19.indd 676 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 677

generate recommendations for altering a materialized view so that it supports query rewrite or fast
refreshes. You can execute the SQL Access Advisor from within Oracle Enterprise Manager or via
executions of the DBMS_ADVISOR package.

NOTE
For best results from the DBMS_ADVISOR package, you should gather
statistics about all tables, indexes, and join columns prior to generating
recommendations.

To use the SQL Access Advisor, either from Oracle Cloud Control 12c or via DBMS_ADVISOR,
perform the following steps:

1. Create a task.

2. Define the workload.

3. Generate recommendations.

4. View and implement recommendations.

You can create a task in one of two ways: by executing the DBMS_ADVISOR.CREATE_TASK
procedure or by using the DBMS_ADVISOR.QUICK_TUNE procedure (as shown in the next section).

The workload consists of one or more SQL statements plus the statistics and attributes that
relate to the statement. The workload may include all SQL statements for an application. The SQL
Access Advisor ranks the entries in the workload according to statistics and business importance.
The workload is created using the DBMS_ADVISOR.CREATE_SQLWKLD procedure. To associate
a workload with a parent Advisor task, use the DBMS_ADVISOR.ADD_SQLWKLD_REF procedure.
If a workload is not provided, the SQL Access Advisor can generate and use a hypothetical workload
based on the dimensions defined in your schema.

Once a task exists and a workload is associated with it, you can generate recommendations
via the DBMS_ADVISOR.EXECUTE_TASK procedure. The SQL Access Advisor will consider the
workload and the system statistics and will attempt to generate recommendations for tuning the
application. You can see the recommendations by executing the DBMS_ADVISOR.GET_TASK_
SCRIPT function or via data dictionary views. Each recommendation can be viewed via USER_
ADVISOR_RECOMMENDATIONS (there are “ALL” and “DBA” versions of this view available as
well). To relate recommendations to a SQL statement, you will need to use the USER_ADVISOR_
SQLA_WK_STMTS view and USER_ADVISOR_ACTIONS.

NOTE
See Chapter 6 for more examples of using the DBMS_ADVISOR
package.

When you execute the GET_TASK_SCRIPT procedure, Oracle generates an executable SQL
file that will contain the commands needed to create, alter, or drop the recommended objects.
You should review the generated script prior to executing it, particularly noting the tablespace

19-ch19.indd 677 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

678 Oracle Database 12c DBA Handbook

specifications. Later in this chapter, you will see how to use the QUICK_TUNE procedure to
simplify the tuning advisor process for a single command.

To tune a single SQL statement, use the QUICK_TUNE procedure of the DBMS_ADVISOR
package. QUICK_TUNE has two input parameters, a task name and a SQL statement. Using
QUICK_TUNE shields the user from the steps involved in creating workloads and tasks via
DBMS_ADVISOR.

For example, the following procedure call evaluates a query:

execute dbms_advisor.quick_tune(dbms_advisor.sqlaccess_advisor, -
 'mv_tune','select publisher from bookshelf');

NOTE
The user executing this command needs the ADVISOR system
privilege.

The recommendations generated by QUICK_TUNE can be viewed via the data dictionary
view USER_ADVISOR_ACTIONS, but they are easier to read if you use the DBMS_ADVISOR
procedures to generate a script file. The recommendation in this example is to create a materialized
view to support the query. Because only one SQL statement was provided, this recommendation
is given in isolation and does not consider any other aspects of the database or application.

You can use the CREATE_FILE procedure to automate the generation of a file containing the
scripts needed to implement the recommendations. First, create a directory object to hold the file:

create directory scripts as 'e:\scripts';
grant read on directory scripts to public;
grant write on directory scripts to public;

Next, execute the CREATE_FILE procedure. It has three input variables: the script (generated
by GET_TASK_SCRIPT, to which you pass the name of the task), the output directory, and the
name of the file to be created.

execute dbms_advisor.create_file(dbms_advisor.get_task_script('mv_tune'),-
'scripts','mv_tune.sql');

The mv_tune.sql file created by the CREATE_FILE procedure will contain commands similar
to those shown in the following listing. Depending on the specific version of Oracle, the
recommendations may differ.

Rem Username: PRACTICE
Rem Task: MV_TUNE
Rem

set feedback 1
set linesize 80
set trimspool on
set tab off
set pagesize 60

whenever sqlerror CONTINUE

19-ch19.indd 678 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 679

CREATE MATERIALIZED VIEW "PRACTICE"."MV$$_021F0001"
 REFRESH FORCE WITH ROWID
 ENABLE QUERY REWRITE
 AS SELECT PRACTICE.BOOKSHELF.ROWID C1,
"PRACTICE"."BOOKSHELF"."PUBLISHER" M1
FROM PRACTICE.BOOKSHELF;

begin
 dbms_stats.gather_table_stats('"PRACTICE"',
'"MV$$_021F0001"',NULL,dbms_stats.auto_sample_size);
end;
/

whenever sqlerror EXIT SQL.SQLCODE

begin
dbms_advisor.mark_recommendation('MV_TUNE',1,'IMPLEMENTED');
end;
/

The MARK_RECOMMENDATION procedure allows you to annotate the recommendation so
that it can be skipped during subsequent script generations. Valid actions for MARK_
RECOMMENDATION include ACCEPT, IGNORE, IMPLEMENTED, and REJECT.

You can use the TUNE_MVIEW procedure of the DBMS_ADVISOR package to generate
recommendations for the reconfiguration of your materialized views. TUNE_MVIEW generates
two sets of output results, one for the creation of new materialized views and the other for the
removal of previously created materialized views. The end result should be a set of materialized
views that can be fast refreshed, replacing materialized views that cannot be fast refreshed.

You can view the TUNE_MVIEW output via the USER_TUNE_MVIEW data dictionary view, or
you can generate its scripts via the GET_TASK_SCRIPT and CREATE_FILE procedures shown in the
previous listings.

The supplied programs for the DBMS_ADVISOR package are shown in Table 19-2.
An additional package, DBMS_DIMENSION, provides these two procedures:

DESCRIBE_DIMENSION Shows the definition of the input dimension, including owner,
name, levels, hierarchies, and attributes.

VALIDATE DIMENSION Verifies that the relationships specified in a dimension are correct.

You can use the DBMS_DIMENSION package to validate and display the structure of your
dimensions.

Enforcing Referential Integrity Among Materialized Views
The referential integrity between two related tables, both of which have simple materialized
views based on them, may not be enforced in their materialized views. If the tables are refreshed
at different times, or if transactions are occurring on the master tables during the refresh, it is
possible for the materialized views of those tables to not reflect the referential integrity of the
master tables.

19-ch19.indd 679 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

680 Oracle Database 12c DBA Handbook

Subprocedure Description

ADD_SQLWKLD_REF Adds a workload reference to an Advisor task.

ADD_SQLWKLD_STATEMENT Adds a single statement to a workload.

CANCEL_TASK Cancels a currently executing task operation.

CREATE_FILE Creates an external file from a PL/SQL CLOB variable.

CREATE_OBJECT Creates a new task object.

CREATE_SQLWKLD Creates a new workload object.

CREATE_TASK Creates a new Advisor task in the repository.

DELETE_SQLWKLD Deletes an entire workload object.

DELETE_SQLWKLD_REF Deletes a link between the current task and a workload
data object. This procedure is deprecated as of Oracle
Database 11g.

DELETE_SQLWKLD_STATEMENT Deletes one or more statements from a workload.

DELETE_TASK Deletes the specified task from the repository.

EXECUTE_TASK Executes the specified task.

GET_REC_ATTRIBUTES Retrieves specific recommendation attributes from a task.

GET_TASK_SCRIPT Creates and returns an executable SQL script of the
Advisor recommendations.

IMPORT_SQLWKLD_SCHEMA Imports data into a workload based on the contents of
one or more schemas. This procedure is deprecated as of
Oracle Database 11g.

IMPORT_SQLWKLD_SQLCACHE Imports data into a workload from the current SQL cache.
This procedure is deprecated as of Oracle Database 11g.

IMPORT_SQLWKLD_STS Imports data into a workload from a SQL Tuning Set.

IMPORT_SQLWKLD_SUMADV Imports data into a workload from the current SQL cache.

IMPORT_SQLWKLD_USER Imports data into a workload from the current SQL cache.

INTERRUPT_TASK Stops a currently executing task, ending its operations as
it would at a normal exit.

MARK_RECOMMENDATION Sets the annotation status for a particular
recommendation.

QUICK_TUNE Performs an analysis on a single SQL statement.

RESET_TASK Resets a task to its initial state.

SET_DEFAULT_SQLWKLD_PARAMETER Imports data into a workload from schema evidence.

SET_DEFAULT_TASK_PARAMETER Modifies a default task parameter.

SET_SQLWKLD_PARAMETER Sets the value of a workload parameter.

TABLE 19-2. DBMS_ADVISOR Subprograms

19-ch19.indd 680 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 681

If, for example, the EMPLOYEES and DEPARTMENTS tables are related to each other via a
primary key/foreign key relationship, then simple materialized views of these tables may contain
violations of this relationship, including foreign keys without matching primary keys. In this example,
that could mean employees in the EMPLOYEES materialized view with DEPTNO values that do
not exist in the DEPARTMENTS materialized view.

This problem has a number of potential solutions. First, time the refreshes to occur when the
master tables are not in use. Second, perform the refreshes manually (see the following section for
information on this) immediately after locking the master tables or quiescing the database. Third,
you may join the tables in the materialized view, creating a complex materialized view that will
be based on the master tables (which will be properly related to each other). Fourth, you can force
the materialized view updates to occur when transactions are committed in the primary database.

Using refresh groups provides another solution to the referential integrity problem. You can
collect related materialized views into refresh groups. The purpose of a refresh group is to coordinate
the refresh schedules of its members. Materialized views whose master tables have relationships
with other master tables are good candidates for membership in refresh groups. Coordinating the
refresh schedules of the materialized views will maintain the master tables’ referential integrity in
the materialized views as well. If refresh groups are not used, the data in the materialized views
may be inconsistent with regard to the master tables’ referential integrity.

Manipulation of refresh groups is performed via the DBMS_REFRESH package. The procedures
within that package are MAKE, ADD, SUBTRACT, CHANGE, DESTROY, and REFRESH, as shown
in the following examples. Information about existing refresh groups can be queried from the
USER_REFRESH and USER_REFRESH_CHILDREN data dictionary views.

NOTE
Materialized views that belong to a refresh group do not have to
belong to the same schema, but they do have to be all stored within
the same database.

TABLE 19-2. DBMS_ADVISOR Subprograms (Continued)

Subprocedure Description

SET_TASK_PARAMETER Sets the specified task parameter value.

TUNE_MVIEW Shows how to decompose a materialized view into two
or more materialized views or to restate the materialized
view in a way that is more advantageous for fast refresh
and query rewrite.

UPDATE_OBJECT Updates a task object.

UPDATE_REC_ATTRIBUTES Updates an existing recommendation for the specified task.

UPDATE_SQLWKLD_ATTRIBUTES Updates a workload object.

UPDATE_SQLWKLD_STATEMENT Updates one or more SQL statements in a workload.

UPDATE_TASK_ATTRIBUTES Updates a task’s attributes.

19-ch19.indd 681 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

682 Oracle Database 12c DBA Handbook

You can create a refresh group by executing the MAKE procedure in the DBMS_REFRESH
package, whose calling parameters are shown here:

DBMS_REFRESH.MAKE
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := FALSE,
 lax IN BOOLEAN := FALSE,
 job IN BINARY INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

All but the first four of the parameters for this procedure have default values that are usually
acceptable. The LIST and TAB parameters are mutually exclusive. You can use the following
command to create a refresh group for materialized views names LOCAL_EMP and LOCAL_DEPT:

execute dbms_refresh.make
 (name => 'emp_group', -
 list => 'local_emp, local_dept', -
 next_date => sysdate, -
 interval => 'sysdate+7');

NOTE
The LIST parameter, which is the second parameter in the listing, has a
single quote at its beginning and at its end, with none between. In this
example, two materialized views—LOCAL_EMP and LOCAL_DEPT—
are passed to the procedure via a single parameter.

The preceding command will create a refresh group named EMP_GROUP, with two materialized
views as its members. The refresh group name is enclosed in single quotes, as is the list of members—
but not each member.

If the refresh group is going to contain a materialized view that is already a member of another
refresh group (for example, during a move of a materialized view from an old refresh group to a
newly created refresh group), you must set the LAX parameter to TRUE. A materialized view can
only belong to one refresh group at a time.

To add materialized views to an existing refresh group, use the ADD procedure of the
DBMS_REFRESH package, whose parameters are as follows:

DBMS_REFRESH.ADD
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 lax IN BOOLEAN := FALSE);

19-ch19.indd 682 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 683

As with the MAKE procedure, the ADD procedure’s LAX parameter does not have to be specified
unless a materialized view is being moved between two refresh groups. When this procedure is
executed with the LAX parameter set to TRUE, the materialized view is moved to the new refresh
group and is automatically deleted from the old refresh group.

To remove materialized views from an existing refresh group, use the SUBTRACT procedure
of the DBMS_REFRESH package, as in the following example:

DBMS_REFRESH.SUBTRACT
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 lax IN BOOLEAN := FALSE);

As with the MAKE and ADD procedures, a single materialized view or a list of materialized
views (separated by commas) may serve as input to the SUBTRACT procedure. You can alter the
refresh schedule for a refresh group via the CHANGE procedure of the DBMS_REFRESH package;
here are the parameters:

DBMS_REFRESH.CHANGE
(name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

The NEXT_DATE parameter is analogous to the START WITH clause in the CREATE MATERIALIZED
VIEW command. For example, to change the EMP_GROUP’s schedule so that it will be replicated
every three days, you can execute the following command (which specifies a NULL value for the
NEXT_DATE parameter, leaving that value unchanged):

execute dbms_refresh.change
(name => 'emp_group',
 next_date => null,
 interval => 'sysdate+3');

After this command is executed, the refresh cycle for the EMP_GROUP refresh group will be changed
to every three days.

NOTE
Refresh operations on refresh groups may take longer than
comparable materialized view refreshes. Group refreshes may also
require significant undo segment space to maintain data consistency
during the refresh.

19-ch19.indd 683 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

684 Oracle Database 12c DBA Handbook

You can manually refresh a refresh group via the REFRESH procedure of the DBMS_REFRESH
package. The REFRESH procedure accepts the name of the refresh group as its only parameter. The
command shown here will refresh the refresh group named EMP_GROUP:

execute dbms_refresh.refresh('emp_group');

To delete a refresh group, use the DESTROY procedure of the DBMS_REFRESH package, as
shown in the following example. Its only parameter is the name of the refresh group.

execute dbms_refresh.destroy(name => 'emp_group');

You may also implicitly destroy the refresh group. If you set the IMPLICIT_DESTROY
parameter to TRUE when you create the group with the MAKE procedure, the refresh group will
be deleted (destroyed) when its last member is removed from the group (usually via the
SUBTRACT procedure).

NOTE
For performance statistics related to materialized view refreshes, query
V$MVREFRESH.

Managing Materialized View Logs
A materialized view log is a table that maintains a record of modifications to the master table in a
materialized view. It is stored in the same database as the master table and is only used by simple
materialized views. The data in the materialized view log is used during fast refreshes. If you are
going to use fast refreshes, create the materialized view log before creating the materialized view.

To create a materialized view log, you must be able to create an AFTER ROW trigger on the
table, so you need CREATE TRIGGER and CREATE TABLE privileges. You cannot specify a name
for the materialized view log.

Because the materialized view log is a table, it has the full set of table storage clauses available
to it. The following example shows the creation of a materialized view log on a table named
EMPLOYEES:

create materialized view log on employees tablespace data2;

The PCTFREE value for the materialized view log can be set very low (even 0), since there will
not be any updates to this table! The size of the materialized view log depends on the number of
changes that will be processed during each refresh. The more frequently all the materialized
views that reference the master table are refreshed, the less space is needed for the log.

You can modify the storage parameters for the materialized view log via the ALTER MATERIALIZED
VIEW LOG command. When using this command, specify the name of the master table. An example
of altering the EMPLOYEES table’s materialized view log is shown in the following listing:

alter materialized view log on employees pctfree 10;

To drop a materialized view log, use the DROP MATERIALIZED VIEW LOG command, as in
this example:

drop materialized view log on employees;

19-ch19.indd 684 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 685

Purging the Materialized View Log
The materialized view log contains transient data; records are inserted into the log, used during
refreshes, and then deleted. If multiple materialized views use the same master table, they share
the same materialized view log. If one of the materialized views is not refreshed for a long period,
the materialized view log may never delete any of its records. As a result, the space requirements
of the materialized view log will grow.

To reduce the space used by log entries, you can use the PURGE_LOG procedure of the
DBMS_MVIEW package. PURGE_LOG takes three parameters: the name of the master table,
a NUM variable, and a DELETE flag. The NUM variable specifies the number of least recently
refreshed materialized views whose rows will be removed from the materialized view log. For
example, if you have three materialized views that use the materialized view log and one of them
has not been refreshed for a very long time, you would use a NUM value of 1.

The following listing shows an example of the PURGE_LOG procedure. In this example, the
EMPLOYEES table’s materialized view log will be purged of the entries required by the least recently
used materialized view:

execute dbms_mview.purge_log
(master => 'employees',
 num => 1,
 flag => 'delete');

To further support maintenance efforts, Oracle provides two materialized view–specific options
for the TRUNCATE command; if you want to truncate the master table without losing its materialized
view log entries, you can use the TRUNCATE command with options like the following:

truncate table employees preserve materialized view log;

If the EMPLOYEES table’s materialized views are based on primary key values (the default
behavior), the materialized view log values will still be valid following an export/import of the
EMPLOYEES table. However, if the EMPLOYEES table’s materialized views are based on ROWID
values, the materialized view log would be invalid following an export/import of the base table
(since different ROWIDs will most likely be assigned during the import). In that case, you should
truncate the materialized view log when you truncate the base table, as in this example:

truncate table employees purge materialized view log;

What Kind of Refreshes Can Be Performed?
To see what kind of refresh and rewrite capabilities are possible for your materialized views, you
can query the MV_CAPABILITIES_TABLE table. The capabilities may change between versions, so
you should reevaluate your refresh capabilities following Oracle software upgrades. To create this
table, execute the utlxmv.sql script located in the directory $ORACLE_HOME/rdbms/admin.

The columns of MV_CAPABILITIES_TABLE are shown here:

desc MV_CAPABILITIES_TABLE

 Name Null? Type
 --- -------- ----------------
 STATEMENT_ID VARCHAR2(30)
 MVOWNER VARCHAR2(30)

19-ch19.indd 685 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

686 Oracle Database 12c DBA Handbook

 MVNAME VARCHAR2(30)
 CAPABILITY_NAME VARCHAR2(30)
 POSSIBLE CHAR(1)
 RELATED_TEXT VARCHAR2(2000)
 RELATED_NUM NUMBER
 MSGNO NUMBER(38)
 MSGTXT VARCHAR2(2000)
 SEQ NUMBER

To populate MV_CAPABILITIES_TABLE, execute the procedure DBMS_MVIEW.EXPLAIN_
MVIEW, using the name of the materialized view as the input value, as in this example:

exec dbms_mview.explain_mview('local_category_count');

The script utlxmv.sql provides guidance on the interpretation of the column values, as in this
listing:

CREATE TABLE MV_CAPABILITIES_TABLE
 (STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement
identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:
 -- REWRITE
 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at least full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast
 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated

19-ch19.indd 686 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 687

 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000),-- Owner.table.column, alias name, etc.
 -- related to this message. The
 -- specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 -- The specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 MSGNO INTEGER, -- When available, QSM message #
 -- explaining why not possible or more
 -- details when enabled.
 MSGTXT VARCHAR(2000),-- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

Once the EXPLAIN_MVIEW procedure has been executed, you can query the MV_
CAPABILITIES_TABLE to determine your options:

select capability_name, msgtxt
from mv_capabilities_table
where msgtxt is not null;

For the LOCAL_BOOKSHELF materialized view, the query returns the following:

CAPABILITY_NAME

MSGTXT
--
PCT_TABLE
relation is not a partitioned table

REFRESH_FAST_AFTER_INSERT
the detail table does not have a materialized view log

REFRESH_FAST_AFTER_ONETAB_DML
see the reason why REFRESH_FAST_AFTER_INSERT is disabled

19-ch19.indd 687 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

688 Oracle Database 12c DBA Handbook

REFRESH_FAST_AFTER_ANY_DML
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_PCT
PCT is not possible on any of the detail tables in the
materialized view

REWRITE_FULL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_PARTIAL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_GENERAL
query rewrite is disabled on the materialized view

REWRITE_PCT
general rewrite is not possible or PCT is not possible on
any of the detail tables

PCT_TABLE_REWRITE
relation is not a partitioned table

10 rows selected.

Because the QUERY REWRITE clause was not specified during the creation of this materialized
view, the query rewrite capabilities are disabled for the LOCAL_BOOKSHELF table. Fast refresh
capabilities are not supported, because the base table does not have a materialized view log. If you
change your materialized view or its base table, you should regenerate the data in MV_CAPABILITIES_
TABLE to see the new options.

As shown in the preceding listing, the LOCAL_BOOKSHELF materialized view cannot use a
fast refresh because its base table does not have a materialized view log. Here are some other
constraints that will limit your ability to use fast refreshes:

 ■ The materialized view must not contain references to nonrepeating expressions such as
SYSDATE and ROWNUM.

 ■ The materialized view must not contain references to RAW or LONG RAW datatypes.

 ■ For materialized views based on joins, ROWIDs from all tables in the FROM list must be
part of the SELECT list.

 ■ If there are outer joins, all the joins must be connected by ANDs, the WHERE clause
must have no selections, and unique constraints must exist on the join columns of the
inner join table.

 ■ For materialized views based on aggregates, the materialized view logs must contain all
columns from the referenced tables, must specify the ROWID and INCLUDING NEW
VALUES clauses, and must specify the SEQUENCE clause.

19-ch19.indd 688 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 689

See the Oracle Database Data Warehousing Guide 12c Release 1 (12.1) for additional
restrictions related to fast refreshes of complex aggregates.

NOTE
You can specify an ORDER BY clause in the CREATE MATERIALIZED
VIEW command. The ORDER BY clause will only affect the initial
creation of the materialized view; it will not affect any refreshes.

Using Materialized Views to Alter Query Execution Paths
For a large database, a materialized view may offer several performance benefits. You can use
materialized views to influence the optimizer to change the execution paths for queries. This
feature, called query rewrite, enables the optimizer to use a materialized view in place of the
table queried by the materialized view, even if the materialized view is not named in the query.
For example, if you have a large SALES table, you may create a materialized view that sums the
SALES data by region. If a user queries the SALES table for the sum of the SALES data for a region,
Oracle can redirect that query to use your materialized view in place of the SALES table. As a
result, you can reduce the number of accesses against your largest tables, thus improving the
system performance. Further, because the data in the materialized view is already grouped by
region, summarization does not have to be performed at the time the query is issued.

NOTE
You must specify ENABLE QUERY REWRITE in the materialized view
definition for the view to be used as part of a query rewrite operation.

To use the query rewrite capability effectively, you should create a dimension that defines the
hierarchies within the table’s data. To execute the CREATE DIMENSION command, you must have
the CREATE DIMENSION system privilege. In this example, countries are part of continents, so
you can create tables and dimensions to support this hierarchy:

create dimension geography
 level country_id is country.country
 level continent_id is continent.continent
 hierarchy country_rollup (
 country_id child of
 continent_id
 join key country.continent references continent_id);

To enable a materialized view for query rewrite, you must place all the master tables for the
materialized view in the materialized view’s schema, and you must have the QUERY REWRITE
system privilege. In general, you should create materialized views in the same schema as the
tables on which they are based; otherwise, you will need to manage the permissions and grants
required to create and maintain the materialized views.

NOTE
You can enable or disable query rewrite at the SQL statement level via
the REWRITE and NOREWRITE hints. When using the REWRITE hint,
you can specify materialized views for the optimizer to consider.

19-ch19.indd 689 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

690 Oracle Database 12c DBA Handbook

For query rewrite to be enabled, you must set the following initialization parameters:

 ■ OPTIMIZER_MODE = ALL_ROWS or FIRST_ROWS or FIRST_ROWS_n

 ■ QUERY_REWRITE_ENABLED = TRUE

 ■ QUERY_REWRITE_INTEGRITY = STALE_TOLERATED, TRUSTED, or ENFORCED

By default, QUERY_REWRITE_INTEGRITY is set to ENFORCED; in this mode, all constraints
must be validated. The optimizer only uses fresh data from the materialized views and only uses
those relationships that are based on ENABLED and VALIDATED primary, unique, or foreign key
constraints. In TRUSTED mode, the optimizer trusts that the data in the materialized view is fresh
and that the relationships declared in dimensions and constraints are correct. In STALE_TOLERATED
mode, the optimizer uses materialized views that are valid but contain stale data as well as those
that contain fresh data.

If you set QUERY_REWRITE_ENABLED to FORCE, the optimizer will rewrite queries to use
materialized views even when the estimated query cost of the original query is lower.

If query rewrite occurs, the explain plan for the query will list the materialized view as one of
the objects accessed, along with an operation listed as “MAT_VIEW REWRITE ACCESS.” You can
use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to see if rewrite is possible for a query and
which materialized views would be involved. If the query cannot be rewritten, the procedure will
document the reasons.

NOTE
Query rewrite decisions are based on the costs of the different
execution paths, so your statistics should be kept up to date.

EXPLAIN_REWRITE takes three input parameters—the query, a materialized view name,
and a statement identifier—and can store its output in a table. Oracle provides the CREATE TABLE
command for the output table in a script named utlxrw.sql in the $ORACLE_HOME/rdbms/admin
directory. The utlxrw.sql script creates a table named REWRITE_TABLE.

You can query REWRITE_TABLE for the original cost, rewritten cost, and the optimizer’s decision.
The MESSAGE column will display the reasons for the optimizer’s decision.

If you have used the BUILD DEFERRED option of the CREATE MATERIALIZED VIEW or ALTER
MATERIALIZED VIEW command, the query rewrite feature will not be enabled until after the first
time the materialized view is refreshed.

NOTE
If bind variables have been used within the query, the optimizer will
not rewrite it even though query rewrite has been enabled.

Managing Distributed Transactions
A single logical unit of work may include transactions against multiple databases. For example, a
COMMIT may be executed after two tables in separate databases have been updated. Oracle will
transparently maintain the integrity between the two databases by ensuring that all the transactions
involved either COMMIT or roll back (using the ROLLBACK command or a session failure) as a
group. This is accomplished automatically via Oracle’s Two-Phase Commit (2PC) mechanism.

19-ch19.indd 690 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 691

The first phase of the 2PC is the prepare phase. In this phase, each database instance involved
in a transaction prepares the data that it will need to either COMMIT or roll back the data. Once
prepared, an instance is said to be “in doubt.” The destination instances notify the initiating
instance for the transaction (known as the global coordinator) of their status.

Once all instances are prepared, the transaction enters the commit phase, and all nodes are
instructed to COMMIT their portion of the logical transaction. The databases all COMMIT the data
at the same logical time, preserving the integrity of the distributed data.

NOTE
All databases that perform a COMMIT in a distributed transaction use
the same System Change Number (SCN), which is the highest SCN of
all databases involved in the transaction.

Resolving In-Doubt Transactions
Transactions against standalone databases may fail due to problems with the database server; for
example, there may be a media failure. Working with distributed databases increases the number
of potential failure causes during a set of related transactions.

When a distributed transaction is pending, an entry for that transaction will appear in the
DBA_2PC_PENDING data dictionary view. When the transaction completes, its DBA_2PC_PENDING
record is removed. If the transaction is pending but is not able to complete, its record stays in
DBA_2PC_PENDING.

The RECO (Recoverer) background process periodically checks the DBA_2PC_PENDING
view for distributed transactions that failed to complete. Using the information there, the RECO
process on a node will automatically attempt to recover the local portion of an in-doubt transaction.
It then attempts to establish connections to any other databases involved in the transaction and
resolves the distributed portions of the transaction. The related rows in the DBA_2PC_PENDING
view in each database are then removed.

NOTE
You can enable and disable the RECO process via the ENABLE
DISTRIBUTED RECOVERY and DISABLE DISTRIBUTED RECOVERY
clauses of the ALTER SYSTEM command.

The recovery of distributed transactions is performed automatically by the RECO process. You
can manually recover the local portions of a distributed transaction, but this will usually result in
inconsistent data between the distributed databases. If a local recovery is performed, the remote
data will be out of sync.

To minimize the number of distributed recoveries necessary, you can influence the way that
the distributed transaction is processed. The transaction processing is influenced via the use of
commit point strength to tell the database how to structure the transaction.

Commit Point Strength
Each set of distributed transactions may reference multiple hosts and databases. Of those, one
host and database can normally be singled out as being the most reliable, or as owning the most
critical data. This database is known as the commit point site. If data is committed there, it should

19-ch19.indd 691 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

692 Oracle Database 12c DBA Handbook

be committed for all databases. If the transaction against the commit point site fails, the transactions
against the other nodes are rolled back. The commit point site also stores information about the
status of the distributed transaction.

The commit point site will be selected by Oracle based on each database’s commit point
strength. This is set via the initialization file, as shown in the following example:

commit_point_strength=100

The values for the COMMIT_POINT_STRENGTH parameter are set on a scale relative to other
nodes participating in distributed transactions. In the preceding example, the value is set to 100
(the default is 1). If another database has a value of 200 for this parameter, that database would be
the commit point site for a distributed transaction involving those two databases. The COMMIT_
POINT_STRENGTH cannot exceed 255.

Because the scale is relative, you should set up a site-specific scale. Set the commit point on
your most reliable database to 200. Then, grade the other servers and databases relative to the
most reliable database. If, for example, another database is only 80 percent as reliable as the most
reliable database, assign it a commit point strength of 160 (80 percent of 200). Fixing a single
database at a definite point (in this case, 200) allows the rest of the databases to be graded on an
even scale. This scale should result in the proper commit point site being used for each transaction.

Monitoring Distributed Databases
Several key environmental performance measures must be taken into account for databases:

 ■ The performance of the host

 ■ The distribution of I/O across disks and controllers

 ■ The usage of available memory

For distributed databases, you must also consider the following:

 ■ The capacity of the network and its hardware

 ■ The load on the network segments

 ■ The usage of different physical access paths between hosts

None of these can be measured from within the database. The focus of monitoring efforts for
distributed databases shifts from being database-centric to being network-centric. The database
becomes one part of the monitored environment, rather than the only part that is monitored.

You still need to monitor those aspects of the database that are critical to its success, such as
the free space in tablespaces. However, the performance of distributed databases cannot be
measured except as part of the performance of the network that supports them. Therefore, all
performance-related tests, such as stress tests, must be coordinated with the network management
staff. That staff may also be able to verify the effectiveness of your attempts to reduce the database
load on the network.

The performance of the individual hosts can usually be monitored via a network monitoring
package. This monitoring is performed in a top-down fashion, from network to host to database.
Use the monitoring system described in Chapter 6 as an extension to the network and host monitors.

19-ch19.indd 692 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 693

Tuning Distributed Databases
When you’re tuning a standalone database, the goal is to reduce the amount of time it takes to
find data. As described in Chapter 8, you can use a number of database structures and options to
increase the likelihood that the data will be found in the buffer cache or via an index.

When working with distributed databases, you have an additional consideration: Because
data is now not only being retrieved but also being shipped across the network, the performance
of a query is made up of the performance of these two steps. You must therefore consider the ways
in which data is being transferred across the network, with a goal of reducing the network traffic.

A simple way to reduce network traffic is to replicate data from one node to another. You can
do this manually (via the SQL*Plus COPY command), or it can be done automatically by the
database (via materialized views). Replicating data improves the performance of queries against
remote databases by bringing the data across the network once, usually during a slow period on
the local host. Local queries can use the local copy of the data, eliminating the network traffic
that would otherwise be required.

Let’s consider a simple task: selecting a value from a sequence. A company has created a
distributed application in which a new sequence value is generated for each row. However, the
sequence is local, whereas the insert is being performed in a far distant database. Because the
trigger that generates the sequence value is executed for each row, each insert generates a remote
operation to generate the next sequence value.

The impact of this design is apparent when a session’s trace file is examined:

SELECT NEWID_SEQ.NEXTVAL
FROM
 DUAL

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- --------- ---------
Parse 1 0.01 0.13 0 0 0 0
Execute 53 0.01 0.01 0 0 0 0
Fetch 53 0.06 6.34 0 159 0 53
------- ------ -------- ---------- ---------- --------- --------- ----------
total 107 0.09 6.50 0 159 0 53

Misses in library cache during parse: 0
Optimizer goal: CHOOSE

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 SEQUENCE (REMOTE)
 0 TABLE ACCESS (FULL) OF 'DUAL'

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to dblink 53 0.00 0.00
 SQL*Net message from dblink 53 0.13 6.29

19-ch19.indd 693 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

694 Oracle Database 12c DBA Handbook

In this case, the query is very simple—it selects the next value of the sequence from the
DUAL table. But the sequence is remote (as seen in the execution plan), so the time required to
fetch the values is 6.29 seconds for 53 rows, out of a total of 6.5 seconds. To tune the application,
you either need to reduce the number of trips (such as by performing batch operations instead of
row-by-row operations) or eliminate the remote architecture component of the INSERT. If the
remote object (the sequence) and the local object (the DUAL table) can reside on the same
database, the wait times associated with the remote operations can be eliminated.

NOTE
Since Oracle Database 10g, the DUAL table is an internal table, not a
physical table, and therefore does not generate consistent gets as long
as you don’t use * as the column list in a query referencing DUAL.

Two problems commonly arise with replicated solutions: First, the local data may become out of
sync with the remote data. This is a standard problem with derived data; it limits the usefulness
of this option to tables whose data is fairly static. Even if a simple materialized view is used with
a materialized view log, the data will not be refreshed continuously—only when scheduled.

The second problem with the replicated data solution is that the copy of the table may not be
able to pass updates back to the master table. That is, if a read-only materialized view is used to
make a local copy of a remote table, the snapshot cannot be updated. If you are using materialized
views, you can use updatable materialized views to send changes back to the master site, or you
can use writable materialized views to support local ownership of data.

Any updates that must be processed against replicas must also be performed against the
master tables. If the table is frequently updated, then replicating the data will not improve your
performance unless you are using Oracle’s multimaster replication options. When there is
multisite ownership of data, users can make changes in any database designated as an owner of
the data. The management of Oracle’s multimaster replication is very involved and requires
creating a database environment (with database links and so on) specifically designed to support
multidirectional replication of data. See the Oracle replication documentation for details on
implementing a multimaster environment.

The performance of the refreshes generally won’t concern your users. What may concern them
is the validity and timeliness of the data. If the remote tables are frequently modified and are of
considerable size, you are almost forced to use simple materialized views with materialized view
logs to keep the data current. Performing complete refreshes in the middle of a workday is generally
unacceptable. Therefore, it is the frequency of the refreshes rather than the size of them that
determines which type of materialized view will better serve the users. After all, users are most
concerned about the performance of the system while they are using it; refreshes performed late
at night do not directly affect them. If the tables need to be frequently synchronized, use simple
materialized views with materialized view logs.

As was noted previously in this chapter, you may index the underlying tables that are created
by the materialized view in the local database. Indexing should also help to improve query
performance, at the expense of slowing down the refreshes.

Another means of reducing network traffic, via remote procedure calls, is described in Chapter 8.
That chapter also includes information on tuning SQL and the application design. If the database
was properly structured, tuning the way the application processes data will yield the most significant
performance improvements.

19-ch19.indd 694 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Chapter 19: Managing Distributed Databases 695

Summary
Distributed databases spread out the workload in a database environment to improve both
performance and availability. However, merely spreading out the database or replicating a database
across multiple locations is only valuable if you can ensure transactional integrity at each site.
Therefore, Oracle uses Two-Phase Commit to ensure that a distributed transaction is treated
atomically with a single COMMIT point.

To further enhance transparency and usability, you can use database links between databases
to give you the flexibility to change the actual location of a database object without any changes
to the application or any awareness of the actual location of the database objects to end users.

Use of materialized views is another key element in a distributed environment or even in a
standalone environment. Creating a materialized view pre-aggregates the results of a query to
improve performance for users who may run the query several times a day and not be aware that
they are accessing the aggregate and not the actual tables in the query. The materialized view can
be kept up to date on a continuous basis whether the source tables are all in a single database or
are in several databases in a distributed environment.

19-ch19.indd 695 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1
Blind folio: 696

19-ch19.indd 696 13/05/15 10:12 AM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

References to figures are in italics.

*_TABLESPACES, 620
2PC, 660–661, 690–691

A

abstract datatypes
indexing abstract datatype attributes,

148–149
security for, 146–148
supporting tables based on, 142–149

acceptance test procedures, 154–155
adaptive execution plans, 257
ADDM. See Automatic Database

Diagnostic Monitor (ADDM)
ADR. See Automatic Diagnostic

Repository (ADR)
alert logs, 29

managing with ADR, 190–193
aliases. See net service names
ALTER PLUGGABLE DATABASE command,

401–402

ALTER SYSTEM command, 407
APPEND hint, 268
application design and development

acceptance test procedures, 129–130
avoiding repeated connections to the

database, 121
avoiding the use of the temporary

segments, 124
avoiding trips to the database,

120–121
best practices, 118–130
combining steps into one large

query, 122
data requirements, 129
designing to throughput, not disk

space, 124
distribution of CPU requirements,

248–249
effective application design, 249–250
effective table design, 247–248
eliminating logical reads, 119–120
eliminating the need to use

undo, 123

Index

697

20-Index.indd 697 08/05/15 3:48 PM

698 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

application design and development (Cont.)
eliminating unnecessary sorts,

122–123
iterative development, 151–152
keeping statistics updated, 123–124
managing package development,

153–155
query execution plans, 129
security requirements, 129
standard deliverables, 127–130
storing data the way users will

query it, 121
testing, 125–127
tuning goals for queries and

transaction processing, 128–129
using hints, 124
using materialized views, 125
using parallelism, 125
using partitions, 125
using the appropriate database block

size, 124
using the right indexes, 121

architecture
ASM disk groups, 103
Automatic Storage Management

(ASM), 94
client/server architecture, 579
fat-client architecture, 578
Optimal Flexible Architecture (OFA),

68–73
Oracle Data Guard, 538–540
Oracle Internet Directory, 603–604
server/server architecture, 581
tablespaces, 26–73
thin-client architecture, 578, 580
three-tier architecture, 578
two-tier architecture, 578

archived log files, 28
archived redo log files, 33

backups, 509
managing, 179

archiver process. See ARCn
ARCn, 38–39
ASM. See Automatic Storage

Management (ASM)
ASM disk groups

altering disk groups, 109–111
architecture, 103
dynamic rebalancing, 105–108
failure groups, 104–105
fast mirror resync, 108–109
mirroring, 104–105
overview, 102–103
redundancy, 105, 175
using the asmcmd command,

111–113
ASM environment, 72–73
ASM_DISKGROUPS, 99
ASM_DISKSTRING, 98
ASM_POWER_LIMIT, 98
ASM_PREFERRED_READ_FAILURE_

GROUPS, 99
auditing, 41–42, 304, 358

data dictionary views, 368
fine-grained auditing, 42, 366–367
locations, 358–360
privilege auditing, 364
protecting the audit trail, 368–369
schema object auditing, 365–366
statement auditing, 360–364
types, 359

authentication, 304, 305–306
3-tier authentication, 312
client-side authentication,

312–313
database administrator

authentication, 306–309
database authentication, 306
network authentication, 310–312
operating system authentication,

309–310
user accounts, 313–318

20-Index.indd 698 08/05/15 3:48 PM

Index 699

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

authorization, 304, 318–319
object privileges, 329–333
profiles, 319–326
roles, 333–340
system privileges, 326–329
using Virtual Private Databases,

340–358
Automatic Database Diagnostic Monitor

(ADDM), reports, 275
Automatic Diagnostic Repository (ADR),

managing alert and trace files with,
190–193

Automatic SQL Tuning Advisor,
275–277, 278

Automatic Storage Management (ASM),
30, 31, 62

accessing an ASM instance, 97–98
alias names, 101
alias with template names, 101–102
architecture, 94
ASM initialization parameters,

98–99
ASM instance startup and

shutdown, 99
ASM instances, 175
ASM-related dynamic performance

views, 100
creating an ASM instance, 94–97
creating objects using ASM,

175–176
file types, 102, 103
filename formats, 99–102
fully qualified names, 101
incomplete names, 102
numeric names, 101
overview, 93–94
templates, 102, 104
using to manage space, 174–176
See also ASM disk groups

Automatic Undo Management (AUM), 8
migrating to, 242

Automatic Workload Repository, 182–184
generating reports, 274–275
managing baselines, 274
managing snapshots, 274
overview, 273
running the Automatic Database

Diagnostic Monitor reports, 275
using Automatic SQL Tuning Advisor,

275–277, 278
AWR. See Automatic Workload Repository

B

background processes, 37–39, 175
backup files, 30
backup/recovery

backing up CDBs, 420–422
backing up PDBs, 422–423
backup capabilities, 454
Data Recovery Advisor, 432–436
integration of backup procedures,

478–480
logical backups, 454–455
offline backups, 455–456, 474–475
online backups, 456–457, 475–478
overview, 39–40
performing backups of a CDB and all

PDBs, 416–420
physical backups, 455–457
recovering dropped tables using

Flashback Drop, 560–562
recovering from PDB datafile loss,

424–432
See also RMAN

base tables, 21
bigfile tablespaces, 7, 63, 68, 78, 613–614

creating and modifying, 614
data dictionary changes, 620
and DBMS_ROWID, 616–618
initialization parameter

considerations, 619–620

20-Index.indd 699 08/05/15 3:48 PM

700 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

bigfile tablespaces (Cont.)
resizing using ALTER DATABASE, 86
ROWID format, 615
using DBVERIFY with, 618–619
using to manage space, 173–174

bitmap indexes, 20, 253, 653
sizing, 140–141
using, 654

bitmap join indexes, 20, 654
block change tracking, 513–515
block corruption, identifying, 436–437
blocks, 7
buffer caches, 34–35
bulk data moves, using external tables, 267
bulk deletes, using the TRUNCATE

command, 268–269
bulk inserts

common traps and successful tricks,
267–268

using the SQL*Loader Direct Path
option, 265–267

C

cardinality, 20
CDBs. See container databases (CDBs)
chained rows, 140

identifying, 262–263
change tracking files, 514
checkpoint process. See CKPT
CKPT, 39
Cloud Control

automating notification using,
196–206

creating an undo tablespace, 213–217
using to flash back tables, 233–234

cluster indexes, 13
cluster key values, 13
Cluster Ready Services (CRS), 443
clustered tables, 13
coarse striping, 103

commands. See individual command names
commit point site, 691–692
commit point strength, 691–692
COMPATIBLE, 44
complex in-line integrity, 18
composite indexes, 251
composite partitions, 16
concatenated indexes, 251
connect descriptors, 581–582
connected user database links, 664
constraints, 16–18

disabling, 268
container database administrator

(CDBA), 378
container databases (CDBs), 62

backing up CDBs, 420–422
CDB instance shutdown, 404
CDB instance startup, 399–401
changing parameters in a CDB,

406–407
connecting to a CDB using SQL

Developer, 396–397
creating, 379–384
creating services for, 397–398
Flashback CDB, 436
managing permanent and temporary

tablespaces in, 407–410
migrating a pre-12.1 non-CDB

database to a CDB, 394–395
performing backups of a CDB and all

PDBs, 416–420
plugging a non-CDB into a CDB,

389–392
security features, 378–379
service names, 395–396
sizing, 279–281
switching connections within a CDB,

398–399
using local temporary tablespaces,

409–410
See also multitenant environments

20-Index.indd 700 08/05/15 3:48 PM

Index 701

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

control files, 28
backups, 507–509
moving, 91–93
multiplexing, 31–32
recovery from loss of, 425–427
restoring, 520

CONTROL_FILE_RECORD_
KEEP_TIME, 497

CONTROL_FILES, 47
cost-based optimizer, 261
CPU resources, distribution of, 248–249
CREATE DATABASE command,

213, 407–408
CREATE PROFILE command, 319–320
Create Table as Select (CTAS), 229
CREATE TABLESPACE command, 213,

408–409
cumulative backups, 509
cursor sharing, forcing, 152

D

data blocks, 161–163
data dictionary cache, 35
data dictionary views, 165–168

auditing, 368
and Flashback Data Archives, 240
In-Memory option, 299–300
in multitenant environments,

384–387
object privileges, 333
RMAN, 498–500
roles, 338–340
system privileges, 329
user-related, 318

data failures, 432–435
Data Guard. See Oracle Data Guard
Data Pump. See Oracle Data Pump
Data Recovery Advisor, 432–436, 527–531
data requirements, 154
data segments, 8

Database Configuration Assistant (DBCA),
using to create a CDB, 381–384

database domains, 665–667
database files, 71–72

restoring an entire database, 524–525
database links, 25, 605–607, 659, 667–669
Database Replay, 289–290
Database Resource Manager

implementing, 130–135
sizing database objects, 135–142
switching consumer groups, 134
using Global Temporary Tables

(GTTs), 142
using SQL profiles, 134–135
using to distribute CPU

resources, 248
database triggers. See triggers
Database Upgrade Assistant (DBUA), 52,

53, 55–56
database writer process. See DBWn
DATABASE_PROPERTIES, 620
databases, overview, 5
datafiles, 27

dropping a datafile from
a tablespace, 85

extension clauses, 80
moving, 86–87
moving online, 89, 572–573
moving with ALTER DATABASE,

87–88
moving with ALTER TABLESPACE in

offline mode, 88–89
resizing, 78–86
restoring, 524

datatypes
ANSI-equivalent Oracle datatypes, 11
Oracle built-in datatypes, 9–10

DB_BLOCK_SIZE, 47
DB_CACHE_SIZE, 48
DB_DOMAIN, 47
DB_FILES, 620

20-Index.indd 701 08/05/15 3:48 PM

702 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

DB_NAME, 44
DB_nK_CACHE_SIZE, 48
DB_RECOVERY_FILE_DEST, 47, 497
DB_RECOVERY_FILE_DEST_SIZE, 47, 498
DB_UNIQUE_NAME, 98
DBA_ALERT_HISTORY, 168
DBA_EXTENTS, 166–167
DBA_FREE_SPACE, 167
DBA_LMT_FREE_SPACE, 167
DBA_OBJECT_USAGE, 168
DBA_OUTSTANDING_ALERTS, 168
DBA_SEGMENTS, 166
DBA_TABLESPACES, 165–166
DBA_THRESHOLDS, 167–168
DBMS_ADVISOR, 676–681
DBMS_CRYPTO package, 369
DBMS_DIMENSION, 679
DBMS_FLASHBACK, 212, 230–232
DBMS_MVIEW, 674–676
DBMS_RLS, 344–347
DBMS_ROWID, and bigfile tablespaces,

616–618
DBMS_SCHEDULER, 195
DBUA. See Database Upgrade

Assistant (DBUA)
DBVERIFY utility, 618–619
DBWn, 38
DBWR. See DBWn
default temporary tablespaces, 165
degree of parallelism, 248–249
diagrams, generating, 153
dictionary-managed tablespaces, 7
differential backups, 509
directory aliases, 25
directory information tree (DIT), 603
dirty blocks, 38
distinguished names (DNs), 603
Distributed Computing

Environment (DCE), 311
distributed data, 662–663

enforcing location transparency,
663–667

distributed databases
monitoring, 692
tuning, 693–694

distributed transactions, managing,
690–692

DML, vs. read consistency, 227
domain name service (DNS), 665
domains, 665
dynamic data replication, 661–662
dynamic performance views, 165, 169–170

Real Application Clusters (RAC),
446–448

RMAN, 498–500
and undo tablespaces, 219

dynamic SQL, 250

E

easy connect naming, 604–605
encryption, 369

DBMS_CRYPTO package, 369
transparent data encryption, 369–370

entity relationship (E-R) diagrams, 128
equivalence queries, 253
EXAMPLE tablespace, 75
EXCHANGE PARTITION option, 270
execution plans, 154
EXPLAIN PLAN command, 254–257
Export/Import, 39–40, 457

command-line input parameters,
459–460, 466–468

creating a directory, 457–458
Export options, 458–461
exporting from another database, 464
generating SQL, 473–474
Import options, 466–474
logical backups, 454–455
parameters for interactive mode Data

Pump Export, 461
starting a Data Pump Export job,

462–466

20-Index.indd 702 08/05/15 3:48 PM

Index 703

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

starting a Data Pump Import job,
469–474

stopping and restarting running jobs,
463–464, 471–472

transforming imported objects,
472–473

upgrading with, 58–59
using EXCLUDE, INCLUDE, and

QUERY, 464–466, 472
extents, 7, 161, 163–164

impact of extent size on
performance, 136

external file access, 24–25
external tables, 13, 267, 624–625

F

failover scenarios, 449–451, 550
failure groups, 175
fast mirror resync, 108–109
fast recovery areas, 515–516
fat-client architecture, 578
files

database files, 5
non-database files, 5

fine striping, 103
fine-grained auditing, 42, 366–367
fixed user connections, 664
Flashback CDB, 436
Flashback Data Archive, 212, 238–239

assigning a table to, 241
assigning permissions, 240
creating an archive, 239
data dictionary views, 240
managing, 240–241
querying, 241–242

Flashback Database, 457
FLASHBACK DATABASE command, 562–564
Flashback Drop, recovering dropped tables

using, 560–562
Flashback Query, 212, 228–230

Flashback Table, 212, 229, 232–234
Flashback Transaction Backout, 212, 232
Flashback Transaction Query, 237–238
Flashback Version Query, 234–236
full table scans, 251
function-based indexes, 19, 254

G

global coordinator, 660
global indexes, 16, 254
global object names, 580–581, 663
Global Temporary Tables (GTTs), 142,

622–624
goals, 128–129
granules, 34

H

hash clusters, 14, 253
hash partitions, 15–16
high-water mark (HWM), 164, 251

I

incremental backups, 509–511
incremental extents, 163
index range scans, 251–252
index segments, 8
indexes, 18–20

coalescing indexes online, 570
creating indexes online, 570
disabling, 267–268
rebuilding indexes online, 570
using to manage space, 184–185

index-organized tables, 12, 263–265,
621–622

rebuilding online, 570
sizing, 141
See also partitioned index-organized

tables

20-Index.indd 703 08/05/15 3:48 PM

704 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

initial extents, 163
initialization parameter files, 28–29
initialization parameters, 44–49

ASM initialization parameters,
98–99

In-Memory option, 295–296
OMF-related initialization

parameters, 173
Real Application Clusters (RAC), 446
RMAN, 497–498
and undo tablespaces, 219–220

In-Memory option
case study, 295–299
data dictionary views, 299–300
execution plans, 298–299
IM column store, 294
initialization parameters, 295–296
marking tablespaces, tables and

columns, 296
overview, 294
query performance before and after,

296–297
system requirements and setup,

294–295
installation tablespaces, 73–75
INSTANCE_TYPE, 98
instances

accessing an ASM instance, 97–98
ASM instance startup and

shutdown, 99
ASM instances, 175
creating an ASM instance, 94–97
overview, 5–6

intra-CDB links, 377
IOTs. See index-organized tables
iterative development, 151–152

J

Java pool, 36
JAVA_POOL_SIZE, 48–49

K

Kerberos, 311

L

Label Security, 42
large databases. See VLDB environments
large objects (LOBs)

and flashback operations, 242
sizing tables that contain LOBs, 141

large pool, 36
LARGE_POOL_SIZE, 48–49, 99
least recently used (LRU) algorithm, 257
LGWR, 38
library cache, 35
LIST command, 533–534
list partitions, 15
listener server process

controlling, 596–598
starting, 594–595

listeners, 583–585
configuring, 588–590
listener.ora parameters, 585–587

LMTs. See locally managed tablespaces
local indexes, 16, 254
locally managed tablespaces, 7

using to manage space, 170–171
log writer process. See LGWR
LOG_ARCHIVE_DEST_n parameter

attributes, 540–542
logical backups, 454–455

integration of logical and physical
backups, 478–479

logical database structures, 8–9
logical memory structures, 34
logical standby databases, 539

creating, 547–549
failovers to, 554–555
performing DDL on, 557
switchovers to, 553–554

20-Index.indd 704 08/05/15 3:48 PM

Index 705

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

logical storage structures, 6–8
LogMiner, 564–565

analyzing one or more redo log files,
566–569

DBMS_LOGMNR subprograms, 567
extracting the data dictionary,

565–566
how LogMiner works, 565
values for the START_LOGMNR

options, 567

M

manual multiplexing, 31–33
materialized view logs, 21, 662

managing, 684
purging, 685

materialized views, 20, 21–22, 125,
652, 661–662

creating, 673–674
enforcing referential integrity

among, 679–684
managing, 670–672
planning, 672–673
replication of data using, 270–272
using to alter query execution paths,

689–690
MAXDATAFILES, 620
Mean Time to Recovery (MTTR), 39
memory advisors, 282
memory structures, 33–39
MEMORY_TARGET, 48
migrated rows, 263
multiplexing, 31–33
multitenant architecture, pluggable

database provisioning, 376–379
multitenant environments, 372–373

backing up CDBs, 420–422
backing up PDBs, 422–423
data dictionary views in,

384–387

leveraging multitenant databases,
373–374

multitenant configurations,
374–376

non-CDB databases, 376
performing backups of a CDB and all

PDBs, 416–420
provisioning in, 376
recovering from PDB datafile

loss, 424–432
security, 410–416
system container database

architecture, 375–376
user container databases, 376

N

net service names, 582–583
configuring, 590–591

NOLOGGING option, 268
non-ASM environment, 69–72
non-unique indexes, 19
notification

automating using DBMS_
SCHEDULER, 195

automating using Segment Advisor,
196–203, 204

automating using Undo Advisor,
203–206

NULL rule, 17

O

object privileges, 41, 329–330
data dictionary views, 333
procedure privileges, 331–333
table privileges, 330–331
view privileges, 331

object tables, 12–13
object views, 22, 143–146

20-Index.indd 705 08/05/15 3:48 PM

706 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

OEM. See Oracle Enterprise
Manager (OEM)

offline backups, 40, 455–456, 474–475
OMF. See Oracle Managed Files (OMF)
online backups, 40, 456–457, 475–478
Optimal Flexible Architecture

(OFA), 68–73
Oracle Connection Manager, 598–599

cman.ora parameters, 600–601
configuring, 600–601
Connection Manager Administrative

(CMADMIN) process, 599
Connection Manager Control Utility

(CMCTL), 601–602
Connection Manager Gateway

(CMGW) process, 599
Oracle Data Guard

architecture, 538–540
creating logical standby databases,

547–549
creating the standby database

configuration, 542–547
data protection modes, 539–540
failovers, 550, 554–555
LOG_ARCHIVE_DEST_n parameter

attributes, 540–542
managing datafiles in Data Guard

environments, 556
managing gaps in archive log

sequences, 550
physical vs. logical standby

databases, 539
real-time apply, 549–550
switchovers, 550–554

Oracle Data Pump, 52, 53–54, 457
command-line input parameters,

459–460, 466–468
creating a directory, 457–458
Export options, 458–461
exporting from another database, 464
generating SQL, 473–474
Import options, 466–474

logical backups, 454–455
starting a Data Pump Export job,

462–466
starting a Data Pump Import job,

469–474
stopping and restarting running jobs,

463–464, 471–472
transforming imported objects,

472–473
using EXCLUDE, INCLUDE, and

QUERY, 464–466, 472
See also Export/Import

Oracle Enterprise Manager (OEM), 43–44
Oracle Internet Directory

architecture, 603–604
replacing tnsnames.ora with, 583
setting up, 604

Oracle Managed Files (OMF), 30
OMF-related initialization

parameters, 173
using for undo tablespaces, 218–219
using OMF to manage space,

172–173
Oracle Net

connect descriptors, 581–582
debugging connection problems,

609–610
limiting resource usage, 608
listeners, 583–587
net service names, 582–583
overview, 578–581
tuning, 607–610
using compression, 609

Oracle Net Configuration Assistant
configuring listeners, 588–590
directory usage configuration,

591–592
local net service name configuration,

590–591
naming methods configuration, 590

Oracle Net Manager, 592–594
Oracle Streams, 43

20-Index.indd 706 08/05/15 3:48 PM

Index 707

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Oracle Total Recall Option, 227–228. See
also DBMS_FLASHBACK; Flashback
Query; Flashback Table; Flashback
Transaction Backout; Flashback
Transaction Query; Flashback Version
Query

Oracle Universal Installer, using to
create a CDB, 384

out-of-place materialized view
refresh, 673

out-of-place restore, 230

P

package development, 153–155
PARALLEL option, 268
Parallel Query, using to distribute CPU

resources, 248
partition keys, 15
partitioned indexes, 16
partitioned index-organized tables,

645–646
partitioned tables, 15–16, 625–626

coalescing a table partition,
649–650

creating hash-partitioned global
indexes, 644–645

creating local partitioned indexes,
642–643

creating nonpartitioned global
indexes, 645

creating range-partitioned global
indexes, 643–644

creating using application-controlled
(system) partitioning, 640

creating using composite list-hash,
list-list, and list-range partitioning,
634–635

creating using composite range-hash
partitioning, 630–632

creating using composite range-list
partitioning, 633–634

creating using composite range-range
partitioning, 635–637

creating using compressed partitioned
tables, 641

creating using hash partitioning,
628–630

creating using interval partitioning,
637–638

creating using interval-reference
partitioning, 639–640

creating using list partitioning, 630
creating using range partitioning,

626–628
creating using reference partitioning,

638–639
creating using virtual column

partitioning, 640–641
indexing partitions, 642
maintaining index partitions, 650–651
maintaining table partitions, 646,

647, 648
merging two table partitions, 650
renaming a local index partition, 652
splitting, adding, and dropping

partitions, 647–649
splitting a global index partition,

651–652
using key compression on partitioned

indexes, 645
partitions, 269–270

managing, 646–652
sizing, 141–142

password files, 30–31, 306–309
PCTFREE, 262

estimating proper value for, 139–140
PDB$SEED, 387
PDBs. See pluggable databases (PDBs)
permanent tablespaces, 62, 63
PGA. See Program Global Area (PGA)
physical backups, 455–457

integration of logical and physical
backups, 478–479

20-Index.indd 707 08/05/15 3:48 PM

708 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

physical database diagrams, 128
physical standby databases, 539

failovers to, 554
opening in read-only mode, 556
startup and shutdown, 555
switchovers to, 551–553

physical storage structures, 26–31
pkOIDs, 145
pkREFs, 146
PL/SQL, 23

functions, 24
packages, 24
procedures, 24
triggers, 24

pluggable database administrator
(PDBA), 378

pluggable databases (PDBs), 62
automating PDB startup, 404–405
backing up PDBs, 422–423
changing PDB status, 405–406
changing the default tablespace in

a PDB, 409
cloning PDBs, 387–389
connecting to a PDB using SQL

Developer, 396–397
creating, 387–392
creating services for, 397–398
dropping a PDB, 393–394
duplicating using RMAN, 437–438
enabling common users to access

data in specific PDBs, 414–416
managing permanent and temporary

tablespaces in, 407–410
managing resource allocation within

a PDB, 284–288
opening and closing a PDB, 401–405
performing backups of a CDB and all

PDBs, 416–420
plugging an unplugged PDB into a

CDB, 392
provisioning, 376–379

recovering from PDB datafile
loss, 424–432

recovering PDB datafiles, 430–432
service names, 395–396
unplugging, 392–393

PMON, 38
point-in-time recovery (PITR),

435–436, 527
Pre-Upgrade Information Tool (preupgrd

.sql), 54–55
primary key values, 17
principle of least privilege, 415
private synonyms, 23
privileges, 41

auditing, 364
managing common and local

privileges, 412–413
object privileges, 329–333
principle of least privilege, 415
system privileges, 326–329

Process Monitor. See PMON
PROCESSES, 49
profiles, 22–23

CREATE PROFILE command,
319–320

and password control, 320–324
password-related profile

parameters, 321
and resource control, 324–326
resource-related profile

parameters, 325
Program Global Area (PGA), 36
Public Key Infrastructure (PKI),

311–312
public synonyms, 23

Q

query rewrites, 671, 689–690
QUICK_TUNE, 678
quiescing databases, 149–150

20-Index.indd 708 08/05/15 3:48 PM

Index 709

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

R

RAC. See Real Application Clusters (RAC)
RADIUS, 312
range partitions, 15
rapid connect-time failover, 444
read consistency, 211–212

vs. successful DML, 227
Real Application Clusters (RAC), 42–43

Cluster Ready Services (CRS), 443
cluster-aware dynamic performance

views, 447–448
common database file views,

446–447
disk storage, 444
dynamic performance views, 446–448
failover scenarios and TAF, 449–451
hardware configuration, 443
initialization parameters, 446
network configuration, 443–444
overview, 442–443
redo logs in a RAC environment,

448–449
server parameter file characteristics,

445–446
software configuration, 443
starting up a RAC, 448
tuning a RAC node, 451
undo tablespaces, 449
using to distribute CPU resources, 248

real-time apply, 549–550
RECO, 39, 691
recoverer process. See RECO
Recovery Manager. See RMAN
redo log buffer, 35
redo log files, 27

analyzing with LogMiner, 566–569
moving online redo log files, 90–91
multiplexing, 32–33
in a RAC environment, 448–449
recovery from loss of, 427–428

redundancy, 105, 175
referential integrity, 679–684
referential integrity values, 17–18
refresh intervals, 271
refreshes, 685–689
regular views, 21
relational tables, 9–11
Remote Authentication Dial-In User

Service. See RADIUS
remote data manipulation, 660–661
remote databases, 25
remote procedure calls, 272–273
remote queries, 659–660
REPORT command, 533–534
Resource Manager

creating and modifying Resource
Manager plans, 284–288

creating the CDB resource plan,
285–287

identifying parameters to limit PDB
resource usage, 285

managing resources within
a PDB, 288

migrating non-CDB resource
plans, 288

using shared to manage inter-PDB
resources, 284

viewing resource plan directives,
287–288

RESTORE PREVIEW command, 526
RESTORE VALIDATE command, 527
Resumable Space Allocation, 187–190
reverse indexes, 253
reverse key indexes, 19, 140, 253
RMAN, 40

archived redo log backups, 509
backup compression, 497
backup types, 486–487
backupsets and backup pieces, 487
block change tracking, 513–515
block media recovery, 519–520

20-Index.indd 709 08/05/15 3:48 PM

710 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

RMAN (Cont.)
catalog maintenance, 532–533
cataloging other backups, 531–532
components, 483–484
compressed backups, 487
consistent and inconsistent

backups, 486
control file and SPFILE backups,

507–509
control file autobackup, 495–497
data dictionary and dynamic

performance views, 498–500
Data Recovery Advisor, 527–531
datafile backups, 506
device type, 495
duplicating PDBs, 437–438
frequently used commands, 488–490
full and incremental backups, 486
full database backups, 500–503,

504, 505
image copies, 486, 506–507
incremental backups, 509–511
incrementally updated backups,

511–513
initialization parameters, 497–498
overview, 482
persisting RMAN settings, 493–497
point-in-time recovery (PITR), 527
registering a database, 491–493
REPORT and LIST commands,

533–534
restoring an entire database, 524–525
restoring control files, 520
restoring datafiles, 524
restoring tables, 522–524
restoring tablespaces, 520–522
retention policy, 494–495
running SQL commands in, 487
setting up a repository, 490–491
tablespace backups, 503–506
tags, 512

vs. traditional backup methods,
484–485

using a fast recovery area, 515–516
validating backups, 516–518
validating restore operations,

525–527
See also backup/recovery

roles, 41
assigning or revoking, 336–337
creating or dropping, 334–336
data dictionary views, 338–340
default roles, 337–338
granting privileges to a role, 336
managing common and local roles,

413–414
overview, 333–334
password-enabled roles, 338
predefined Oracle roles, 335
secure application roles, 334

roll forward operations, 27
rollback segments, 8
root containers, 377
root datafile, recovery from loss of, 428
row movement, 232–233
rule-based optimizer, 261

S

schema object auditing, 365–366
schemas, 22
SCN. See System Change

Number (SCN)
Secure Sockets Layer (SSL) protocol,

310–311
security, 41–42

non-database security, 305
requirements, 153–154

seed PDBs, 377
Segment Advisor, 179–182,

196–203, 204
segment shrink, 179–180

20-Index.indd 710 08/05/15 3:48 PM

Index 711

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

segments, 7–8, 161, 164–165
fragmented segments, 160
segregation, 75
that cannot allocate additional

extents, 193–194
sequences, 23
server parameter files (SPFILEs), 445–446

backups, 507–509
server/server architecture, 581
SGA. See System Global Area (SGA)
SGA_TARGET, 48
shared database links, 667
shared pool, 35
SHARED_POOL_SIZE, 48–49
smallfile tablespaces, 78

adding a datafile to, 83–84
resizing using ALTER DATABASE,

79–80
resizing using EM Database Express,

80–84
SMON, 38
software code areas, 36–37
software executables, 70–71
sorted hash clusters, 14–15
space calculations, 135–136
space management

archived redo log files, 179
common problems, 158–160
index usage, 184–185
managing alert and trace files with

ADR, 190–193
methodologies, 170–177
OS space management, 193
Resumable Space Allocation,

187–190
scripts, 193–195
Segment Advisor, 179–182
segments that cannot allocate

additional extents, 193–194
space usage warning levels, 185–187
SYSAUX tablespace, 177–179

Undo Advisor and the Automatic
Workload Repository, 182–184

undo tablespaces, 176–177
used and free space by tablespace

and datafile, 194–195
using ASM, 174–176
using OMF to manage space,

172–173
space requirements, 128, 153

estimating for indexes, 138–139
estimating for tables, 136–138

spanned rows, 263
SQL Access Advisor, 676–681
SQL Developer

connecting to a CDB or PDB,
396–397

unplugging a PDB, 393
SQL*Loader, Direct Path option, 265–267
SQL*Plus

unplugging a PDB, 392–393
using to create a CDB, 380–381

stored queries. See views
streams pool, 36
STREAMS_POOL_SIZE, 48–49
stretch goals, 128–129
suspending databases, 149–150
switchovers, 550–554
synonyms, 23
SYSAUX tablespace, 64, 65, 66, 74

monitoring and usage, 177–179
recovery from loss of, 430

System Change Number (SCN), 39
System Global Area (SGA), 5, 33–36

managing SGA pools, 257–260
specifying the size of the SGA pool,

260–261
System Monitor. See SMON
system privileges, 41, 326–327

common system privileges, 328
data dictionary views, 329
granting, 327

20-Index.indd 711 08/05/15 3:48 PM

712 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

SYSTEM tablespace, 63–64, 74
recovery from loss of, 428–430

system triggers, 189

T

table recovery from backups (TRFB),
522–524

tables, 9–16
redefining online, 570–572
restoring, 522–524

tablespace point in time recovery
(TSPITR), 522

tablespaces, 6–7
architecture, 26–73
backups, 503–506
dropping a datafile from

a tablespace, 85
fragmented tablespaces, 160
resizing, 78–86
restoring, 520–522
running out of free space, 159
types, 62–68

TEMP tablespace, 74
tempfiles, recovery from loss of, 424
temporary segments, 8, 164–165

insufficient space for, 159
temporary tables, 11
temporary tablespace groups, 64–68
temporary tablespaces, 7, 63, 64–68

storing undo in temporary
tablespaces, 226–227

testing, environment, 155
text indexes, 254
thin-client architecture, 578, 580
three-tier architecture, 578
tnsnames.ora, replacing with Oracle

Internet Directory, 583
trace logs, 29

managing with ADR, 190–193

traffic reduction
replication of data using materialized

views, 270–272
using remote procedure calls,

272–273
transactions

overview, 210–211
See also distributed transactions

transparent data encryption, 369–370
trigger-based integrity, 18
triggers, 18, 661

disabling, 267–268
managing, 669–670
PL/SQL, 24

TRUNCATE command, 268–269
tuning application design

distribution of CPU requirements,
248–249

effective application design,
249–250

effective table design, 247–248
tuning data access, 262

identifying chained rows, 262–263
using index-organized tables,

263–265
tuning data manipulation, 265

common traps and successful tricks,
267–268

using external tables, 267
using partitions, 269–270
using the SQL*Loader Direct Path

option, 265–267
using the TRUNCATE command,

268–269
tuning in a multitenant environment,

277–278
leveraging AWR reports, 283
sizing the CDB, 279–281
standard tuning methodology, 279
using memory advisors, 282
using the SQL Tuning Advisor, 283

20-Index.indd 712 08/05/15 3:48 PM

Index 713

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

tuning memory usage, 257
managing SGA pools, 257–260
specifying the size of the SGA pool,

260–261
using the cost-based optimizer, 261

tuning SQL
additional indexing options,

253–254
generating explain plans, 254–257
impact of order on load rates,

252–253
overview, 251–252

Two-Phase Commit (2PC), 660–661,
690–691

two-tier architecture, 578

U

Undo Advisor, 182–184, 203–206,
224–225

undo tablespaces, 8, 62–63, 64
active or unexpired data, 223
controlling undo usage, 225–226
creating, 212–217
database recovery, 212
dropping, 217–218
dynamic performance views, 219
expired data, 223
flashback operations, 212
initialization parameters, 219–220
management considerations,

176–177
modifying, 218
multiple undo tablespaces, 221–223
in a RAC environment, 449
read consistency, 211–212, 227
rollback, 211
sizing and monitoring, 223–227
storing undo in temporary

tablespaces, 226–227

too much or too little undo space
allocated, 159–160

unused data, 223
using OMF for, 218–219

UNDO_MANAGEMENT, 49, 219
UNDO_RETENTION, 220
UNDO_TABLESPACE, 49, 219–220

recovery from loss of, 428–430
UNDOTBS1 tablespace, 74
unique column values, 17
unique indexes, 19
upgrading

choosing an upgrade method,
53–54

Database Upgrade Assistant (DBUA),
52, 53, 55–56

data-copying method, 52–53,
54, 59

direct upgrade, 53
manual upgrading, 52, 53, 56–58
Oracle Data Pump, 52, 53–54,

58–59
overview of options, 52–53
Pre-Upgrade Information Tool

(preupgrd.sql), 54–55
before upgrading, 54–55
after upgrading, 60

user-centered table design, 247–248
user-defined datatypes. See abstract

datatypes
users, 22, 313

altering, 316
becoming another user, 317–318
creating, 313–316
dropping, 316–317
enabling common users to access

data in specific PDBs, 414–416
managing common and local users,

410–412
user-related data dictionary views, 318

USERS tablespace, 75

20-Index.indd 713 08/05/15 3:48 PM

714 Oracle Database 12c DBA Handbook

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

V

V$ALERT_TYPES, 169
V$CONTAINERS, querying, 377–378
V$IM_SEGMENTS, 299–300
V$INMEMORY_AREA, 300
V$SGA, 300
V$SORT_SEGMENT, 169
V$TABLESPACE, 620
V$TEMPSEG_USAGE, 170
V$UNDOSTAT, 169
version requirements, 154
versioning, 151
very large databases. See VLDB

environments

views, 20–22
Virtual Private Databases, 42

application context, 341–343
creating a VPD, 347–355
debugging a VPD policy,

355–358
security policy implementation,

343–344
using DBMS_RLS, 344–347
using to implement application

security policies, 340–341
VLDB environments, creating tablespaces

in, 613–620
VPDs. See Virtual Private Databases

20-Index.indd 714 08/05/15 3:48 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Join the Largest
Tech Community

in the World
 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your professional network through
the Oracle ACE Program

Publish your technical articles – and
get paid to share your expertise

Join the Oracle Technology Network
Membership is free. Visit oracle.com/technetwork

@OracleOTN facebook.com/OracleTechnologyNetwork

20-Index.indd 716 08/05/15 3:48 PM

http://oracle.com/technetwork
http://facebook.com/OracleTechnologyNetwork

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

20-Index.indd 717 08/05/15 3:48 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

oracleaces

@oracleace

blogs.oracle.com/oracleace B

20-Index.indd 718 08/05/15 3:48 PM

http://oracle.com/technetwork/oracleace
http://blogs.oracle.com/oracleace
http://oracle.com/technetwork/oracleace

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

20-Index.indd 719 08/05/15 3:48 PM

Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1 Oracle TIGHT / Oracle Database 12c DBA Handbook / Bob Bryla / 878-1

Beta Test
Oracle

Software

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

If your interests match upcoming activities, we’ll contact you. Profiles are kept on file for 12 months.

Please apply at: pdpm.oracle.com/BPO/userprofile

 Licensed Oracle customer or
Oracle PartnerNetwork member

 Oracle software expert

 Early adopter of Oracle products

Get a first look at our newest products—and help
perfect them. You must meet the following criteria:

20-Index.indd 720 08/05/15 3:48 PM

http://pdpm.oracle.com/BPO/userprofile

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and

technologies. Get exclusive discounts on Oracle

Press books. Interact with expert Oracle Press

authors and other Oracle Press Community members.

Read blog posts, download content and multimedia,

and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Part I: Database Architecture
	1 Getting Started with the Oracle Architecture
	An Overview of Databases and Instances
	Oracle Logical Storage Structures
	Oracle Logical Database Structures
	Oracle Physical Storage Structures
	Multiplexing Database Files
	Oracle Memory Structures
	Backup/Recovery Overview
	Security Capabilities
	Real Application Clusters
	Oracle Streams
	Oracle Enterprise Manager
	Oracle Initialization Parameters
	Summary

	2 Upgrading to Oracle Database 12c
	Choosing an Upgrade Method
	Before Upgrading
	Using the Database Upgrade Assistant
	Performing a Manual Direct Upgrade
	Using Data Pump Export and Import
	Using the Data-Copying Method
	After Upgrading
	Summary

	3 Planning and Managing Tablespaces
	Tablespace Architecture
	Oracle Installation Tablespaces
	Segment Segregation
	Summary

	4 Physical Database Layouts and Storage Management
	Traditional Disk Space Storage
	Automatic Storage Management
	Summary

	Part II: Database Management
	5 Developing and Implementing Applications
	Tuning by Design: Best Practices
	Resource Management
	Supporting Tables Based on Abstract Datatypes
	Quiescing and Suspending the Database
	Supporting Iterative Development
	Managing Package Development
	Summary

	6 Monitoring Space Usage
	Common Space Management Problems
	Oracle Segments, Extents, and Blocks
	Data Dictionary Views and Dynamic Performance Views
	Space Management Methodologies
	SYSAUX Monitoring and Usage
	Archived Redo Log File Management
	Built-in Space Management Tools
	Space Management Scripts
	Automating and Streamlining the Notification Process
	Summary

	7 Managing Transactions with Undo Tablespaces
	Transaction Basics
	Undo Basics
	Managing Undo Tablespaces
	Flashback Features
	Migrating to Automatic Undo Management
	Summary

	8 Database Tuning
	Tuning Application Design
	Tuning SQL
	Tuning Memory Usage
	Tuning Data Access
	Tuning Data Manipulation
	Reducing Network Traffic
	Using the Automatic Workload Repository
	Performance Tuning in a Multitenant Environment
	Managing Resource Allocation Within a PDB
	Performing Database Replay
	Summary

	9 In-Memory Option
	Overview of Oracle In-Memory Option
	Data Dictionary Views
	Summary

	10 Database Security and Auditing
	Non-database Security
	Database Authentication Methods
	Database Authorization Methods
	Auditing
	Data Encryption Techniques
	Summary

	11 Multitenant Database Architecture
	Understanding the Multitenant Architecture
	Provisioning in a Multitenant Environment
	Managing CDBs and PDBs
	Multitenant Security
	Backup and Recovery in Multitenant Environments
	Summary

	Part III: High Availability
	12 Real Application Clusters
	Overview of Real Application Clusters
	RAC Characteristics
	RAC Maintenance
	Summary

	13 Backup and Recovery Options
	Backup Capabilities
	Logical Backups
	Physical Backups
	Using Data Pump Export and Import
	Implementing Offline Backups
	Implementing Online Backups
	Integration of Backup Procedures
	Summary

	14 Using Recovery Manager (RMAN)
	RMAN Features and Components
	Overview of RMAN Commands and Options
	Backup Operations
	Recovery Operations
	Miscellaneous Operations
	Summary

	15 Oracle Data Guard
	Data Guard Architecture
	LOG_ARCHIVE_DEST_n Parameter Attributes
	Creating the Standby Database Configuration
	Using Real-Time Apply
	Managing Gaps in Archive Log Sequences
	Managing Roles: Switchovers and Failovers
	Administering the Databases
	Summary

	16 Miscellaneous High Availability Features
	Recovering Dropped Tables Using Flashback Drop
	The Flashback Database Command
	Using LogMiner
	Online Object Reorganization
	Summary

	Part IV: Networked Oracle
	17 Oracle Net
	Overview of Oracle Net
	Using the Oracle Net Configuration Assistant
	Using the Oracle Net Manager
	Starting the Listener Server Process
	Controlling the Listener Server Process
	The Oracle Connection Manager
	Directory Naming with Oracle Internet Directory
	Using Easy Connect Naming
	Using Database Links
	Tuning Oracle Net
	Summary

	18 Managing Large Databases
	Creating Tablespaces in a VLDB Environment
	Advanced Oracle Table Types
	Using Bitmap Indexes
	Summary

	19 Managing Distributed Databases
	Remote Queries
	Remote Data Manipulation: Two-Phase Commit
	Dynamic Data Replication
	Managing Distributed Data
	Managing Distributed Transactions
	Monitoring Distributed Databases
	Tuning Distributed Databases
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

